Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection
This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in $\mathbb{R}^n$ ($n\geq3$). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and a...
Saved in:
| Published in | AIMS mathematics Vol. 6; no. 1; pp. 314 - 332 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2021020 |
Cover
| Abstract | This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in $\mathbb{R}^n$ ($n\geq3$). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and another one is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the same time, we also show that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which means that the traveling fronts are not asymptotically stable under general bounded perturbations. |
|---|---|
| AbstractList | This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in $\mathbb{R}^n$ ($n\geq3$). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and another one is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the same time, we also show that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which means that the traveling fronts are not asymptotically stable under general bounded perturbations. |
| Author | Niu, Hui-Ling |
| Author_xml | – sequence: 1 givenname: Hui-Ling surname: Niu fullname: Niu, Hui-Ling |
| BookMark | eNp9kctKBDEQRYMo-Nz5AfkAW5N0T7qzFPExoLhRt6E6DyeSScYko4xfb_eMiAi6qqI491ZSdx9thxgMQseUnNaibs7mUGanjDBKGNlCe6xp64qLrtv-0e-io5xfCBko1rC22UMfd0tfnHZzE7KLATzOBXrnXVnhaPFTlWewMBqXBG_Gu_CMbYqhZOwC7t3IeoOTAVUGdaWdtcvRB5vXJYyjjN9dmeHhrYPYQMIqhjezpg_RjgWfzdFXPUCPV5cPFzfV7f319OL8toKGslIx3lpmuYDhA5wT6HVP2lZo2tmGdaxTE0u1AVJrDUpQLRRXfMJZr1XLuJ7UB2i68dURXuQiuTmklYzg5HoQ07OEVJzyRhrTCiGGLYI3Td_ZnhFChVGU1ALqfvSqNl7LsIDVO3j_bUiJHHOQYw7yK4eBZxtepZhzMlYqV9aHGQ7q_F-ik1-if3d8Akm_n-4 |
| CitedBy_id | crossref_primary_10_3390_axioms12020184 |
| Cites_doi | 10.1007/978-3-642-61798-0 10.1016/j.jde.2015.12.045 10.3934/dcdss.2011.4.101 10.1016/j.nonrwa.2018.10.005 10.1016/j.jde.2011.08.029 10.1016/j.jde.2004.06.011 10.1007/s00028-017-0397-z 10.3934/dcds.2012.32.1011 10.3934/dcds.2006.14.203 10.1080/03605309208820907 10.3934/dcdsb.2015.20.1015 10.57262/die/1356019308 10.1007/978-3-0348-9234-6 10.1017/S0308210515000268 10.1007/s11425-016-0015-x 10.3934/dcdsb.2017055 10.1080/03605300902963500 10.1007/978-3-0348-7964-4 10.1080/03605300008821532 10.1007/s10884-019-09779-6 10.1080/03605309208820908 10.1007/PL00004238 10.1137/060661788 10.1186/s13662-019-2438-0 10.57262/ade/1355926855 10.1016/j.ansens.2004.03.001 10.1016/j.jde.2011.01.017 10.1016/j.jde.2012.04.022 10.12775/TMNA.1998.002 10.57262/die/1356019305 10.1016/j.nonrwa.2018.10.003 10.1007/s11425-013-4699-5 10.1016/j.na.2020.111791 10.1016/j.jde.2011.09.016 10.3934/dcds.2006.14.75 10.12775/TMNA.2000.029 10.1016/j.aim.2015.11.033 10.1016/j.jde.2008.06.037 10.1007/s10231-008-0072-7 10.1016/j.jde.2018.01.020 10.3934/dcds.2006.15.819 10.3934/dcds.2005.13.1069 10.1090/S0002-9947-97-01668-1 10.1016/j.aml.2020.106509 10.1137/S0036141097316391 10.1515/anona-2020-0127 10.3934/dcds.2012.32.2339 10.57262/die/1356039441 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2021020 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 332 |
| ExternalDocumentID | oai_doaj_org_article_ee79996609644b8fb20019ec1039a3b5 10.3934/math.2021020 10_3934_math_2021020 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a412t-267f2f69a698660abdb0779d18f42828c5f1dea03ddac91d9c6c6562bdc726d53 |
| IEDL.DBID | DOA |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:05 EDT 2025 Mon Sep 15 10:15:59 EDT 2025 Tue Jul 01 03:56:46 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-267f2f69a698660abdb0779d18f42828c5f1dea03ddac91d9c6c6562bdc726d53 |
| OpenAccessLink | https://doaj.org/article/ee79996609644b8fb20019ec1039a3b5 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ee79996609644b8fb20019ec1039a3b5 unpaywall_primary_10_3934_math_2021020 crossref_citationtrail_10_3934_math_2021020 crossref_primary_10_3934_math_2021020 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2021 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2021020-1 key-10.3934/math.2021020-47 key-10.3934/math.2021020-2 key-10.3934/math.2021020-48 key-10.3934/math.2021020-45 key-10.3934/math.2021020-46 key-10.3934/math.2021020-43 key-10.3934/math.2021020-44 key-10.3934/math.2021020-41 key-10.3934/math.2021020-42 key-10.3934/math.2021020-9 key-10.3934/math.2021020-40 key-10.3934/math.2021020-7 key-10.3934/math.2021020-8 key-10.3934/math.2021020-5 key-10.3934/math.2021020-6 key-10.3934/math.2021020-3 key-10.3934/math.2021020-4 key-10.3934/math.2021020-38 key-10.3934/math.2021020-39 key-10.3934/math.2021020-14 key-10.3934/math.2021020-15 key-10.3934/math.2021020-12 key-10.3934/math.2021020-13 key-10.3934/math.2021020-10 key-10.3934/math.2021020-11 key-10.3934/math.2021020-49 key-10.3934/math.2021020-25 key-10.3934/math.2021020-26 key-10.3934/math.2021020-23 key-10.3934/math.2021020-24 key-10.3934/math.2021020-21 key-10.3934/math.2021020-22 key-10.3934/math.2021020-20 key-10.3934/math.2021020-18 key-10.3934/math.2021020-19 key-10.3934/math.2021020-16 key-10.3934/math.2021020-17 key-10.3934/math.2021020-36 key-10.3934/math.2021020-37 key-10.3934/math.2021020-34 key-10.3934/math.2021020-35 key-10.3934/math.2021020-32 key-10.3934/math.2021020-33 key-10.3934/math.2021020-30 key-10.3934/math.2021020-31 key-10.3934/math.2021020-29 key-10.3934/math.2021020-27 key-10.3934/math.2021020-28 |
| References_xml | – ident: key-10.3934/math.2021020-48 doi: 10.1007/978-3-642-61798-0 – ident: key-10.3934/math.2021020-37 doi: 10.1016/j.jde.2015.12.045 – ident: key-10.3934/math.2021020-19 doi: 10.3934/dcdss.2011.4.101 – ident: key-10.3934/math.2021020-35 doi: 10.1016/j.nonrwa.2018.10.005 – ident: key-10.3934/math.2021020-41 doi: 10.1016/j.jde.2011.08.029 – ident: key-10.3934/math.2021020-11 doi: 10.1016/j.jde.2004.06.011 – ident: key-10.3934/math.2021020-38 doi: 10.1007/s00028-017-0397-z – ident: key-10.3934/math.2021020-25 doi: 10.3934/dcds.2012.32.1011 – ident: key-10.3934/math.2021020-47 doi: 10.3934/dcds.2006.14.203 – ident: key-10.3934/math.2021020-43 doi: 10.1080/03605309208820907 – ident: key-10.3934/math.2021020-45 doi: 10.3934/dcdsb.2015.20.1015 – ident: key-10.3934/math.2021020-4 doi: 10.57262/die/1356019308 – ident: key-10.3934/math.2021020-46 doi: 10.1007/978-3-0348-9234-6 – ident: key-10.3934/math.2021020-30 doi: 10.1017/S0308210515000268 – ident: key-10.3934/math.2021020-31 doi: 10.1007/s11425-016-0015-x – ident: key-10.3934/math.2021020-32 doi: 10.3934/dcdsb.2017055 – ident: key-10.3934/math.2021020-42 doi: 10.1080/03605300902963500 – ident: key-10.3934/math.2021020-8 doi: 10.1007/978-3-0348-7964-4 – ident: key-10.3934/math.2021020-14 doi: 10.1080/03605300008821532 – ident: key-10.3934/math.2021020-22 doi: 10.1007/s10884-019-09779-6 – ident: key-10.3934/math.2021020-40 doi: 10.1080/03605309208820908 – ident: key-10.3934/math.2021020-18 doi: 10.1007/PL00004238 – ident: key-10.3934/math.2021020-23 doi: 10.1137/060661788 – ident: key-10.3934/math.2021020-10 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021020-3 doi: 10.57262/ade/1355926855 – ident: key-10.3934/math.2021020-17 doi: 10.1016/j.ansens.2004.03.001 – ident: key-10.3934/math.2021020-33 doi: 10.1016/j.jde.2011.01.017 – ident: key-10.3934/math.2021020-6 doi: 10.1016/j.jde.2012.04.022 – ident: key-10.3934/math.2021020-1 doi: 10.12775/TMNA.1998.002 – ident: key-10.3934/math.2021020-7 doi: 10.57262/die/1356019305 – ident: key-10.3934/math.2021020-26 doi: 10.1016/j.nonrwa.2018.10.003 – ident: key-10.3934/math.2021020-28 doi: 10.1007/s11425-013-4699-5 – ident: key-10.3934/math.2021020-34 doi: 10.1016/j.na.2020.111791 – ident: key-10.3934/math.2021020-21 doi: 10.1016/j.jde.2011.09.016 – ident: key-10.3934/math.2021020-16 doi: 10.3934/dcds.2006.14.75 – ident: key-10.3934/math.2021020-2 doi: 10.12775/TMNA.2000.029 – ident: key-10.3934/math.2021020-13 doi: 10.1016/j.aim.2015.11.033 – ident: key-10.3934/math.2021020-24 doi: 10.1016/j.jde.2008.06.037 – ident: key-10.3934/math.2021020-44 doi: 10.1007/s10231-008-0072-7 – ident: key-10.3934/math.2021020-27 doi: 10.1016/j.jde.2018.01.020 – ident: key-10.3934/math.2021020-49 – ident: key-10.3934/math.2021020-20 doi: 10.3934/dcds.2006.15.819 – ident: key-10.3934/math.2021020-15 doi: 10.3934/dcds.2005.13.1069 – ident: key-10.3934/math.2021020-39 doi: 10.1090/S0002-9947-97-01668-1 – ident: key-10.3934/math.2021020-36 doi: 10.1016/j.aml.2020.106509 – ident: key-10.3934/math.2021020-12 doi: 10.1137/S0036141097316391 – ident: key-10.3934/math.2021020-9 doi: 10.1515/anona-2020-0127 – ident: key-10.3934/math.2021020-29 doi: 10.3934/dcds.2012.32.2339 – ident: key-10.3934/math.2021020-5 doi: 10.57262/die/1356039441 |
| SSID | ssj0002124274 |
| Score | 2.1400034 |
| Snippet | This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 314 |
| SubjectTerms | multidimensional stability nonlinear convection reaction-diffusion equation v-shaped traveling front |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6h5dByKNCH2FKQD5RLZRo7jhMfKQIhJFAP3QpO0filIlbbLZtVBb--niS7okWlvUXRJLZmnPgbz8w3AHtZgSEo6XigX6CKvuAYc8lNpVEW3qYlTYXC5xf6dKTOLovLFdhb1MI8iN_nJlcfE2yjkAE5JskxX9VFQtwDWB1dfD68or5xqsy5NlXV5bQ_euS33aYl5V-DZ_PJFO9-4nj8YCc5WYfjxRy6BJKbg3ljD9z9H_SM_5rkBrzooSQ77Gy_CSth8hLWzpc8rLNXcN_W13pi8O_YN1gCg2067B37HtlXPvuG0-BZQ02IqDCdRSI0mLHrCbOELO04sAQr2-IHTs1U5vQeFn50DOEzRue4bNLxbeAta5PYW-nXMDo5_nJ0yvtuCxyVkA2XuowyaoNJnVpnaL3NytJ4UUVFfpkrovABs9x7dEZ447RLYFBa70qpfZG_gUEaLmwBQ5eXGCTqzGTKRoEiIblMYGUtWiH0ED4srFK7noqcOmKM6-SSkEZr0mjda3QI75fS046C4y9yn8jASxkizm5vJFPV_XdYh1C2Ll7y3JSyVbSUU2aCo4g45rYYwv5yeTw52tv_FdyG53TVHdu8g0FzOw87Ccg0drdfx78AEQHy4Q priority: 102 providerName: Unpaywall |
| Title | Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection |
| URI | https://doi.org/10.3934/math.2021020 https://doaj.org/article/ee79996609644b8fb20019ec1039a3b5 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iB_UgPnF9kYN6kWKTpml7VFFE2MWDK3oqkxcKy7ruA9Ffbyapy3pQL17LkCmTYfJNMvMNIYdpDtYKrhOLIVA4kyfgMp5UpQSeG-VdGhuF2x153RU3D_nDzKgvrAmL9MDRcKfWFgGTe6gthCqdwiKgymp8woRMBfbStKxmkimMwT4gC59vxUr3rMrEqcd_-PaAGU767QwKVP3LZHHSH8D7G_R6M-fL1SpZaYAhPYs_tEbmbH-dLLenrKqjDfIRumUN8vFHLg3qoV0obn2nL47eJ6MnGFhDxzhSCNvMqUN6ghF97lOFOFH1LPUgMbQyJDgaZYLrUPsa-b5HFG9laT-yZ8CQhpL0IL1JuleXdxfXSTM7IQHB-DjhsnDcyQqkt7pMQRmVFkVlWOkEZlk6d8xYSDNjQFfMVFpqD-24Mrrg0uTZFpn36uw2oaCzAiwHvwWpUI4B87gsZVAqBYox2SInX9asdUMsjvMterVPMND2Ndq-bmzfIkdT6UEk1PhB7hw3ZiqDNNjhg3eOunGO-i_naJHj6bb-qm3nP7TtkiVcLl7Q7JH58XBi9z1kGauD4J0HZKHbuT17_ARSBu2c |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6h5dByKNCH2FKQD5RLZRo7jhMfKQIhJFAP3QpO0filIlbbLZtVBb--niS7okWlvUXRJLZmnPgbz8w3AHtZgSEo6XigX6CKvuAYc8lNpVEW3qYlTYXC5xf6dKTOLovLFdhb1MI8iN_nJlcfE2yjkAE5JskxX9VFQtwDWB1dfD68or5xqsy5NlXV5bQ_euS33aYl5V-DZ_PJFO9-4nj8YCc5WYfjxRy6BJKbg3ljD9z9H_SM_5rkBrzooSQ77Gy_CSth8hLWzpc8rLNXcN_W13pi8O_YN1gCg2067B37HtlXPvuG0-BZQ02IqDCdRSI0mLHrCbOELO04sAQr2-IHTs1U5vQeFn50DOEzRue4bNLxbeAta5PYW-nXMDo5_nJ0yvtuCxyVkA2XuowyaoNJnVpnaL3NytJ4UUVFfpkrovABs9x7dEZ447RLYFBa70qpfZG_gUEaLmwBQ5eXGCTqzGTKRoEiIblMYGUtWiH0ED4srFK7noqcOmKM6-SSkEZr0mjda3QI75fS046C4y9yn8jASxkizm5vJFPV_XdYh1C2Ll7y3JSyVbSUU2aCo4g45rYYwv5yeTw52tv_FdyG53TVHdu8g0FzOw87Ccg0drdfx78AEQHy4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+stability+of+V-shaped+traveling+fronts+in+bistable+reaction-diffusion+equations+with+nonlinear+convection&rft.jtitle=AIMS+mathematics&rft.au=Hui-Ling+Niu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=1&rft.spage=314&rft.epage=332&rft_id=info:doi/10.3934%2Fmath.2021020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee79996609644b8fb20019ec1039a3b5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |