Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection

This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in $\mathbb{R}^n$ ($n\geq3$). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and a...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 1; pp. 314 - 332
Main Author Niu, Hui-Ling
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021020

Cover

Abstract This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in $\mathbb{R}^n$ ($n\geq3$). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and another one is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the same time, we also show that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which means that the traveling fronts are not asymptotically stable under general bounded perturbations.
AbstractList This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in $\mathbb{R}^n$ ($n\geq3$). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and another one is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the same time, we also show that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which means that the traveling fronts are not asymptotically stable under general bounded perturbations.
Author Niu, Hui-Ling
Author_xml – sequence: 1
  givenname: Hui-Ling
  surname: Niu
  fullname: Niu, Hui-Ling
BookMark eNp9kctKBDEQRYMo-Nz5AfkAW5N0T7qzFPExoLhRt6E6DyeSScYko4xfb_eMiAi6qqI491ZSdx9thxgMQseUnNaibs7mUGanjDBKGNlCe6xp64qLrtv-0e-io5xfCBko1rC22UMfd0tfnHZzE7KLATzOBXrnXVnhaPFTlWewMBqXBG_Gu_CMbYqhZOwC7t3IeoOTAVUGdaWdtcvRB5vXJYyjjN9dmeHhrYPYQMIqhjezpg_RjgWfzdFXPUCPV5cPFzfV7f319OL8toKGslIx3lpmuYDhA5wT6HVP2lZo2tmGdaxTE0u1AVJrDUpQLRRXfMJZr1XLuJ7UB2i68dURXuQiuTmklYzg5HoQ07OEVJzyRhrTCiGGLYI3Td_ZnhFChVGU1ALqfvSqNl7LsIDVO3j_bUiJHHOQYw7yK4eBZxtepZhzMlYqV9aHGQ7q_F-ik1-if3d8Akm_n-4
CitedBy_id crossref_primary_10_3390_axioms12020184
Cites_doi 10.1007/978-3-642-61798-0
10.1016/j.jde.2015.12.045
10.3934/dcdss.2011.4.101
10.1016/j.nonrwa.2018.10.005
10.1016/j.jde.2011.08.029
10.1016/j.jde.2004.06.011
10.1007/s00028-017-0397-z
10.3934/dcds.2012.32.1011
10.3934/dcds.2006.14.203
10.1080/03605309208820907
10.3934/dcdsb.2015.20.1015
10.57262/die/1356019308
10.1007/978-3-0348-9234-6
10.1017/S0308210515000268
10.1007/s11425-016-0015-x
10.3934/dcdsb.2017055
10.1080/03605300902963500
10.1007/978-3-0348-7964-4
10.1080/03605300008821532
10.1007/s10884-019-09779-6
10.1080/03605309208820908
10.1007/PL00004238
10.1137/060661788
10.1186/s13662-019-2438-0
10.57262/ade/1355926855
10.1016/j.ansens.2004.03.001
10.1016/j.jde.2011.01.017
10.1016/j.jde.2012.04.022
10.12775/TMNA.1998.002
10.57262/die/1356019305
10.1016/j.nonrwa.2018.10.003
10.1007/s11425-013-4699-5
10.1016/j.na.2020.111791
10.1016/j.jde.2011.09.016
10.3934/dcds.2006.14.75
10.12775/TMNA.2000.029
10.1016/j.aim.2015.11.033
10.1016/j.jde.2008.06.037
10.1007/s10231-008-0072-7
10.1016/j.jde.2018.01.020
10.3934/dcds.2006.15.819
10.3934/dcds.2005.13.1069
10.1090/S0002-9947-97-01668-1
10.1016/j.aml.2020.106509
10.1137/S0036141097316391
10.1515/anona-2020-0127
10.3934/dcds.2012.32.2339
10.57262/die/1356039441
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2021020
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 332
ExternalDocumentID oai_doaj_org_article_ee79996609644b8fb20019ec1039a3b5
10.3934/math.2021020
10_3934_math_2021020
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a412t-267f2f69a698660abdb0779d18f42828c5f1dea03ddac91d9c6c6562bdc726d53
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:05 EDT 2025
Mon Sep 15 10:15:59 EDT 2025
Tue Jul 01 03:56:46 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a412t-267f2f69a698660abdb0779d18f42828c5f1dea03ddac91d9c6c6562bdc726d53
OpenAccessLink https://doaj.org/article/ee79996609644b8fb20019ec1039a3b5
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_ee79996609644b8fb20019ec1039a3b5
unpaywall_primary_10_3934_math_2021020
crossref_citationtrail_10_3934_math_2021020
crossref_primary_10_3934_math_2021020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021020-1
key-10.3934/math.2021020-47
key-10.3934/math.2021020-2
key-10.3934/math.2021020-48
key-10.3934/math.2021020-45
key-10.3934/math.2021020-46
key-10.3934/math.2021020-43
key-10.3934/math.2021020-44
key-10.3934/math.2021020-41
key-10.3934/math.2021020-42
key-10.3934/math.2021020-9
key-10.3934/math.2021020-40
key-10.3934/math.2021020-7
key-10.3934/math.2021020-8
key-10.3934/math.2021020-5
key-10.3934/math.2021020-6
key-10.3934/math.2021020-3
key-10.3934/math.2021020-4
key-10.3934/math.2021020-38
key-10.3934/math.2021020-39
key-10.3934/math.2021020-14
key-10.3934/math.2021020-15
key-10.3934/math.2021020-12
key-10.3934/math.2021020-13
key-10.3934/math.2021020-10
key-10.3934/math.2021020-11
key-10.3934/math.2021020-49
key-10.3934/math.2021020-25
key-10.3934/math.2021020-26
key-10.3934/math.2021020-23
key-10.3934/math.2021020-24
key-10.3934/math.2021020-21
key-10.3934/math.2021020-22
key-10.3934/math.2021020-20
key-10.3934/math.2021020-18
key-10.3934/math.2021020-19
key-10.3934/math.2021020-16
key-10.3934/math.2021020-17
key-10.3934/math.2021020-36
key-10.3934/math.2021020-37
key-10.3934/math.2021020-34
key-10.3934/math.2021020-35
key-10.3934/math.2021020-32
key-10.3934/math.2021020-33
key-10.3934/math.2021020-30
key-10.3934/math.2021020-31
key-10.3934/math.2021020-29
key-10.3934/math.2021020-27
key-10.3934/math.2021020-28
References_xml – ident: key-10.3934/math.2021020-48
  doi: 10.1007/978-3-642-61798-0
– ident: key-10.3934/math.2021020-37
  doi: 10.1016/j.jde.2015.12.045
– ident: key-10.3934/math.2021020-19
  doi: 10.3934/dcdss.2011.4.101
– ident: key-10.3934/math.2021020-35
  doi: 10.1016/j.nonrwa.2018.10.005
– ident: key-10.3934/math.2021020-41
  doi: 10.1016/j.jde.2011.08.029
– ident: key-10.3934/math.2021020-11
  doi: 10.1016/j.jde.2004.06.011
– ident: key-10.3934/math.2021020-38
  doi: 10.1007/s00028-017-0397-z
– ident: key-10.3934/math.2021020-25
  doi: 10.3934/dcds.2012.32.1011
– ident: key-10.3934/math.2021020-47
  doi: 10.3934/dcds.2006.14.203
– ident: key-10.3934/math.2021020-43
  doi: 10.1080/03605309208820907
– ident: key-10.3934/math.2021020-45
  doi: 10.3934/dcdsb.2015.20.1015
– ident: key-10.3934/math.2021020-4
  doi: 10.57262/die/1356019308
– ident: key-10.3934/math.2021020-46
  doi: 10.1007/978-3-0348-9234-6
– ident: key-10.3934/math.2021020-30
  doi: 10.1017/S0308210515000268
– ident: key-10.3934/math.2021020-31
  doi: 10.1007/s11425-016-0015-x
– ident: key-10.3934/math.2021020-32
  doi: 10.3934/dcdsb.2017055
– ident: key-10.3934/math.2021020-42
  doi: 10.1080/03605300902963500
– ident: key-10.3934/math.2021020-8
  doi: 10.1007/978-3-0348-7964-4
– ident: key-10.3934/math.2021020-14
  doi: 10.1080/03605300008821532
– ident: key-10.3934/math.2021020-22
  doi: 10.1007/s10884-019-09779-6
– ident: key-10.3934/math.2021020-40
  doi: 10.1080/03605309208820908
– ident: key-10.3934/math.2021020-18
  doi: 10.1007/PL00004238
– ident: key-10.3934/math.2021020-23
  doi: 10.1137/060661788
– ident: key-10.3934/math.2021020-10
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021020-3
  doi: 10.57262/ade/1355926855
– ident: key-10.3934/math.2021020-17
  doi: 10.1016/j.ansens.2004.03.001
– ident: key-10.3934/math.2021020-33
  doi: 10.1016/j.jde.2011.01.017
– ident: key-10.3934/math.2021020-6
  doi: 10.1016/j.jde.2012.04.022
– ident: key-10.3934/math.2021020-1
  doi: 10.12775/TMNA.1998.002
– ident: key-10.3934/math.2021020-7
  doi: 10.57262/die/1356019305
– ident: key-10.3934/math.2021020-26
  doi: 10.1016/j.nonrwa.2018.10.003
– ident: key-10.3934/math.2021020-28
  doi: 10.1007/s11425-013-4699-5
– ident: key-10.3934/math.2021020-34
  doi: 10.1016/j.na.2020.111791
– ident: key-10.3934/math.2021020-21
  doi: 10.1016/j.jde.2011.09.016
– ident: key-10.3934/math.2021020-16
  doi: 10.3934/dcds.2006.14.75
– ident: key-10.3934/math.2021020-2
  doi: 10.12775/TMNA.2000.029
– ident: key-10.3934/math.2021020-13
  doi: 10.1016/j.aim.2015.11.033
– ident: key-10.3934/math.2021020-24
  doi: 10.1016/j.jde.2008.06.037
– ident: key-10.3934/math.2021020-44
  doi: 10.1007/s10231-008-0072-7
– ident: key-10.3934/math.2021020-27
  doi: 10.1016/j.jde.2018.01.020
– ident: key-10.3934/math.2021020-49
– ident: key-10.3934/math.2021020-20
  doi: 10.3934/dcds.2006.15.819
– ident: key-10.3934/math.2021020-15
  doi: 10.3934/dcds.2005.13.1069
– ident: key-10.3934/math.2021020-39
  doi: 10.1090/S0002-9947-97-01668-1
– ident: key-10.3934/math.2021020-36
  doi: 10.1016/j.aml.2020.106509
– ident: key-10.3934/math.2021020-12
  doi: 10.1137/S0036141097316391
– ident: key-10.3934/math.2021020-9
  doi: 10.1515/anona-2020-0127
– ident: key-10.3934/math.2021020-29
  doi: 10.3934/dcds.2012.32.2339
– ident: key-10.3934/math.2021020-5
  doi: 10.57262/die/1356039441
SSID ssj0002124274
Score 2.1400034
Snippet This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 314
SubjectTerms multidimensional stability
nonlinear convection
reaction-diffusion equation
v-shaped traveling front
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6h5dByKNCH2FKQD5RLZRo7jhMfKQIhJFAP3QpO0filIlbbLZtVBb--niS7okWlvUXRJLZmnPgbz8w3AHtZgSEo6XigX6CKvuAYc8lNpVEW3qYlTYXC5xf6dKTOLovLFdhb1MI8iN_nJlcfE2yjkAE5JskxX9VFQtwDWB1dfD68or5xqsy5NlXV5bQ_euS33aYl5V-DZ_PJFO9-4nj8YCc5WYfjxRy6BJKbg3ljD9z9H_SM_5rkBrzooSQ77Gy_CSth8hLWzpc8rLNXcN_W13pi8O_YN1gCg2067B37HtlXPvuG0-BZQ02IqDCdRSI0mLHrCbOELO04sAQr2-IHTs1U5vQeFn50DOEzRue4bNLxbeAta5PYW-nXMDo5_nJ0yvtuCxyVkA2XuowyaoNJnVpnaL3NytJ4UUVFfpkrovABs9x7dEZ447RLYFBa70qpfZG_gUEaLmwBQ5eXGCTqzGTKRoEiIblMYGUtWiH0ED4srFK7noqcOmKM6-SSkEZr0mjda3QI75fS046C4y9yn8jASxkizm5vJFPV_XdYh1C2Ll7y3JSyVbSUU2aCo4g45rYYwv5yeTw52tv_FdyG53TVHdu8g0FzOw87Ccg0drdfx78AEQHy4Q
  priority: 102
  providerName: Unpaywall
Title Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection
URI https://doi.org/10.3934/math.2021020
https://doaj.org/article/ee79996609644b8fb20019ec1039a3b5
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iB_UgPnF9kYN6kWKTpml7VFFE2MWDK3oqkxcKy7ruA9Ffbyapy3pQL17LkCmTYfJNMvMNIYdpDtYKrhOLIVA4kyfgMp5UpQSeG-VdGhuF2x153RU3D_nDzKgvrAmL9MDRcKfWFgGTe6gthCqdwiKgymp8woRMBfbStKxmkimMwT4gC59vxUr3rMrEqcd_-PaAGU767QwKVP3LZHHSH8D7G_R6M-fL1SpZaYAhPYs_tEbmbH-dLLenrKqjDfIRumUN8vFHLg3qoV0obn2nL47eJ6MnGFhDxzhSCNvMqUN6ghF97lOFOFH1LPUgMbQyJDgaZYLrUPsa-b5HFG9laT-yZ8CQhpL0IL1JuleXdxfXSTM7IQHB-DjhsnDcyQqkt7pMQRmVFkVlWOkEZlk6d8xYSDNjQFfMVFpqD-24Mrrg0uTZFpn36uw2oaCzAiwHvwWpUI4B87gsZVAqBYox2SInX9asdUMsjvMterVPMND2Ndq-bmzfIkdT6UEk1PhB7hw3ZiqDNNjhg3eOunGO-i_naJHj6bb-qm3nP7TtkiVcLl7Q7JH58XBi9z1kGauD4J0HZKHbuT17_ARSBu2c
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6h5dByKNCH2FKQD5RLZRo7jhMfKQIhJFAP3QpO0filIlbbLZtVBb--niS7okWlvUXRJLZmnPgbz8w3AHtZgSEo6XigX6CKvuAYc8lNpVEW3qYlTYXC5xf6dKTOLovLFdhb1MI8iN_nJlcfE2yjkAE5JskxX9VFQtwDWB1dfD68or5xqsy5NlXV5bQ_euS33aYl5V-DZ_PJFO9-4nj8YCc5WYfjxRy6BJKbg3ljD9z9H_SM_5rkBrzooSQ77Gy_CSth8hLWzpc8rLNXcN_W13pi8O_YN1gCg2067B37HtlXPvuG0-BZQ02IqDCdRSI0mLHrCbOELO04sAQr2-IHTs1U5vQeFn50DOEzRue4bNLxbeAta5PYW-nXMDo5_nJ0yvtuCxyVkA2XuowyaoNJnVpnaL3NytJ4UUVFfpkrovABs9x7dEZ447RLYFBa70qpfZG_gUEaLmwBQ5eXGCTqzGTKRoEiIblMYGUtWiH0ED4srFK7noqcOmKM6-SSkEZr0mjda3QI75fS046C4y9yn8jASxkizm5vJFPV_XdYh1C2Ll7y3JSyVbSUU2aCo4g45rYYwv5yeTw52tv_FdyG53TVHdu8g0FzOw87Ccg0drdfx78AEQHy4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+stability+of+V-shaped+traveling+fronts+in+bistable+reaction-diffusion+equations+with+nonlinear+convection&rft.jtitle=AIMS+mathematics&rft.au=Hui-Ling+Niu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=1&rft.spage=314&rft.epage=332&rft_id=info:doi/10.3934%2Fmath.2021020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee79996609644b8fb20019ec1039a3b5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon