Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS–QTOF Instrument

Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation–serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fr...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 21; no. 8; pp. 2036 - 2044
Main Authors Guergues, Jennifer, Wohlfahrt, Jessica
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.08.2022
Subjects
Online AccessGet full text
ISSN1535-3893
1535-3907
1535-3907
DOI10.1021/acs.jproteome.2c00336

Cover

Abstract Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation–serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.
AbstractList Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation–serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.
Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm²), followed by parallel accumulation–serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.
Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation-serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation-serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.
Author Wohlfahrt, Jessica
Guergues, Jennifer
AuthorAffiliation Department of Cell Biology, Microbiology and Molecular Biology
AuthorAffiliation_xml – name: Department of Cell Biology, Microbiology and Molecular Biology
Author_xml – sequence: 1
  givenname: Jennifer
  surname: Guergues
  fullname: Guergues, Jennifer
– sequence: 2
  givenname: Jessica
  surname: Wohlfahrt
  fullname: Wohlfahrt, Jessica
BookMark eNqFkUFOwzAQRS0EElA4ApKXbFrs2G4csUJVC5VAgCjraOJMIJDaxXaQuuMO3JCTkNLCgk039sj-70vz_yHZtc4iISecDThL-BmYMHhZeBfRzXGQGMaEGO6QA66E6ouMpbu_s87EPjkM4YUxrlImDsjr2D6DNThHG6mr6N3Gho7cO3p4Qlos6dRZeuOKuqnjkk48mFg7C6ujk7WLBksaHb27eBhPaPcGdDa9efj6-Lyf3U7o1Ibo25X_EdmroAl4vLl75HEyno2u-te3l9PRxXUfJNOxr6WGRBjEoUZdSqWEKEvImJK6qDQ3SqaqmwGLKimBA3ZbMaZ1ISAFnYHokdO1b5fJW4sh5vM6GGwasOjakCcp10LKLFPbpcNMSj7UeiVVa6nxLgSPVb7w9Rz8MucsX_WQdz3kfz3kmx467vwfZ-r4E170UDdbab6mf75d622X3BbmG6Jyp6I
CitedBy_id crossref_primary_10_1002_mas_21811
crossref_primary_10_1021_acs_jproteome_4c00690
crossref_primary_10_1039_D2CC05568F
crossref_primary_10_1080_14789450_2024_2373707
crossref_primary_10_1002_pmic_202200038
crossref_primary_10_1021_acs_analchem_3c04497
crossref_primary_10_1002_elps_202300210
crossref_primary_10_1021_acs_jproteome_3c00730
crossref_primary_10_3390_proteomes12040035
crossref_primary_10_1002_rcm_10006
crossref_primary_10_1021_acs_analchem_4c03557
crossref_primary_10_1093_gigascience_giae110
crossref_primary_10_1021_acs_jproteome_3c00646
crossref_primary_10_1093_plphys_kiad655
crossref_primary_10_1021_acs_analchem_4c00829
crossref_primary_10_3390_biomedicines12092132
crossref_primary_10_1021_acs_jproteome_4c00646
crossref_primary_10_3724_SP_J_1123_2024_02009
crossref_primary_10_1039_D3AN00080J
Cites_doi 10.1093/nar/gkab1038
10.1021/ac900888s
10.1038/s41467-021-21352-8
10.1038/nmeth.3901
10.1038/85686
10.1002/1522-2683(200209)23:18<3205::aid-elps3205>3.0.co;2-y
10.1074/mcp.tir120.002048
10.1016/j.jprot.2020.103753
10.1021/acs.analchem.8b02233
10.1074/mcp.tir119.001906
10.1038/s41592-020-00998-0
10.1586/epr.12.15
10.1074/mcp.tir118.000900
10.1021/acs.analchem.1c01376
10.1021/acs.analchem.1c00990
10.1038/10890
10.1002/1615-9861(200101)1:1<93::aid-prot93>3.0.co;2-3
10.1002/pmic.201800469
10.1101/2021.03.08.434385
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acs.jproteome.2c00336
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1535-3907
EndPage 2044
ExternalDocumentID 10_1021_acs_jproteome_2c00336
b627357327
GroupedDBID -
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
---
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
7S9
L.6
ID FETCH-LOGICAL-a408t-848a23cee68e8d45533dda90548bf81c5475548aebf2da1ae8930088b3a7a89a3
IEDL.DBID ACS
ISSN 1535-3893
1535-3907
IngestDate Thu Jul 10 17:54:47 EDT 2025
Fri Jul 11 09:02:54 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Tue Jul 01 01:05:58 EDT 2025
Mon Aug 08 08:53:51 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords timsTOF Pro
gas-phase fractionation
proteomics
DDA-PASEF
spectral library
ion mobility
DIA-PASEF
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-848a23cee68e8d45533dda90548bf81c5475548aebf2da1ae8930088b3a7a89a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1399-0256
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10653119
PQID 2694416885
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2718344995
proquest_miscellaneous_2694416885
crossref_primary_10_1021_acs_jproteome_2c00336
crossref_citationtrail_10_1021_acs_jproteome_2c00336
acs_journals_10_1021_acs_jproteome_2c00336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref17/cit17
ref6/cit6
ref10/cit10
ref3/cit3
ref18/cit18
ref19/cit19
ref11/cit11
ref12/cit12
ref15/cit15
ref16/cit16
ref13/cit13
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref4/cit4
ref1/cit1
ref20/cit20
ref7/cit7
References_xml – ident: ref20/cit20
  doi: 10.1093/nar/gkab1038
– ident: ref6/cit6
  doi: 10.1021/ac900888s
– ident: ref15/cit15
  doi: 10.1038/s41467-021-21352-8
– ident: ref19/cit19
  doi: 10.1038/nmeth.3901
– ident: ref2/cit2
  doi: 10.1038/85686
– ident: ref5/cit5
  doi: 10.1002/1522-2683(200209)23:18<3205::aid-elps3205>3.0.co;2-y
– ident: ref18/cit18
  doi: 10.1074/mcp.tir120.002048
– ident: ref8/cit8
  doi: 10.1016/j.jprot.2020.103753
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.8b02233
– ident: ref12/cit12
  doi: 10.1074/mcp.tir119.001906
– ident: ref17/cit17
  doi: 10.1038/s41592-020-00998-0
– ident: ref3/cit3
  doi: 10.1586/epr.12.15
– ident: ref14/cit14
  doi: 10.1074/mcp.tir118.000900
– ident: ref11/cit11
– ident: ref9/cit9
  doi: 10.1021/acs.analchem.1c01376
– ident: ref13/cit13
  doi: 10.1021/acs.analchem.1c00990
– ident: ref1/cit1
  doi: 10.1038/10890
– ident: ref4/cit4
  doi: 10.1002/1615-9861(200101)1:1<93::aid-prot93>3.0.co;2-3
– ident: ref7/cit7
  doi: 10.1002/pmic.201800469
– ident: ref16/cit16
  doi: 10.1101/2021.03.08.434385
SSID ssj0015703
Score 2.485429
Snippet Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel...
Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm²), followed by parallel...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2036
SubjectTerms fractionation
humans
peptides
proteome
spectroscopy
ultra-performance liquid chromatography
Title Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS–QTOF Instrument
URI http://dx.doi.org/10.1021/acs.jproteome.2c00336
https://www.proquest.com/docview/2694416885
https://www.proquest.com/docview/2718344995
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61HvTiW3wTwZOw6zabbNNjKV2sUK20grclm80itu6KbQ_15H_wH_pLnNlHoYiva0gCmZnNfNmZ-YaQszjyhMsdZYE5CCzJcSxkHbNYXbnGbRjPifGh2L32Lu_41b24r5CLbyL4rHah9Nh-zEgL0idjM43dx7wlssw88DWIhVr9edgA6aRyglRhoScuS3a-2wZdkh4vuqTFGzlzM_466ZXFOnl2ydCeTkJbv37lbvzrCTbIWgE5aTO3kU1SMckWWWmVnd62ybCdPKDy8UchTWPaKzahLczvhAuHhjPaSRPaTbNU2hn1X_J6iEytMG36PDIRnaS01-y3fQpjig463f7H2_vt4MannYynFvffIXd-e9C6tIomDJbijpxYkkvFXHClnjQy4gLgYRSpBiA9GcaypgWvAyKRyoQxi1RNGRA74AoZuqquZEO5u6SapInZI5RFBt5jWDHFYi60JwXz6k7saoA43Gi5T85BVEHxEY2DLD7OakE2WMovKOS3T3iptEAXdObYVWP02zJ7vuw55_P4bcFpaREBqAXDKSox6XQcYA0wwFkpxQ9zwPW7HF6V4uA_hzskqwzLLDA1RRyRKqjIHAP4mYQnmcF_AolkAfo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4BPcCFtjzEq-0icUJycNa7m80ximIlhfBQguBmre21UKE2wsmBnvof-g_5JZ3Z2KlAKojrane0nn3Mt56ZbwAOslTJQPjGw-0gKSXH94h1zOMtE9igbZWf0UNxeKr6l-L7tbxeAFXnwuAkSpRUOif-P3aB5hG1_XDcBcVP2-AJFSFTi_BBKqGoZEOnO5p7D4hVasaTKj0yyHXmzv_EkGVKyueW6fnF7KxN-BGu5vN0QSa3jekkbiS_XlA4vv9DPsFqBUBZZ7ZjPsOCzddguVvXfVuH215-Q1uBfhuyImPnlRDWpWhPvH5Y_MgGRc6GhQusfWThwyw7wi0ydpve39mUTQp23hn1QoZtho0Hw9HT7z8X47OQDRxrLcnfgMuwN-72vaokg2eEryeeFtrwAA2r0lanQiJYTFPTRtyn40w3EylaiE-0sXHGU9M0FrWPKEPHgWkZ3TbBJizlRW63gPHU4uuM8qd4JmSitOSq5WdBgoBH2ERvwyGqKqqOVBk5bzlvRq6x1l9U6W8bRL12UVKRm1ONjbu3hjXmw-5n7B5vDdivN0aEy0LOFZPbYlpGlBGM4FZr-UofBAKBwDem3HnPx32D5f54eBKdDE6Pd2GFUwIGBa3IPVjC5bJfEBZN4q_uDPwFi9AKXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdbBltfuu4fTdt1Guxp4MyWJUd5DF5M0i1ZRhII7MHItsxoUzvUyUP61O-wb7hP0jvZDmSwhu1VSELWnXQ_-e5-R8iHNPGEy21lgToITMmxLWQds1hbudrtaM9O8aE4HHn9Gb-Yi3kVVYm5MLCIAmYqjBMfT_UySSuGAecTtl8a_oL8WrdYjIXIvMfkCYASB8s2dP3J1oOAzFIlV6qw0CjX2Tt_mwatU1zsWqfdy9lYnOA5-bFdqwk0uWqtV1Ervv2DxvH_PuaIHFZAlHZLzXlBHunsJXnm1_XfXpGrXvYTVQJ_H9I8peNqEupj1CdcQzTa0EGe0WFuAmw3NLgpsySMsKHbernQCV3ldNyd9AIKbYpOB8PJ77tf36ffAjow7LU4_2syC3pTv29VpRksxW25siSXirlgYD2pZcIFgMYkUR3AfzJKpRML3gacIpWOUpYoR2mQAKANGbmqrWRHuW9II8szfUwoSzS80jCPiqVcxJ4UzGvbqRsD8OE6lk3yEbYqrI5WERqvOXNC01jvX1jtX5PwWn5hXJGcY62Nxb5hre2wZcnysW_A-1o5QhALOllUpvN1EWJmMIBcKcUDfQAQuBzemuLkXz7uHXk6_hyEXwejL6fkgGEeBsauiDPSAGnpt4COVtG5OQb38XAM1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Proteome+Coverage+by+Ion+Mobility+Fractionation+Coupled+to+PASEF+on+a+TIMS%E2%80%93QTOF+Instrument&rft.jtitle=Journal+of+proteome+research&rft.au=Guergues%2C+Jennifer&rft.au=Wohlfahrt%2C+Jessica&rft.au=Stevens%2C+Stanley+M.&rft.date=2022-08-05&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=21&rft.issue=8&rft.spage=2036&rft.epage=2044&rft_id=info:doi/10.1021%2Facs.jproteome.2c00336&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jproteome_2c00336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon