Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)‑Azobenzene Spectrum
We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a “good practice” for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimat...
Saved in:
Published in | Journal of chemical theory and computation Vol. 16; no. 10; pp. 6428 - 6438 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
American Chemical Society
13.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9618 1549-9626 1549-9626 |
DOI | 10.1021/acs.jctc.0c00579 |
Cover
Abstract | We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a “good practice” for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV–vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck–Condon principle. |
---|---|
AbstractList | We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle.We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle. We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV–vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck–Condon principle. |
Author | Slavíček, Petr Heger, Dominik Sita, Jaroslav Ladányi, Vít Sršeň, Štěpán |
AuthorAffiliation | Department of Chemistry, Faculty of Science University of Chemistry and Technology Department of Physical Chemistry Masaryk University |
AuthorAffiliation_xml | – name: Department of Physical Chemistry – name: Masaryk University – name: University of Chemistry and Technology – name: Department of Chemistry, Faculty of Science |
Author_xml | – sequence: 1 givenname: Štěpán surname: Sršeň fullname: Sršeň, Štěpán organization: University of Chemistry and Technology – sequence: 2 givenname: Jaroslav surname: Sita fullname: Sita, Jaroslav organization: University of Chemistry and Technology – sequence: 3 givenname: Petr orcidid: 0000-0002-5358-5538 surname: Slavíček fullname: Slavíček, Petr email: petr.slavicek@vscht.cz organization: University of Chemistry and Technology – sequence: 4 givenname: Vít surname: Ladányi fullname: Ladányi, Vít organization: Masaryk University – sequence: 5 givenname: Dominik orcidid: 0000-0002-6881-8699 surname: Heger fullname: Heger, Dominik email: hegerd@chemi.muni.cz organization: Masaryk University |
BookMark | eNp9kT1PwzAQhi0EEuVjZ7TEAhItduymNhuC8iEVGChz5DgX1VViB9sZYIKfwF_kl5DSwlAJpjvdPe-r0707aNM6CwgdUDKgJKGnSofBXEc9IJqQ4UhuoB4dctmXaZJu_vZUbKOdEOaEMMYT1kPvE1ObGLArcZwBvm91BcrjsQ1Q5xXgO4gzV-DSdbMKdPTOGo0fm0Wr8KOp20pF42w4w1OoG_Aqth7wJTRgC7AafpyPxsefbx_nry4H-woWVh5tvYe2SlUF2F_VXfR0NZ5e3PQnD9e3F-eTvuJkFPtA-DBnBRFCKybyEhgrOGNE5iLNi5JLSiFRkgxpCrJMoKSpEKIYMaGIShlnu-ho6dt499xCiFltgoaqUhZcG7KEM85FIpns0MM1dO5ab7vrOiolIyEoX1BkSWnvQvBQZo03tfIvGSXZIpOsyyRbZJKtMukk6ZpEm_j9v-6bpvpPeLIUfm9-jvkT_wK_5aWr |
CitedBy_id | crossref_primary_10_1021_acsearthspacechem_1c00355 crossref_primary_10_1021_acs_jctc_0c01083 crossref_primary_10_1021_acs_jpca_1c01074 crossref_primary_10_1007_s43630_021_00145_4 crossref_primary_10_1002_cphc_202200512 crossref_primary_10_1021_acs_jctc_1c00749 crossref_primary_10_1039_D1CP01371H crossref_primary_10_1002_macp_202200201 crossref_primary_10_1063_5_0038196 crossref_primary_10_1002_cptc_202200151 crossref_primary_10_1021_acsearthspacechem_3c00196 crossref_primary_10_1021_acs_jpca_4c04122 crossref_primary_10_1021_acs_jpca_1c08381 crossref_primary_10_1063_5_0217080 crossref_primary_10_1039_D0CP05626J crossref_primary_10_1111_php_13665 crossref_primary_10_1039_D3CP05685F crossref_primary_10_1021_acs_jpclett_3c01444 crossref_primary_10_1021_acs_jpclett_3c01763 crossref_primary_10_1021_acs_jctc_1c00531 crossref_primary_10_1021_acs_jctc_2c00004 crossref_primary_10_1002_cmtd_202200069 crossref_primary_10_1039_D2CP05299G crossref_primary_10_1039_D4CP00053F crossref_primary_10_1021_acs_accounts_4c00687 crossref_primary_10_1039_D1PY01361K crossref_primary_10_1021_acs_jpca_0c08945 crossref_primary_10_1039_D3SC01402A crossref_primary_10_1021_acs_jctc_3c00182 crossref_primary_10_1039_D4CP01521E crossref_primary_10_1039_D3CP01890C crossref_primary_10_1063_5_0130216 crossref_primary_10_1021_jacs_4c18435 crossref_primary_10_1021_acs_jctc_2c00030 crossref_primary_10_1021_acs_jpca_4c04391 crossref_primary_10_1039_D4NJ05537C crossref_primary_10_1063_5_0187823 crossref_primary_10_1021_acs_jpca_4c03481 |
Cites_doi | 10.1021/ja01547a010 10.1063/1.443346 10.1063/1.1406975 10.1021/je00032a029 10.1063/1.3649943 10.1038/s41570-017-0109 10.1214/aoms/1177704472 10.1021/jp910103b 10.1016/0047-2670(82)80044-0 10.1098/rsta.2015.0164 10.1038/140281a0 10.1021/acs.langmuir.6b04455 10.1021/ct9006772 10.1103/physrevlett.95.216401 10.1016/0022-2852(58)90067-5 10.1063/1.3556661 10.1016/j.cplett.2004.06.011 10.1007/s00214-012-1237-4 10.1214/aos/1176344552 10.1063/1.3499599 10.1021/ja034433o 10.1063/1.5005056 10.1063/1.1394921 10.1039/c8fd00088c 10.1039/c8cp00199e 10.1021/jp9610067 10.1002/0471678856.ch3 10.1021/jp504999f 10.1002/9783527677320 10.1021/jp0110713 10.1039/b924956g 10.1002/anie.197302241 10.1063/1.5114818 10.1214/aos/1176350933 10.1021/j100235a006 10.1016/j.cplett.2010.01.039 10.1063/1.3506028 10.1103/physrevlett.92.183401 10.1039/c7pp00314e 10.1039/c1cs15023e 10.1063/1.3649942 10.1063/1.432974 10.1002/jcc.24696 10.1063/1.5025517 10.1039/c9pp00005d 10.1021/acs.jctc.6b00966 10.1039/c4cc08967g 10.1039/c7cp08655e 10.1038/ncomms6860 10.1214/aoms/1177728190 10.1021/acs.jctc.7b00235 10.1021/ja413063e 10.1063/1.465188 10.1021/acs.jctc.8b00059 10.3762/bjoc.8.119 10.1039/c4cp00240g 10.1039/c2cs35015g 10.1039/c7pp00315c 10.1021/jp4098777 10.1007/978-0-387-46312-4 10.1007/978-1-4757-3803-2 10.1021/jp070186p 10.1021/ct8004744 10.1021/jp060969v 10.1021/ct300849w 10.1093/biomet/71.2.331 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Oct 13, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Oct 13, 2020 |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1021/acs.jctc.0c00579 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 6438 |
ExternalDocumentID | 10_1021_acs_jctc_0c00579 a702603365 |
GroupedDBID | 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-a407t-e045b3d088ca38bfe33d43309b86bdf4911e2a90516e9f2ef16888d738a0a6343 |
IEDL.DBID | ACS |
ISSN | 1549-9618 1549-9626 |
IngestDate | Fri Jul 11 13:02:34 EDT 2025 Mon Jun 30 03:49:07 EDT 2025 Thu Apr 24 23:00:33 EDT 2025 Tue Jul 01 02:03:18 EDT 2025 Thu Oct 15 08:22:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a407t-e045b3d088ca38bfe33d43309b86bdf4911e2a90516e9f2ef16888d738a0a6343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6881-8699 0000-0002-5358-5538 |
PQID | 2460788149 |
PQPubID | 2048741 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2434482939 proquest_journals_2460788149 crossref_primary_10_1021_acs_jctc_0c00579 crossref_citationtrail_10_1021_acs_jctc_0c00579 acs_journals_10_1021_acs_jctc_0c00579 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-13 |
PublicationDateYYYYMMDD | 2020-10-13 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Grimme S. (ref55/cit55) 2004 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 Mukamel S. (ref44/cit44) 1999 ref52/cit52 ref23/cit23 Silverman B. W. (ref54/cit54) 1986 ref8/cit8 ref31/cit31 Böckmann M. (ref32/cit32) 2010; 114 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 Lakowicz J. R. (ref42/cit42) 2006 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 Lahiri S. N. (ref60/cit60) 2003 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 Schinke R. (ref41/cit41) 1993 ref26/cit26 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 Narsky I. (ref57/cit57) 2013 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1021/ja01547a010 – ident: ref4/cit4 doi: 10.1063/1.443346 – ident: ref23/cit23 doi: 10.1063/1.1406975 – ident: ref71/cit71 doi: 10.1021/je00032a029 – ident: ref13/cit13 doi: 10.1063/1.3649943 – ident: ref66/cit66 – ident: ref10/cit10 doi: 10.1038/s41570-017-0109 – ident: ref51/cit51 doi: 10.1214/aoms/1177704472 – volume-title: Chapman & Hall/CRC Monographs on Statistics & Applied Probability year: 1986 ident: ref54/cit54 – volume: 114 start-page: 745 year: 2010 ident: ref32/cit32 publication-title: J. Phys. Chem. A doi: 10.1021/jp910103b – ident: ref37/cit37 doi: 10.1016/0047-2670(82)80044-0 – ident: ref5/cit5 doi: 10.1098/rsta.2015.0164 – ident: ref15/cit15 doi: 10.1038/140281a0 – ident: ref17/cit17 doi: 10.1021/acs.langmuir.6b04455 – ident: ref6/cit6 doi: 10.1021/ct9006772 – ident: ref8/cit8 doi: 10.1103/physrevlett.95.216401 – ident: ref36/cit36 doi: 10.1016/0022-2852(58)90067-5 – ident: ref64/cit64 doi: 10.1063/1.3556661 – ident: ref68/cit68 – ident: ref72/cit72 doi: 10.1016/j.cplett.2004.06.011 – ident: ref3/cit3 doi: 10.1007/s00214-012-1237-4 – ident: ref58/cit58 doi: 10.1214/aos/1176344552 – ident: ref40/cit40 doi: 10.1063/1.3499599 – ident: ref30/cit30 doi: 10.1021/ja034433o – ident: ref12/cit12 doi: 10.1063/1.5005056 – ident: ref50/cit50 doi: 10.1063/1.1394921 – ident: ref62/cit62 doi: 10.1039/c8fd00088c – ident: ref39/cit39 doi: 10.1039/c8cp00199e – ident: ref25/cit25 doi: 10.1021/jp9610067 – volume-title: Principles of Nonlinear Optical Spectroscopy year: 1999 ident: ref44/cit44 – volume-title: Photodissociation Dynamics; Cambridge Monographs on Atomic, Molecular, and Chemical Physics year: 1993 ident: ref41/cit41 – start-page: 153 volume-title: Reviews in Computational Chemistry year: 2004 ident: ref55/cit55 doi: 10.1002/0471678856.ch3 – ident: ref34/cit34 doi: 10.1021/jp504999f – volume-title: Statistical Analysis Techniques in Particle Physics year: 2013 ident: ref57/cit57 doi: 10.1002/9783527677320 – ident: ref24/cit24 doi: 10.1021/jp0110713 – ident: ref53/cit53 doi: 10.1039/b924956g – ident: ref38/cit38 doi: 10.1002/anie.197302241 – ident: ref46/cit46 doi: 10.1063/1.5114818 – ident: ref65/cit65 – ident: ref61/cit61 doi: 10.1214/aos/1176350933 – ident: ref2/cit2 doi: 10.1021/j100235a006 – ident: ref22/cit22 doi: 10.1016/j.cplett.2010.01.039 – ident: ref28/cit28 doi: 10.1063/1.3506028 – ident: ref43/cit43 doi: 10.1103/physrevlett.92.183401 – ident: ref29/cit29 doi: 10.1039/c7pp00314e – ident: ref20/cit20 doi: 10.1039/c1cs15023e – ident: ref75/cit75 doi: 10.1063/1.3649942 – ident: ref49/cit49 doi: 10.1063/1.432974 – ident: ref74/cit74 doi: 10.1002/jcc.24696 – ident: ref11/cit11 doi: 10.1063/1.5025517 – ident: ref47/cit47 doi: 10.1039/c9pp00005d – ident: ref26/cit26 doi: 10.1021/acs.jctc.6b00966 – ident: ref67/cit67 – ident: ref56/cit56 doi: 10.1039/c4cc08967g – ident: ref33/cit33 doi: 10.1039/c7cp08655e – ident: ref1/cit1 doi: 10.1103/physrevlett.92.183401 – ident: ref73/cit73 doi: 10.1038/ncomms6860 – ident: ref52/cit52 doi: 10.1214/aoms/1177728190 – ident: ref9/cit9 doi: 10.1021/acs.jctc.7b00235 – ident: ref18/cit18 doi: 10.1021/ja413063e – ident: ref63/cit63 doi: 10.1063/1.465188 – ident: ref48/cit48 doi: 10.1021/acs.jctc.8b00059 – ident: ref16/cit16 doi: 10.3762/bjoc.8.119 – ident: ref27/cit27 doi: 10.1039/c4cp00240g – ident: ref19/cit19 doi: 10.1039/c2cs35015g – ident: ref21/cit21 doi: 10.1039/c7pp00315c – ident: ref45/cit45 doi: 10.1021/jp4098777 – volume-title: Principles of Fluorescence Spectroscopy year: 2006 ident: ref42/cit42 doi: 10.1007/978-0-387-46312-4 – volume-title: Resampling Methods for Dependent Data year: 2003 ident: ref60/cit60 doi: 10.1007/978-1-4757-3803-2 – ident: ref14/cit14 doi: 10.1063/1.3649942 – ident: ref70/cit70 doi: 10.1021/jp070186p – ident: ref7/cit7 doi: 10.1021/ct8004744 – ident: ref31/cit31 doi: 10.1021/jp060969v – ident: ref69/cit69 doi: 10.1021/ct300849w – ident: ref59/cit59 doi: 10.1093/biomet/71.2.331 |
SSID | ssj0033423 |
Score | 2.4800627 |
Snippet | We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations.... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6428 |
SubjectTerms | Absorption spectra Azo compounds Chromophores Depletion Electronic spectra Molecular dynamics Spectroscopy and Excited States Statistical methods Temperature dependence Temperature effects Temperature gradients |
Title | Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)‑Azobenzene Spectrum |
URI | http://dx.doi.org/10.1021/acs.jctc.0c00579 https://www.proquest.com/docview/2460788149 https://www.proquest.com/docview/2434482939 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxELVaONBLy1cFbaiMBBIcNuzajuNwi0IQqgQXQOK28tdKBbKp2M0lp_IT-Iv9JZ1xvEGBCnFdry2v7Z15o_G8R8ie6gqXFS5NwFulCRY_JooZnjjwVh0EqNxgvfP5hTy7Fj9vOjfPNDkvM_gsO9K2at_a2rZTGyonP5JlJlWGgVZ_cNlYXY5MdoEbVSDjZKZiSvJ_I6AjstWiI1q0w8G5nH6ZqRRVgZMQ75TctSe1advpa8bGd8x7lXyOGJP2Z4dijXzw5TpZGTTSbhvkMZQ1VXRcUMB_9AI5jfUDHZaVH5l7T8-DrDQFPEuHc5kcilL19YOml79GUfOrOqZXHnD3jJeZnkRBXeubkQ-Gh3__PPWnY-PLKVjVOMZktEmuT4dXg7MkajEkGkK-OvEA_Qx3YJOs5soUnnMnOE97RknjCgE20zONZF_S9wrmi0xCbO26XOlUSy74V7JUjku_RWgHIvIuF1IjFxgTXDltvHM9VRgJ_jTbJvuwdnn8l6o8pMlZloeHsKB5XNBtctRsYG4joTnqaty_0eNw3uP3jMzjjXdbzZl4ngoTMkX-fQHNu_Nm2DzMsujSjyf4DoeQF1BU79s7P-Q7-cQwisd7MrxFlmAb_A5Andr8CGf8H48F-ZA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxEB7R9EAvUCioQChGohIcNuyunc2GG0qD0kJygCBxW9lrr1QgG8RuLjnBI_CKfZLOON4gqgrB1T8jr-2d-Ubj-QZgL24JHWTa99Ba-R4lP3pxqLin0Vo1CaByRfnO_UHUuxS_rppXCxBUuTC4iAIlFTaI_8wuEBxS23Vapg0_tQmUH-CjJUIhNNS5qJQvJ0I7S5EqiHgyiF1k8n8SyB6lxUt79FIdWxtzsgzn89XZpyU3jUmpGun0H-LGdy3_Myw5xMmOZ1dkBRZMvgqLnarQ2xd4tElOBRtnDNEgGxDDsbxn3bwwI3VrWN8WmWaIbll3XjSHUeH68l6yi98jVwGsOGJDgyh8xtLMfrjyuqmpJO93D_48PB1Px8rkU9SxTsZktAaXJ91hp-e5ygyeRAew9AwCQcU1aqhU8lhlhnMtOPfbKo6UzgRqUBNKov6KTDsLTRZE6GnrFo-lLyMu-DrU8nFuvgJron_e4iKSxAwWCh5rqYzW7ThTEVrXYAO-494l7s8qEhs0D4PENuKGJm5DN-CwOsckdfTmVGXj9pUZB_MZdzNqj1fG1qur8byUUEQ-sfEL7N6dd-PhUcxF5mY8oTEcHWDEVO3NN37IDiz2hv2z5Ozn4HQLPoXk39MLGl6HGh6J2UYQVKpv9tr_BeMDAgo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkIALhVIElLZbqUhwcLC9a8fpDYVEPEqExEPcrF3vWuIRB2HnkhP9CfxFfklnNutUIITa6760z5lvNDvfAPxImkIHufY91Fa-R8GPXhIq7mnUVhEBVK4o3vmkFx9ciKOr6GoKojoWBidR4kildeLTq77XuWMYCHap_Carsoaf2SDKaZiNiAGOEFH7rBbAnEjtLE2qIPLJIHHeybdGIJ2UlS910kuRbPVM9wNcTmZov5fcNoaVamSjV-SN_72EJVh0yJPtja_KMkyZ4iPMt-uEbyvw2wY7lWyQM0SFrEdMx_KBdYrS9NWdYSc22TRDlMs6k-Q5jBLYVw-SnV33XSaw8ic7N4jGx2zNbN-l2c1MPfJ2Z-f58WlvNFCmGKGsdWMM-5_gots5bx94LkODJ9EQrDyDgFBxjZIqkzxRueFcC879lkpipXOBktSEkijAYtPKQ5MHMVrcuskT6cuYC74KM8WgMGvAIrTTm1zEkhjCQsETLZXRupXkKkYtG6zDFu5d6l5YmVrneRikthA3NHUbug679VmmmaM5p2wbd-_02Jn0uB9TfLzTdrO-Hn-nEorYJ1Z-gdXfJ9V4eOR7kYUZDKkNR0MYsVVr4x8X8g3mTve76a_D3vFnWAjJzKePNHwTZvBEzBfEQpX6am_-HxrgBIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limits+of+the+Nuclear+Ensemble+Method+for+Electronic+Spectra+Simulations%3A+Temperature+Dependence+of+the+%28+E+%29-Azobenzene+Spectrum&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Sr%C5%A1e%C5%88%2C+%C5%A0t%C4%9Bp%C3%A1n&rft.au=Sita%2C+Jaroslav&rft.au=Slav%C3%AD%C4%8Dek%2C+Petr&rft.au=Lad%C3%A1nyi%2C+V%C3%ADt&rft.date=2020-10-13&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=16&rft.issue=10&rft.spage=6428&rft.epage=6438&rft_id=info:doi/10.1021%2Facs.jctc.0c00579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_0c00579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |