Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)‑Azobenzene Spectrum

We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a “good practice” for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimat...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 16; no. 10; pp. 6428 - 6438
Main Authors Sršeň, Štěpán, Sita, Jaroslav, Slavíček, Petr, Ladányi, Vít, Heger, Dominik
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 13.10.2020
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.0c00579

Cover

Abstract We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a “good practice” for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV–vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck–Condon principle.
AbstractList We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle.We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle.
We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV–vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the nπ* band and a pronounced decrease in intensity of the low-energy part of the ππ* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the ππ* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck–Condon principle.
Author Slavíček, Petr
Heger, Dominik
Sita, Jaroslav
Ladányi, Vít
Sršeň, Štěpán
AuthorAffiliation Department of Chemistry, Faculty of Science
University of Chemistry and Technology
Department of Physical Chemistry
Masaryk University
AuthorAffiliation_xml – name: Department of Physical Chemistry
– name: Masaryk University
– name: University of Chemistry and Technology
– name: Department of Chemistry, Faculty of Science
Author_xml – sequence: 1
  givenname: Štěpán
  surname: Sršeň
  fullname: Sršeň, Štěpán
  organization: University of Chemistry and Technology
– sequence: 2
  givenname: Jaroslav
  surname: Sita
  fullname: Sita, Jaroslav
  organization: University of Chemistry and Technology
– sequence: 3
  givenname: Petr
  orcidid: 0000-0002-5358-5538
  surname: Slavíček
  fullname: Slavíček, Petr
  email: petr.slavicek@vscht.cz
  organization: University of Chemistry and Technology
– sequence: 4
  givenname: Vít
  surname: Ladányi
  fullname: Ladányi, Vít
  organization: Masaryk University
– sequence: 5
  givenname: Dominik
  orcidid: 0000-0002-6881-8699
  surname: Heger
  fullname: Heger, Dominik
  email: hegerd@chemi.muni.cz
  organization: Masaryk University
BookMark eNp9kT1PwzAQhi0EEuVjZ7TEAhItduymNhuC8iEVGChz5DgX1VViB9sZYIKfwF_kl5DSwlAJpjvdPe-r0707aNM6CwgdUDKgJKGnSofBXEc9IJqQ4UhuoB4dctmXaZJu_vZUbKOdEOaEMMYT1kPvE1ObGLArcZwBvm91BcrjsQ1Q5xXgO4gzV-DSdbMKdPTOGo0fm0Wr8KOp20pF42w4w1OoG_Aqth7wJTRgC7AafpyPxsefbx_nry4H-woWVh5tvYe2SlUF2F_VXfR0NZ5e3PQnD9e3F-eTvuJkFPtA-DBnBRFCKybyEhgrOGNE5iLNi5JLSiFRkgxpCrJMoKSpEKIYMaGIShlnu-ho6dt499xCiFltgoaqUhZcG7KEM85FIpns0MM1dO5ab7vrOiolIyEoX1BkSWnvQvBQZo03tfIvGSXZIpOsyyRbZJKtMukk6ZpEm_j9v-6bpvpPeLIUfm9-jvkT_wK_5aWr
CitedBy_id crossref_primary_10_1021_acsearthspacechem_1c00355
crossref_primary_10_1021_acs_jctc_0c01083
crossref_primary_10_1021_acs_jpca_1c01074
crossref_primary_10_1007_s43630_021_00145_4
crossref_primary_10_1002_cphc_202200512
crossref_primary_10_1021_acs_jctc_1c00749
crossref_primary_10_1039_D1CP01371H
crossref_primary_10_1002_macp_202200201
crossref_primary_10_1063_5_0038196
crossref_primary_10_1002_cptc_202200151
crossref_primary_10_1021_acsearthspacechem_3c00196
crossref_primary_10_1021_acs_jpca_4c04122
crossref_primary_10_1021_acs_jpca_1c08381
crossref_primary_10_1063_5_0217080
crossref_primary_10_1039_D0CP05626J
crossref_primary_10_1111_php_13665
crossref_primary_10_1039_D3CP05685F
crossref_primary_10_1021_acs_jpclett_3c01444
crossref_primary_10_1021_acs_jpclett_3c01763
crossref_primary_10_1021_acs_jctc_1c00531
crossref_primary_10_1021_acs_jctc_2c00004
crossref_primary_10_1002_cmtd_202200069
crossref_primary_10_1039_D2CP05299G
crossref_primary_10_1039_D4CP00053F
crossref_primary_10_1021_acs_accounts_4c00687
crossref_primary_10_1039_D1PY01361K
crossref_primary_10_1021_acs_jpca_0c08945
crossref_primary_10_1039_D3SC01402A
crossref_primary_10_1021_acs_jctc_3c00182
crossref_primary_10_1039_D4CP01521E
crossref_primary_10_1039_D3CP01890C
crossref_primary_10_1063_5_0130216
crossref_primary_10_1021_jacs_4c18435
crossref_primary_10_1021_acs_jctc_2c00030
crossref_primary_10_1021_acs_jpca_4c04391
crossref_primary_10_1039_D4NJ05537C
crossref_primary_10_1063_5_0187823
crossref_primary_10_1021_acs_jpca_4c03481
Cites_doi 10.1021/ja01547a010
10.1063/1.443346
10.1063/1.1406975
10.1021/je00032a029
10.1063/1.3649943
10.1038/s41570-017-0109
10.1214/aoms/1177704472
10.1021/jp910103b
10.1016/0047-2670(82)80044-0
10.1098/rsta.2015.0164
10.1038/140281a0
10.1021/acs.langmuir.6b04455
10.1021/ct9006772
10.1103/physrevlett.95.216401
10.1016/0022-2852(58)90067-5
10.1063/1.3556661
10.1016/j.cplett.2004.06.011
10.1007/s00214-012-1237-4
10.1214/aos/1176344552
10.1063/1.3499599
10.1021/ja034433o
10.1063/1.5005056
10.1063/1.1394921
10.1039/c8fd00088c
10.1039/c8cp00199e
10.1021/jp9610067
10.1002/0471678856.ch3
10.1021/jp504999f
10.1002/9783527677320
10.1021/jp0110713
10.1039/b924956g
10.1002/anie.197302241
10.1063/1.5114818
10.1214/aos/1176350933
10.1021/j100235a006
10.1016/j.cplett.2010.01.039
10.1063/1.3506028
10.1103/physrevlett.92.183401
10.1039/c7pp00314e
10.1039/c1cs15023e
10.1063/1.3649942
10.1063/1.432974
10.1002/jcc.24696
10.1063/1.5025517
10.1039/c9pp00005d
10.1021/acs.jctc.6b00966
10.1039/c4cc08967g
10.1039/c7cp08655e
10.1038/ncomms6860
10.1214/aoms/1177728190
10.1021/acs.jctc.7b00235
10.1021/ja413063e
10.1063/1.465188
10.1021/acs.jctc.8b00059
10.3762/bjoc.8.119
10.1039/c4cp00240g
10.1039/c2cs35015g
10.1039/c7pp00315c
10.1021/jp4098777
10.1007/978-0-387-46312-4
10.1007/978-1-4757-3803-2
10.1021/jp070186p
10.1021/ct8004744
10.1021/jp060969v
10.1021/ct300849w
10.1093/biomet/71.2.331
ContentType Journal Article
Copyright Copyright American Chemical Society Oct 13, 2020
Copyright_xml – notice: Copyright American Chemical Society Oct 13, 2020
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.0c00579
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 6438
ExternalDocumentID 10_1021_acs_jctc_0c00579
a702603365
GroupedDBID 53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a407t-e045b3d088ca38bfe33d43309b86bdf4911e2a90516e9f2ef16888d738a0a6343
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Fri Jul 11 13:02:34 EDT 2025
Mon Jun 30 03:49:07 EDT 2025
Thu Apr 24 23:00:33 EDT 2025
Tue Jul 01 02:03:18 EDT 2025
Thu Oct 15 08:22:32 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a407t-e045b3d088ca38bfe33d43309b86bdf4911e2a90516e9f2ef16888d738a0a6343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6881-8699
0000-0002-5358-5538
PQID 2460788149
PQPubID 2048741
PageCount 11
ParticipantIDs proquest_miscellaneous_2434482939
proquest_journals_2460788149
crossref_primary_10_1021_acs_jctc_0c00579
crossref_citationtrail_10_1021_acs_jctc_0c00579
acs_journals_10_1021_acs_jctc_0c00579
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-13
PublicationDateYYYYMMDD 2020-10-13
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-13
  day: 13
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Grimme S. (ref55/cit55) 2004
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
Mukamel S. (ref44/cit44) 1999
ref52/cit52
ref23/cit23
Silverman B. W. (ref54/cit54) 1986
ref8/cit8
ref31/cit31
Böckmann M. (ref32/cit32) 2010; 114
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
Lakowicz J. R. (ref42/cit42) 2006
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
Lahiri S. N. (ref60/cit60) 2003
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
Schinke R. (ref41/cit41) 1993
ref26/cit26
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
Narsky I. (ref57/cit57) 2013
ref70/cit70
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1021/ja01547a010
– ident: ref4/cit4
  doi: 10.1063/1.443346
– ident: ref23/cit23
  doi: 10.1063/1.1406975
– ident: ref71/cit71
  doi: 10.1021/je00032a029
– ident: ref13/cit13
  doi: 10.1063/1.3649943
– ident: ref66/cit66
– ident: ref10/cit10
  doi: 10.1038/s41570-017-0109
– ident: ref51/cit51
  doi: 10.1214/aoms/1177704472
– volume-title: Chapman & Hall/CRC Monographs on Statistics & Applied Probability
  year: 1986
  ident: ref54/cit54
– volume: 114
  start-page: 745
  year: 2010
  ident: ref32/cit32
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp910103b
– ident: ref37/cit37
  doi: 10.1016/0047-2670(82)80044-0
– ident: ref5/cit5
  doi: 10.1098/rsta.2015.0164
– ident: ref15/cit15
  doi: 10.1038/140281a0
– ident: ref17/cit17
  doi: 10.1021/acs.langmuir.6b04455
– ident: ref6/cit6
  doi: 10.1021/ct9006772
– ident: ref8/cit8
  doi: 10.1103/physrevlett.95.216401
– ident: ref36/cit36
  doi: 10.1016/0022-2852(58)90067-5
– ident: ref64/cit64
  doi: 10.1063/1.3556661
– ident: ref68/cit68
– ident: ref72/cit72
  doi: 10.1016/j.cplett.2004.06.011
– ident: ref3/cit3
  doi: 10.1007/s00214-012-1237-4
– ident: ref58/cit58
  doi: 10.1214/aos/1176344552
– ident: ref40/cit40
  doi: 10.1063/1.3499599
– ident: ref30/cit30
  doi: 10.1021/ja034433o
– ident: ref12/cit12
  doi: 10.1063/1.5005056
– ident: ref50/cit50
  doi: 10.1063/1.1394921
– ident: ref62/cit62
  doi: 10.1039/c8fd00088c
– ident: ref39/cit39
  doi: 10.1039/c8cp00199e
– ident: ref25/cit25
  doi: 10.1021/jp9610067
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1999
  ident: ref44/cit44
– volume-title: Photodissociation Dynamics; Cambridge Monographs on Atomic, Molecular, and Chemical Physics
  year: 1993
  ident: ref41/cit41
– start-page: 153
  volume-title: Reviews in Computational Chemistry
  year: 2004
  ident: ref55/cit55
  doi: 10.1002/0471678856.ch3
– ident: ref34/cit34
  doi: 10.1021/jp504999f
– volume-title: Statistical Analysis Techniques in Particle Physics
  year: 2013
  ident: ref57/cit57
  doi: 10.1002/9783527677320
– ident: ref24/cit24
  doi: 10.1021/jp0110713
– ident: ref53/cit53
  doi: 10.1039/b924956g
– ident: ref38/cit38
  doi: 10.1002/anie.197302241
– ident: ref46/cit46
  doi: 10.1063/1.5114818
– ident: ref65/cit65
– ident: ref61/cit61
  doi: 10.1214/aos/1176350933
– ident: ref2/cit2
  doi: 10.1021/j100235a006
– ident: ref22/cit22
  doi: 10.1016/j.cplett.2010.01.039
– ident: ref28/cit28
  doi: 10.1063/1.3506028
– ident: ref43/cit43
  doi: 10.1103/physrevlett.92.183401
– ident: ref29/cit29
  doi: 10.1039/c7pp00314e
– ident: ref20/cit20
  doi: 10.1039/c1cs15023e
– ident: ref75/cit75
  doi: 10.1063/1.3649942
– ident: ref49/cit49
  doi: 10.1063/1.432974
– ident: ref74/cit74
  doi: 10.1002/jcc.24696
– ident: ref11/cit11
  doi: 10.1063/1.5025517
– ident: ref47/cit47
  doi: 10.1039/c9pp00005d
– ident: ref26/cit26
  doi: 10.1021/acs.jctc.6b00966
– ident: ref67/cit67
– ident: ref56/cit56
  doi: 10.1039/c4cc08967g
– ident: ref33/cit33
  doi: 10.1039/c7cp08655e
– ident: ref1/cit1
  doi: 10.1103/physrevlett.92.183401
– ident: ref73/cit73
  doi: 10.1038/ncomms6860
– ident: ref52/cit52
  doi: 10.1214/aoms/1177728190
– ident: ref9/cit9
  doi: 10.1021/acs.jctc.7b00235
– ident: ref18/cit18
  doi: 10.1021/ja413063e
– ident: ref63/cit63
  doi: 10.1063/1.465188
– ident: ref48/cit48
  doi: 10.1021/acs.jctc.8b00059
– ident: ref16/cit16
  doi: 10.3762/bjoc.8.119
– ident: ref27/cit27
  doi: 10.1039/c4cp00240g
– ident: ref19/cit19
  doi: 10.1039/c2cs35015g
– ident: ref21/cit21
  doi: 10.1039/c7pp00315c
– ident: ref45/cit45
  doi: 10.1021/jp4098777
– volume-title: Principles of Fluorescence Spectroscopy
  year: 2006
  ident: ref42/cit42
  doi: 10.1007/978-0-387-46312-4
– volume-title: Resampling Methods for Dependent Data
  year: 2003
  ident: ref60/cit60
  doi: 10.1007/978-1-4757-3803-2
– ident: ref14/cit14
  doi: 10.1063/1.3649942
– ident: ref70/cit70
  doi: 10.1021/jp070186p
– ident: ref7/cit7
  doi: 10.1021/ct8004744
– ident: ref31/cit31
  doi: 10.1021/jp060969v
– ident: ref69/cit69
  doi: 10.1021/ct300849w
– ident: ref59/cit59
  doi: 10.1093/biomet/71.2.331
SSID ssj0033423
Score 2.4800627
Snippet We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6428
SubjectTerms Absorption spectra
Azo compounds
Chromophores
Depletion
Electronic spectra
Molecular dynamics
Spectroscopy and Excited States
Statistical methods
Temperature dependence
Temperature effects
Temperature gradients
Title Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)‑Azobenzene Spectrum
URI http://dx.doi.org/10.1021/acs.jctc.0c00579
https://www.proquest.com/docview/2460788149
https://www.proquest.com/docview/2434482939
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxELVaONBLy1cFbaiMBBIcNuzajuNwi0IQqgQXQOK28tdKBbKp2M0lp_IT-Iv9JZ1xvEGBCnFdry2v7Z15o_G8R8ie6gqXFS5NwFulCRY_JooZnjjwVh0EqNxgvfP5hTy7Fj9vOjfPNDkvM_gsO9K2at_a2rZTGyonP5JlJlWGgVZ_cNlYXY5MdoEbVSDjZKZiSvJ_I6AjstWiI1q0w8G5nH6ZqRRVgZMQ75TctSe1advpa8bGd8x7lXyOGJP2Z4dijXzw5TpZGTTSbhvkMZQ1VXRcUMB_9AI5jfUDHZaVH5l7T8-DrDQFPEuHc5kcilL19YOml79GUfOrOqZXHnD3jJeZnkRBXeubkQ-Gh3__PPWnY-PLKVjVOMZktEmuT4dXg7MkajEkGkK-OvEA_Qx3YJOs5soUnnMnOE97RknjCgE20zONZF_S9wrmi0xCbO26XOlUSy74V7JUjku_RWgHIvIuF1IjFxgTXDltvHM9VRgJ_jTbJvuwdnn8l6o8pMlZloeHsKB5XNBtctRsYG4joTnqaty_0eNw3uP3jMzjjXdbzZl4ngoTMkX-fQHNu_Nm2DzMsujSjyf4DoeQF1BU79s7P-Q7-cQwisd7MrxFlmAb_A5Andr8CGf8H48F-ZA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxEB7R9EAvUCioQChGohIcNuyunc2GG0qD0kJygCBxW9lrr1QgG8RuLjnBI_CKfZLOON4gqgrB1T8jr-2d-Ubj-QZgL24JHWTa99Ba-R4lP3pxqLin0Vo1CaByRfnO_UHUuxS_rppXCxBUuTC4iAIlFTaI_8wuEBxS23Vapg0_tQmUH-CjJUIhNNS5qJQvJ0I7S5EqiHgyiF1k8n8SyB6lxUt79FIdWxtzsgzn89XZpyU3jUmpGun0H-LGdy3_Myw5xMmOZ1dkBRZMvgqLnarQ2xd4tElOBRtnDNEgGxDDsbxn3bwwI3VrWN8WmWaIbll3XjSHUeH68l6yi98jVwGsOGJDgyh8xtLMfrjyuqmpJO93D_48PB1Px8rkU9SxTsZktAaXJ91hp-e5ygyeRAew9AwCQcU1aqhU8lhlhnMtOPfbKo6UzgRqUBNKov6KTDsLTRZE6GnrFo-lLyMu-DrU8nFuvgJron_e4iKSxAwWCh5rqYzW7ThTEVrXYAO-494l7s8qEhs0D4PENuKGJm5DN-CwOsckdfTmVGXj9pUZB_MZdzNqj1fG1qur8byUUEQ-sfEL7N6dd-PhUcxF5mY8oTEcHWDEVO3NN37IDiz2hv2z5Ozn4HQLPoXk39MLGl6HGh6J2UYQVKpv9tr_BeMDAgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkIALhVIElLZbqUhwcLC9a8fpDYVEPEqExEPcrF3vWuIRB2HnkhP9CfxFfklnNutUIITa6760z5lvNDvfAPxImkIHufY91Fa-R8GPXhIq7mnUVhEBVK4o3vmkFx9ciKOr6GoKojoWBidR4kildeLTq77XuWMYCHap_Carsoaf2SDKaZiNiAGOEFH7rBbAnEjtLE2qIPLJIHHeybdGIJ2UlS910kuRbPVM9wNcTmZov5fcNoaVamSjV-SN_72EJVh0yJPtja_KMkyZ4iPMt-uEbyvw2wY7lWyQM0SFrEdMx_KBdYrS9NWdYSc22TRDlMs6k-Q5jBLYVw-SnV33XSaw8ic7N4jGx2zNbN-l2c1MPfJ2Z-f58WlvNFCmGKGsdWMM-5_gots5bx94LkODJ9EQrDyDgFBxjZIqkzxRueFcC879lkpipXOBktSEkijAYtPKQ5MHMVrcuskT6cuYC74KM8WgMGvAIrTTm1zEkhjCQsETLZXRupXkKkYtG6zDFu5d6l5YmVrneRikthA3NHUbug679VmmmaM5p2wbd-_02Jn0uB9TfLzTdrO-Hn-nEorYJ1Z-gdXfJ9V4eOR7kYUZDKkNR0MYsVVr4x8X8g3mTve76a_D3vFnWAjJzKePNHwTZvBEzBfEQpX6am_-HxrgBIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limits+of+the+Nuclear+Ensemble+Method+for+Electronic+Spectra+Simulations%3A+Temperature+Dependence+of+the+%28+E+%29-Azobenzene+Spectrum&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Sr%C5%A1e%C5%88%2C+%C5%A0t%C4%9Bp%C3%A1n&rft.au=Sita%2C+Jaroslav&rft.au=Slav%C3%AD%C4%8Dek%2C+Petr&rft.au=Lad%C3%A1nyi%2C+V%C3%ADt&rft.date=2020-10-13&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=16&rft.issue=10&rft.spage=6428&rft.epage=6438&rft_id=info:doi/10.1021%2Facs.jctc.0c00579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_0c00579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon