Simple Osthole/Nanocarrier Pesticide Efficiently Controls Both Pests and Diseases Fulfilling the Need of Green Production of Strawberry
The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 30; pp. 36350 - 36360 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
04.08.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.1c09887 |
Cover
Abstract | The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for controlling strawberry pests and diseases simultaneously, a star polymer (SPc) with a low production cost was synthesized as a pesticide nanocarrier through simple reactions. The SPc complexed with osthole quickly through electrostatic interaction and hydrophobic association, which decreased the particle size of osthole down to the nanoscale (17.66 nm). With the help of SPc, more nano-sized osthole was delivered into cytoplasm through endocytosis, leading to the enhanced cytotoxicity against insect cells. As a green botanical pesticide, the control efficacy of the osthole/SPc complex was improved against main strawberry pests (green peach aphid and two-spotted spider mite) and disease (powdery mildew), which fulfilled the need of both pest and disease management in sustainable production of strawberry. Meanwhile, the introduction of SPc not only improved plant-uptake but also decreased the residue of osthole due to the higher degradation rate. Furthermore, the application of the osthole/SPc complex exhibited no influence on the strawberry fruit quality and nontarget predators. To our knowledge, it is the first success to control plant pests and diseases simultaneously for sustainable agriculture by only one pesticidal formulation based on nanoparticle-delivered botanical pesticides. |
---|---|
AbstractList | The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for controlling strawberry pests and diseases simultaneously, a star polymer (SPc) with a low production cost was synthesized as a pesticide nanocarrier through simple reactions. The SPc complexed with osthole quickly through electrostatic interaction and hydrophobic association, which decreased the particle size of osthole down to the nanoscale (17.66 nm). With the help of SPc, more nano-sized osthole was delivered into cytoplasm through endocytosis, leading to the enhanced cytotoxicity against insect cells. As a green botanical pesticide, the control efficacy of the osthole/SPc complex was improved against main strawberry pests (green peach aphid and two-spotted spider mite) and disease (powdery mildew), which fulfilled the need of both pest and disease management in sustainable production of strawberry. Meanwhile, the introduction of SPc not only improved plant-uptake but also decreased the residue of osthole due to the higher degradation rate. Furthermore, the application of the osthole/SPc complex exhibited no influence on the strawberry fruit quality and nontarget predators. To our knowledge, it is the first success to control plant pests and diseases simultaneously for sustainable agriculture by only one pesticidal formulation based on nanoparticle-delivered botanical pesticides. The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for controlling strawberry pests and diseases simultaneously, a star polymer (SPc) with a low production cost was synthesized as a pesticide nanocarrier through simple reactions. The SPc complexed with osthole quickly through electrostatic interaction and hydrophobic association, which decreased the particle size of osthole down to the nanoscale (17.66 nm). With the help of SPc, more nano-sized osthole was delivered into cytoplasm through endocytosis, leading to the enhanced cytotoxicity against insect cells. As a green botanical pesticide, the control efficacy of the osthole/SPc complex was improved against main strawberry pests (green peach aphid and two-spotted spider mite) and disease (powdery mildew), which fulfilled the need of both pest and disease management in sustainable production of strawberry. Meanwhile, the introduction of SPc not only improved plant-uptake but also decreased the residue of osthole due to the higher degradation rate. Furthermore, the application of the osthole/SPc complex exhibited no influence on the strawberry fruit quality and nontarget predators. To our knowledge, it is the first success to control plant pests and diseases simultaneously for sustainable agriculture by only one pesticidal formulation based on nanoparticle-delivered botanical pesticides.The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for controlling strawberry pests and diseases simultaneously, a star polymer (SPc) with a low production cost was synthesized as a pesticide nanocarrier through simple reactions. The SPc complexed with osthole quickly through electrostatic interaction and hydrophobic association, which decreased the particle size of osthole down to the nanoscale (17.66 nm). With the help of SPc, more nano-sized osthole was delivered into cytoplasm through endocytosis, leading to the enhanced cytotoxicity against insect cells. As a green botanical pesticide, the control efficacy of the osthole/SPc complex was improved against main strawberry pests (green peach aphid and two-spotted spider mite) and disease (powdery mildew), which fulfilled the need of both pest and disease management in sustainable production of strawberry. Meanwhile, the introduction of SPc not only improved plant-uptake but also decreased the residue of osthole due to the higher degradation rate. Furthermore, the application of the osthole/SPc complex exhibited no influence on the strawberry fruit quality and nontarget predators. To our knowledge, it is the first success to control plant pests and diseases simultaneously for sustainable agriculture by only one pesticidal formulation based on nanoparticle-delivered botanical pesticides. |
Author | Yan, Shuo Chen, Hongtao Wei, Jie Shen, Jie Du, Xiangge Yin, Meizhen Hu, Qian Jiang, Qinhong |
AuthorAffiliation | Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials |
AuthorAffiliation_xml | – name: State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials – name: Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection |
Author_xml | – sequence: 1 givenname: Shuo orcidid: 0000-0001-9685-9810 surname: Yan fullname: Yan, Shuo organization: Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection – sequence: 2 givenname: Qian surname: Hu fullname: Hu, Qian organization: Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection – sequence: 3 givenname: Qinhong surname: Jiang fullname: Jiang, Qinhong organization: Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection – sequence: 4 givenname: Hongtao surname: Chen fullname: Chen, Hongtao organization: State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials – sequence: 5 givenname: Jie orcidid: 0000-0001-7935-1660 surname: Wei fullname: Wei, Jie organization: State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials – sequence: 6 givenname: Meizhen orcidid: 0000-0001-8519-8578 surname: Yin fullname: Yin, Meizhen organization: State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials – sequence: 7 givenname: Xiangge surname: Du fullname: Du, Xiangge email: duxge@cau.edu.cn organization: Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection – sequence: 8 givenname: Jie surname: Shen fullname: Shen, Jie email: shenjie@cau.edu.cn organization: Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection |
BookMark | eNqFkU9rGzEQxUVJoY6ba886loJtafVntcfWTZxAcAJpzoukna1lZMmVtBR_gn7trOOQQyD0NI_h94bhvXN0FmIAhL5QMqekogtts965ObWkUar-gCa04XymKlGdvWrOP6HznLeESFYRMUH_Htxu7wHf5bKJHhZrHaLVKTlI-B5ycdZ1gC_7fhQQij_gZQwlRZ_xj1g2z0zGOnT4p8ugM2R8Nfjeee_Cb1w2gNcAHY49XiWAgO9T7AZbXAzH3UNJ-q-BlA6f0cde-wwXL3OKHq8ufy2vZ7d3q5vl99uZ5kSWWUeZ4sbIWvYUFK-ZtBUhrNdGMWlACWENIdSojje0roUmxspOVdRAY0FINkVfT3f3Kf4ZxufbncsWvNcB4pDbSjLJa6Hq5v-oEExRRRkd0fkJtSnmnKBv98ntdDq0lLTHctpTOe1LOaOBvzFYV_QxljER59-3fTvZxn27jUMKY1bvwU8896bW |
CitedBy_id | crossref_primary_10_1002_ps_7298 crossref_primary_10_1021_acsami_2c08239 crossref_primary_10_1021_acsami_3c03634 crossref_primary_10_1039_D2EN01076C crossref_primary_10_1016_j_chemosphere_2024_141784 crossref_primary_10_1021_acs_jafc_4c11405 crossref_primary_10_1002_adhm_202102617 crossref_primary_10_1584_jpestics_D24_038 crossref_primary_10_1016_j_nantod_2024_102326 crossref_primary_10_1186_s12951_022_01443_4 crossref_primary_10_1021_acs_langmuir_4c01842 crossref_primary_10_1016_j_cclet_2023_108400 crossref_primary_10_1016_j_scitotenv_2022_160900 crossref_primary_10_1021_acs_jafc_3c05636 crossref_primary_10_3390_nano12142419 crossref_primary_10_1111_1744_7917_13203 crossref_primary_10_1021_acsami_1c24077 crossref_primary_10_1039_D1EN00752A crossref_primary_10_1016_j_susmat_2022_e00456 crossref_primary_10_1039_D4EN00060A crossref_primary_10_1021_acsagscitech_2c00113 crossref_primary_10_1016_j_aac_2024_03_001 crossref_primary_10_1002_ps_8077 crossref_primary_10_1007_s11356_023_26544_x crossref_primary_10_1021_acsami_2c23241 crossref_primary_10_1021_acsomega_3c05722 crossref_primary_10_1021_acsapm_3c01989 crossref_primary_10_1186_s12951_022_01336_6 crossref_primary_10_1039_D2EN00126H crossref_primary_10_1021_acsagscitech_4c00655 crossref_primary_10_3390_insects14090725 crossref_primary_10_1038_s41467_023_41447_8 crossref_primary_10_1016_j_colsurfa_2025_136234 crossref_primary_10_1021_acs_jafc_2c07466 crossref_primary_10_1093_jee_toac057 crossref_primary_10_1111_1744_7917_13136 crossref_primary_10_1021_acsami_1c24588 crossref_primary_10_1016_j_cej_2025_160513 crossref_primary_10_1016_j_pestbp_2024_106259 crossref_primary_10_1016_j_cej_2024_158419 crossref_primary_10_1016_j_nantod_2022_101452 crossref_primary_10_1016_j_scitotenv_2023_166401 crossref_primary_10_1038_s41467_024_52851_z crossref_primary_10_3390_insects13050433 crossref_primary_10_1016_j_indcrop_2023_117369 crossref_primary_10_1016_j_cej_2025_161045 crossref_primary_10_1016_j_colsurfb_2022_112587 crossref_primary_10_1021_acsami_2c10899 crossref_primary_10_1016_j_jclepro_2025_144827 crossref_primary_10_1016_j_ijbiomac_2023_128965 crossref_primary_10_1021_acsanm_3c02186 crossref_primary_10_1039_D2EN00446A crossref_primary_10_3389_fpls_2022_1092774 crossref_primary_10_1002_cbdv_202400311 crossref_primary_10_3389_fagro_2025_1558395 crossref_primary_10_1016_j_plaphy_2024_108815 crossref_primary_10_1021_acsami_3c17783 crossref_primary_10_1002_cjoc_202300186 crossref_primary_10_1016_j_cej_2024_148990 crossref_primary_10_1016_j_ijbiomac_2023_124354 crossref_primary_10_3390_nano12091445 crossref_primary_10_1021_acs_jafc_4c06885 crossref_primary_10_1016_j_ecoenv_2024_116900 crossref_primary_10_1016_j_ijbiomac_2024_134478 crossref_primary_10_1021_acsagscitech_4c00117 crossref_primary_10_3390_ijms24065121 crossref_primary_10_1021_acssuschemeng_3c04570 crossref_primary_10_1016_j_indcrop_2023_117746 crossref_primary_10_1111_1744_7917_13033 crossref_primary_10_1016_j_jare_2024_01_031 crossref_primary_10_1016_j_aac_2023_09_004 crossref_primary_10_3390_ijms23126651 crossref_primary_10_1021_acsami_4c18094 crossref_primary_10_1186_s12951_022_01705_1 |
Cites_doi | 10.1002/ps.6056 10.1111/1744-7917.12822 10.5423/ppj.oa.03.2019.0066 10.1039/c5gc00717h 10.1021/bk-2014-1172.ch002 10.1039/c4tb00411f 10.1039/d0gc01074j 10.1021/acssuschemeng.9b02319 10.1016/j.jfda.2014.01.001 10.1080/13880209.2019.1588905 10.1016/j.envint.2013.11.015 10.1021/es3019397 10.1021/acssuschemeng.9b00004 10.1016/j.scitotenv.2019.03.249 10.1146/annurev-environ-110615-085750 10.1002/adma.201504993 10.1021/acsami.7b05662 10.1002/ps.3265 10.1007/s10340-019-01157-x 10.1039/c8gc00434j 10.1039/c4nr05733c 10.1016/j.scitotenv.2020.140437 10.1080/10286020903158964 10.3390/molecules25010065 10.1039/c9bm01232j 10.1016/j.neuropharm.2016.04.046 10.1124/jpet.105.085092 10.1016/j.bbrc.2019.04.021 10.1021/acs.jafc.8b04415 10.1155/2016/2386938 10.1039/c9gc00457b 10.1111/imb.12083 10.1016/j.cej.2021.129327 10.3390/nu9060588 10.1371/journal.pone.0241151 10.1126/sciadv.1602638 10.1186/s40169-017-0175-0 10.1039/d1gc00006c 10.1021/am5045967 10.1155/2015/919616 10.1021/acssuschemeng.9b04567 10.1038/nplants.2015.221 10.1016/j.jconrel.2018.12.012 10.1007/s13593-017-0472-4 10.1016/j.jep.2016.08.045 10.1016/j.cej.2020.126342 10.1016/j.jconrel.2019.12.049 10.1186/s12940-017-0315-4 10.1653/024.097.0351 10.1016/j.biotechadv.2014.10.010 10.1021/acs.jafc.7b05500 10.1021/jf102812t 10.1021/acs.jafc.5b05214 10.1002/ps.5313 10.4172/pharmaceutical-sciences.1000431 10.1111/imb.12222 10.1016/j.tplants.2013.11.005 10.1007/s10340-017-0898-0 10.1016/j.ejmech.2016.08.012 10.1002/ps.6223 10.1016/j.jhazmat.2011.07.074 10.1002/ps.4765 10.1007/s11356-012-1161-0 10.1002/adma.201301201 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.1c09887 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 36360 |
ExternalDocumentID | 10_1021_acsami_1c09887 d149603643 |
GroupedDBID | - .K2 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GGK GNL IH9 JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-d1384bb676f1e84736c2003fab836be855cb001b8d491775a0bc6d821be9ce563 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 00:49:21 EDT 2025 Thu Jul 10 23:06:16 EDT 2025 Tue Jul 01 00:48:29 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Fri Aug 06 13:29:34 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | enhanced bioactivity nanopesticide botanical pesticide drug delivery system sustainable agriculture |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-d1384bb676f1e84736c2003fab836be855cb001b8d491775a0bc6d821be9ce563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9685-9810 0000-0001-8519-8578 0000-0001-7935-1660 |
PQID | 2553818131 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2636475879 proquest_miscellaneous_2553818131 crossref_primary_10_1021_acsami_1c09887 crossref_citationtrail_10_1021_acsami_1c09887 acs_journals_10_1021_acsami_1c09887 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-04 |
PublicationDateYYYYMMDD | 2021-08-04 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1002/ps.6056 – ident: ref49/cit49 doi: 10.1111/1744-7917.12822 – ident: ref7/cit7 doi: 10.5423/ppj.oa.03.2019.0066 – ident: ref22/cit22 doi: 10.1039/c5gc00717h – ident: ref17/cit17 doi: 10.1021/bk-2014-1172.ch002 – ident: ref34/cit34 doi: 10.1039/c4tb00411f – ident: ref64/cit64 doi: 10.1039/d0gc01074j – ident: ref60/cit60 doi: 10.1021/acssuschemeng.9b02319 – ident: ref19/cit19 doi: 10.1016/j.jfda.2014.01.001 – ident: ref46/cit46 doi: 10.1080/13880209.2019.1588905 – ident: ref29/cit29 doi: 10.1016/j.envint.2013.11.015 – ident: ref58/cit58 doi: 10.1021/es3019397 – ident: ref40/cit40 doi: 10.1021/acssuschemeng.9b00004 – ident: ref26/cit26 doi: 10.1016/j.scitotenv.2019.03.249 – ident: ref1/cit1 doi: 10.1146/annurev-environ-110615-085750 – ident: ref36/cit36 doi: 10.1002/adma.201504993 – ident: ref52/cit52 doi: 10.1021/acsami.7b05662 – ident: ref53/cit53 doi: 10.1002/ps.3265 – ident: ref42/cit42 doi: 10.1007/s10340-019-01157-x – ident: ref9/cit9 doi: 10.1039/c8gc00434j – ident: ref35/cit35 doi: 10.1039/c4nr05733c – ident: ref28/cit28 doi: 10.1016/j.scitotenv.2020.140437 – ident: ref56/cit56 doi: 10.1080/10286020903158964 – ident: ref55/cit55 doi: 10.3390/molecules25010065 – ident: ref51/cit51 doi: 10.1039/c9bm01232j – ident: ref12/cit12 doi: 10.1016/j.neuropharm.2016.04.046 – ident: ref11/cit11 doi: 10.1124/jpet.105.085092 – ident: ref44/cit44 doi: 10.1016/j.bbrc.2019.04.021 – ident: ref61/cit61 doi: 10.1021/acs.jafc.8b04415 – ident: ref62/cit62 doi: 10.1155/2016/2386938 – ident: ref27/cit27 doi: 10.1039/c9gc00457b – ident: ref47/cit47 doi: 10.1111/imb.12083 – ident: ref43/cit43 doi: 10.1016/j.cej.2021.129327 – ident: ref45/cit45 doi: 10.3390/nu9060588 – ident: ref8/cit8 doi: 10.1371/journal.pone.0241151 – ident: ref5/cit5 doi: 10.1126/sciadv.1602638 – ident: ref20/cit20 doi: 10.1186/s40169-017-0175-0 – ident: ref24/cit24 doi: 10.1039/d1gc00006c – ident: ref63/cit63 doi: 10.1021/am5045967 – ident: ref14/cit14 doi: 10.1155/2015/919616 – ident: ref38/cit38 doi: 10.1021/acssuschemeng.9b04567 – ident: ref4/cit4 doi: 10.1038/nplants.2015.221 – ident: ref23/cit23 doi: 10.1016/j.jconrel.2018.12.012 – ident: ref3/cit3 doi: 10.1007/s13593-017-0472-4 – ident: ref13/cit13 doi: 10.1016/j.jep.2016.08.045 – ident: ref32/cit32 doi: 10.1016/j.cej.2020.126342 – ident: ref50/cit50 doi: 10.1016/j.jconrel.2019.12.049 – ident: ref2/cit2 doi: 10.1186/s12940-017-0315-4 – ident: ref6/cit6 doi: 10.1653/024.097.0351 – ident: ref21/cit21 doi: 10.1016/j.biotechadv.2014.10.010 – ident: ref59/cit59 doi: 10.1021/acs.jafc.7b05500 – ident: ref10/cit10 doi: 10.1021/jf102812t – ident: ref30/cit30 doi: 10.1021/acs.jafc.5b05214 – ident: ref37/cit37 doi: 10.1002/ps.5313 – ident: ref54/cit54 doi: 10.4172/pharmaceutical-sciences.1000431 – ident: ref48/cit48 doi: 10.1111/imb.12222 – ident: ref18/cit18 doi: 10.1016/j.tplants.2013.11.005 – ident: ref31/cit31 doi: 10.1007/s10340-017-0898-0 – ident: ref15/cit15 doi: 10.1016/j.ejmech.2016.08.012 – ident: ref39/cit39 doi: 10.1002/ps.6223 – ident: ref25/cit25 doi: 10.1016/j.jhazmat.2011.07.074 – ident: ref41/cit41 doi: 10.1002/ps.4765 – ident: ref57/cit57 doi: 10.1007/s11356-012-1161-0 – ident: ref33/cit33 doi: 10.1002/adma.201301201 |
SSID | ssj0063205 |
Score | 2.5919867 |
Snippet | The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36350 |
SubjectTerms | Applications of Polymer, Composite, and Coating Materials cytoplasm cytotoxicity disease control electrostatic interactions endocytosis fruit quality hydrophobicity insects Myzus persicae nanocarriers organic production particle size polymers powdery mildew strawberries sustainable agriculture Tetranychus urticae |
Title | Simple Osthole/Nanocarrier Pesticide Efficiently Controls Both Pests and Diseases Fulfilling the Need of Green Production of Strawberry |
URI | http://dx.doi.org/10.1021/acsami.1c09887 https://www.proquest.com/docview/2553818131 https://www.proquest.com/docview/2636475879 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbKcoEDjxZUnjJqpZ4MsZ04yZEurFAltkhbJG5R7NjSCpSt1rtCyx_gbzPjZNtuEY9rNJESe2a-z5nJN4R8BcQGlqxiZmwiGERixXQqBQP26py2ucsj_Bv5sq8uruMfN8nN3-8d_1fwBT8pjcdRONxEOQTEElkWCkAGSVB3MM-5SorQrAgn8phlgFhzecZn9yMIGb8IQos5OABLb71ROfJBjxD7SW6PpxN9bB6eqzW--cwbZK1ll_S0cYdN8sHWH8nqP5qDn8jjYIiCwPSnxw-i9gTSK8DZGAfX0SuU3DDDytLzoCwBgHQ3o92mm93T77CrwcbTsq7oWVPb8RSOsW4YtL0p0EnaB0CkI0dDSw-9aiRlYfvxGorh3ms7Hs-2yHXv_Ff3grXTGFgJoD9hFZdZrLVKleMWME0qg41trtSZVNpmSWKQgemsiuEImCZlpI2qMsFhx8ERlNwmnXpU28-EclO5hFtpHNCxKtKZ4WUamUSqUuSQgnfIF1jBoo0mX4RCueBFs6xFu6w7hM03sTCtoDnO1bh70f7bH_vfjZTHi5ZHc58oINqwhFLWdjT1BbgwUhwu-Ss2CjX5kyzNd9_1HntkRWCjDPahxPukMxlP7QEwnYk-DE7-BLn5-p4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VcgAOfFeUTyOQOLkbx7GTHMvSaoF2Wamt1FsUO7a0osqi9a5Q-QP8bWacpFBQEVytSeTYY7_nzPgNwGtEbGTJOuPWqZTjSmy4yWXKkb16b1zpy4RuIx9O9eQk-3CqTjdgNNyFwU4EfFOIQfyf6gJihG1UEUfYpMR1cQ2uK51pqtWwOz4atl4t05iziAfzjBcIXINK4x_PExbZcBmLLm_FEV_278DsomcxreTzznplduy330Qb_6Prd-F2zzXZbucc92DDtffh1i8KhA_g-9Gc5IHZp0C_R90IN1sEtyWVsWMzEuCw88axvagzgfB0ds7GXW57YG9xjqNNYHXbsHddpCcwPNT6eVT6Zkgu2RThkS08iwk-bNYJzKIzUBtJ4341brk8fwgn-3vH4wnvazPwGinAijdCFpkxOtdeOEQ4qS2lufnaFFIbVyhliY-ZosnwQJirOjFWN0UqcP7RLbTcgs120bpHwIRtvBJOWo_krElMYUWdJ1ZJXaclbsjb8ApHsOrXVqhi2DwVVTesVT-s28CHuaxsL29OVTbOrrR_c2H_pRP2uNLy5eAaFa49CqjUrVusQ4UOTYRHSPEXG00K_arIy8f_9B0v4Mbk-PCgOng__fgEbqaUQkMZKtlT2Fwt1-4ZcqCVeR79_gcEjAMP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELa2Ik3jgbEBWtkGRpvEk2kcJ07yyAoVMNZVAiTeoviXVA2lqG6F2D-wf3t3TorGEGi8WpfIse_8fY7P3xHyBRAbWLJMmLZpzCASDVOZiBmwV-eULVwR4W3k70N5dJGcXKaX7T1uvAsDnfDwJh8O8TGqr41rFQZ4D9qxKg7XUQGx8ZIsARvhWK9hv3-2WH6liEPeImzOE5YDeC2UGh88j3ik_X08ur8cB4wZvCHnd70LqSU_9-Yztad__SPc-Mzur5KVlnPS_cZJ3pIXtn5Hlv9SIlwjv8_GKBNMf3j8TWp7sOgCyE2xnB0doRCHHhtLD4PeBMDU1S3tNznunn6FuQ42nla1oQfNiY-nsLl146D4TYFk0iHAJJ04GhJ96KgRmgWnwDaUyL1Rdjq9XScXg8Pz_hFrazSwCqjAjBku8kQpmUnHLSCdkBrT3VylciGVzdNUIy9TuUlgY5ilVaS0NHnMwQ_APaTYIJ16Utv3hHJtXMqt0A5ImolUrnmVRToVsooLWJi75DOMYNnGmC_D8XnMy2ZYy3ZYu4Qt5rPUrcw5Vtu4etR-987-uhH4eNRyZ-EeJcQgHqxUtZ3MfQmOjcSHC_6EjUSl_jTPis3_-o5t8mp0MChPj4ffPpDXMWbSYKJK8pF0ZtO5_QRUaKa2guv_AT3jBYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+Osthole%2FNanocarrier+Pesticide+Efficiently+Controls+Both+Pests+and+Diseases+Fulfilling+the+Need+of+Green+Production+of+Strawberry&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yan%2C+Shuo&rft.au=Hu%2C+Qian&rft.au=Jiang%2C+Qinhong&rft.au=Chen%2C+Hongtao&rft.date=2021-08-04&rft.issn=1944-8252&rft.volume=13&rft.issue=30+p.36350-36360&rft.spage=36350&rft.epage=36360&rft_id=info:doi/10.1021%2Facsami.1c09887&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |