Machine Learning for Chemical Reactions

Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 121; no. 16; pp. 10218 - 10239
Main Author Meuwly, Markus
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.08.2021
Subjects
Online AccessGet full text
ISSN0009-2665
1520-6890
1520-6890
DOI10.1021/acs.chemrev.1c00033

Cover

Abstract Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
AbstractList Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
Author Meuwly, Markus
AuthorAffiliation Department of Chemistry
Brown University
AuthorAffiliation_xml – name: Brown University
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Markus
  orcidid: 0000-0001-7930-8806
  surname: Meuwly
  fullname: Meuwly, Markus
  email: m.meuwly@unibas.ch
  organization: Brown University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34097378$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LAzEQhoNU7If-AkEWPOhl20my2ewepfgFFUH0HLLZWbtlP2qyK_jvTWnroYd6GjJ53peZecdk0LQNEnJJYUqB0Zk2bmqWWFv8nlIDAJyfkBEVDMI4SWFARr6XhiyOxZCMnVv5pxBMnpEhjyCVXCYjcvOizbJsMFigtk3ZfAZFa4O5ty2NroI31KYr28adk9NCVw4vdnVCPh7u3-dP4eL18Xl-twh1BHEXxrkBSiWgyHKMUp0JaXKIhEwZZVgkkHORUw6GFjoRmjEJCXAoMskw0xz5hNxufde2_erRdaouncGq0g22vVMs5vHGjCb_o4J70I_DPXp9gK7a3jZ-EU_FiaQsSlJPXe2oPqsxV2tb1tr-qP21PJBuAWNb5ywWypSd3tyns7qsFAW1SUb5ZNQuGbVLxmv5gXZvf1w126o2n38zH1P8Arczodk
CitedBy_id crossref_primary_10_1021_acs_iecr_3c01882
crossref_primary_10_1021_acs_jpclett_2c03288
crossref_primary_10_1021_acscatal_4c06717
crossref_primary_10_1021_acs_est_1c05970
crossref_primary_10_1021_acs_jpcc_2c00859
crossref_primary_10_1016_j_conbuildmat_2023_133324
crossref_primary_10_1063_5_0047760
crossref_primary_10_1021_acs_jcim_3c01468
crossref_primary_10_1002_aenm_202203874
crossref_primary_10_1021_jacs_4c16325
crossref_primary_10_1021_acs_jctc_4c01201
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_3390_molecules28041900
crossref_primary_10_1021_acs_jpclett_3c00671
crossref_primary_10_1038_s41467_023_38872_0
crossref_primary_10_1021_acs_chemrev_2c00461
crossref_primary_10_1039_D4RA06114D
crossref_primary_10_1016_j_jtice_2024_105926
crossref_primary_10_1021_acs_jpca_4c06669
crossref_primary_10_1021_acs_jcim_4c00478
crossref_primary_10_1002_anie_202401084
crossref_primary_10_1016_j_fuel_2022_126942
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1039_D4SC03433C
crossref_primary_10_1088_2516_1075_ad48ec
crossref_primary_10_1021_acs_jctc_4c00008
crossref_primary_10_1063_5_0078008
crossref_primary_10_1021_acs_jctc_2c01049
crossref_primary_10_1021_acs_jpca_4c02876
crossref_primary_10_1021_acscatal_2c01741
crossref_primary_10_1016_j_ensm_2024_103710
crossref_primary_10_1021_acs_jcim_2c00858
crossref_primary_10_1039_D4SC03921A
crossref_primary_10_1021_acs_jctc_3c00364
crossref_primary_10_1016_j_patter_2022_100588
crossref_primary_10_1002_chem_202403501
crossref_primary_10_1002_jcc_27243
crossref_primary_10_1016_j_cpc_2024_109287
crossref_primary_10_1021_acs_jctc_4c01546
crossref_primary_10_1063_5_0201522
crossref_primary_10_1038_s41467_023_39214_w
crossref_primary_10_1039_D3DD00213F
crossref_primary_10_1186_s13321_024_00815_2
crossref_primary_10_1016_j_jenvman_2023_119900
crossref_primary_10_1021_acs_chemrev_2c00360
crossref_primary_10_1039_D1CP04393E
crossref_primary_10_1039_D3DD00249G
crossref_primary_10_1021_acs_jctc_3c00355
crossref_primary_10_3390_fire7070220
crossref_primary_10_1007_s00214_024_03159_0
crossref_primary_10_1016_j_dche_2024_100207
crossref_primary_10_1103_PhysRevA_110_032811
crossref_primary_10_1021_acs_analchem_2c02913
crossref_primary_10_1021_acs_jctc_4c01792
crossref_primary_10_1093_nsr_nwad321
crossref_primary_10_3390_life11111140
crossref_primary_10_1021_acs_jpca_4c05489
crossref_primary_10_1039_D2CP01211A
crossref_primary_10_1021_acs_jctc_4c00465
crossref_primary_10_1063_1674_0068_cjcp2304040
crossref_primary_10_1021_acs_jctc_1c01015
crossref_primary_10_1016_j_aichem_2023_100032
crossref_primary_10_1063_5_0165835
crossref_primary_10_1002_smtd_202300214
crossref_primary_10_1016_j_aichem_2023_100033
crossref_primary_10_2174_0115701794295930240902050855
crossref_primary_10_1016_j_jhazmat_2024_134980
crossref_primary_10_1063_5_0088821
crossref_primary_10_1039_D2CP01583H
crossref_primary_10_1186_s13321_023_00682_3
crossref_primary_10_1002_ange_202401084
crossref_primary_10_1002_chem_202401626
crossref_primary_10_1007_s13347_024_00782_4
crossref_primary_10_1039_D1EE01277K
crossref_primary_10_1021_acscatal_4c07972
crossref_primary_10_1039_D3EN00702B
crossref_primary_10_1063_5_0216562
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1038_s41929_023_01006_2
crossref_primary_10_1039_D2RA08180F
crossref_primary_10_1021_acs_jctc_2c00827
crossref_primary_10_1039_D4FD00015C
crossref_primary_10_1016_j_supflu_2023_106051
crossref_primary_10_1021_acs_jctc_2c00702
crossref_primary_10_1002_wcms_1697
crossref_primary_10_1016_j_ensm_2023_03_033
crossref_primary_10_1002_adsc_202301205
crossref_primary_10_1021_acs_jpca_2c02614
crossref_primary_10_1021_acs_jpclett_2c03625
crossref_primary_10_1021_acs_jctc_2c00151
crossref_primary_10_1088_2632_2153_ac3845
crossref_primary_10_1039_D3SC04928K
crossref_primary_10_3390_molecules28114477
crossref_primary_10_1039_D2CP03893E
crossref_primary_10_2208_jscejer_78_7_III_185
crossref_primary_10_1021_acs_jpca_3c02627
crossref_primary_10_1016_j_enrev_2023_100028
crossref_primary_10_1021_acs_jpclett_4c00893
crossref_primary_10_1038_s41467_022_33783_y
crossref_primary_10_1088_2632_2153_acee42
crossref_primary_10_1039_D3CC01576A
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_3390_molecules29112703
crossref_primary_10_1021_acs_jcim_4c01299
crossref_primary_10_1021_acs_chemrev_2c00828
crossref_primary_10_1039_D2QO00188H
crossref_primary_10_2477_jccj_2023_0012
crossref_primary_10_1021_acs_jpca_4c06521
crossref_primary_10_1038_s41557_023_01360_5
crossref_primary_10_1039_D4NA00214H
crossref_primary_10_1146_annurev_chembioeng_092220_025342
crossref_primary_10_1002_aic_17644
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1039_D2SC04056E
crossref_primary_10_1016_j_indcrop_2023_117753
crossref_primary_10_1016_j_aichem_2025_100085
crossref_primary_10_1002_admt_202401465
crossref_primary_10_1039_D2DD00102K
crossref_primary_10_1021_acs_jcim_3c01633
crossref_primary_10_1021_acs_jctc_3c00274
crossref_primary_10_1002_advs_202202811
crossref_primary_10_1021_acs_jctc_3c01252
crossref_primary_10_1155_2022_8652349
crossref_primary_10_3762_bjoc_21_3
crossref_primary_10_1021_acs_chemmater_3c03180
crossref_primary_10_1016_j_applthermaleng_2025_126247
crossref_primary_10_1126_sciadv_adn4397
crossref_primary_10_1021_acscentsci_4c01606
crossref_primary_10_1021_acs_jpca_1c09160
crossref_primary_10_1063_5_0072004
crossref_primary_10_1021_acs_jctc_4c00821
crossref_primary_10_1063_5_0238311
crossref_primary_10_3389_fceng_2022_1055744
crossref_primary_10_1002_cjce_25465
crossref_primary_10_1016_j_watres_2023_120470
crossref_primary_10_3389_fchem_2021_798838
crossref_primary_10_1021_acs_iecr_2c01036
crossref_primary_10_1021_acs_jctc_2c00693
crossref_primary_10_1038_s41570_022_00424_3
crossref_primary_10_1039_D3CP05935A
crossref_primary_10_1063_5_0085081
crossref_primary_10_1016_j_jcou_2024_102929
crossref_primary_10_1021_acs_jpclett_3c03405
crossref_primary_10_1002_smtd_202400158
crossref_primary_10_1016_j_aichem_2024_100083
crossref_primary_10_1021_acs_jcim_4c02259
crossref_primary_10_1021_acs_jpclett_2c02222
crossref_primary_10_1063_5_0228503
crossref_primary_10_1021_acs_chemrev_2c00061
crossref_primary_10_1021_acs_jcim_3c00643
crossref_primary_10_1021_acs_jcim_3c00889
crossref_primary_10_1063_5_0151122
crossref_primary_10_1021_acs_langmuir_4c04638
crossref_primary_10_1021_acs_jcim_4c01714
crossref_primary_10_1186_s13321_023_00784_y
crossref_primary_10_3390_molecules30020355
crossref_primary_10_1021_acs_jpclett_3c01231
crossref_primary_10_1039_D2CP05975D
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1021_acs_chemrev_4c00572
crossref_primary_10_1016_j_cpc_2024_109446
crossref_primary_10_1016_j_aichem_2023_100017
crossref_primary_10_1021_acscatal_3c02513
crossref_primary_10_1016_j_jclepro_2023_138210
crossref_primary_10_1039_D3YA00057E
crossref_primary_10_1021_acs_jpclett_4c02647
crossref_primary_10_1002_poc_4405
crossref_primary_10_1021_acs_jcim_5c00281
crossref_primary_10_1021_acs_joc_4c01763
crossref_primary_10_1016_j_cclet_2025_110968
crossref_primary_10_1021_acsestwater_2c00193
crossref_primary_10_1186_s13321_021_00579_z
crossref_primary_10_1002_ange_202107369
crossref_primary_10_1016_j_ijhydene_2024_01_196
crossref_primary_10_1021_acsmeasuresciau_3c00060
crossref_primary_10_1016_j_est_2023_106688
crossref_primary_10_1021_acs_jcim_4c01473
crossref_primary_10_1021_jacs_3c02143
crossref_primary_10_1111_cbdd_14164
crossref_primary_10_1039_D3CC01570J
crossref_primary_10_1021_acs_jctc_3c00469
crossref_primary_10_1021_acs_jpca_4c04039
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_1063_5_0155992
crossref_primary_10_1016_j_jechem_2021_10_037
crossref_primary_10_1038_s42256_024_00856_0
crossref_primary_10_1038_s43586_024_00291_w
crossref_primary_10_1021_acs_jpcb_4c04100
crossref_primary_10_1021_acs_jcim_1c01125
crossref_primary_10_1063_5_0067176
crossref_primary_10_1002_anie_202107369
crossref_primary_10_1038_s43588_022_00369_z
crossref_primary_10_1002_jcc_70056
crossref_primary_10_1002_qua_70036
crossref_primary_10_1039_D4FD00140K
crossref_primary_10_1002_cphc_202200349
crossref_primary_10_1039_D4CC00010B
crossref_primary_10_1016_j_energy_2024_131614
crossref_primary_10_1016_j_molliq_2024_124498
crossref_primary_10_1016_j_cplett_2024_141223
crossref_primary_10_1039_D1DD00050K
crossref_primary_10_1146_annurev_physchem_062123_024417
crossref_primary_10_1002_qua_27087
crossref_primary_10_1016_j_jece_2023_111699
crossref_primary_10_1039_D2SC01334G
crossref_primary_10_1021_acs_jcim_2c01104
crossref_primary_10_1016_j_cplett_2021_139290
crossref_primary_10_1021_acs_jpclett_1c01810
crossref_primary_10_1039_D3DT02126B
crossref_primary_10_1039_D4DD00303A
crossref_primary_10_1063_5_0211276
crossref_primary_10_1360_SSC_2024_0128
crossref_primary_10_1021_acsami_3c19377
crossref_primary_10_1016_j_wasman_2024_07_032
crossref_primary_10_1088_1361_648X_ad9657
crossref_primary_10_1021_acs_jpcb_2c00212
crossref_primary_10_1016_j_aichem_2024_100052
crossref_primary_10_1016_j_mlwa_2024_100584
crossref_primary_10_1039_D3SC03598K
crossref_primary_10_1039_D5SC00541H
crossref_primary_10_1016_j_aichem_2024_100050
crossref_primary_10_1039_D4RE00004H
crossref_primary_10_1021_acs_chemmater_3c00731
crossref_primary_10_1038_s41598_024_62242_5
crossref_primary_10_1002_adfm_202210095
crossref_primary_10_3233_JIFS_234632
crossref_primary_10_1002_wcms_1645
crossref_primary_10_1021_acsearthspacechem_4c00214
crossref_primary_10_1002_jcc_27443
crossref_primary_10_1021_acscatal_3c05285
crossref_primary_10_1273_cbij_23_7
crossref_primary_10_1021_acs_jcim_1c00975
crossref_primary_10_1038_s41467_023_39212_y
crossref_primary_10_1107_S2052252524002392
crossref_primary_10_1039_D2QO01954J
crossref_primary_10_1002_wcms_1639
crossref_primary_10_1021_acs_jctc_3c01401
crossref_primary_10_1063_5_0151266
crossref_primary_10_1021_acsami_4c06276
crossref_primary_10_1021_acsphyschemau_3c00067
crossref_primary_10_1039_D2GC04750K
crossref_primary_10_1021_acs_jpca_3c06265
crossref_primary_10_1186_s13321_024_00818_z
crossref_primary_10_1039_D4VA00255E
crossref_primary_10_1039_D2FD00026A
Cites_doi 10.1016/j.jms.2016.08.009
10.1063/1.463188
10.1063/1.1591727
10.1073/pnas.53.1.134
10.1038/s41467-020-19497-z
10.1063/1.1379337
10.1146/annurev.physchem.50.1.537
10.1090/S0002-9947-1950-0051437-7
10.1103/PhysRevLett.114.166101
10.1002/jcc.20090
10.1021/acs.jpca.0c04348
10.1007/BF01931367
10.1007/s00214-002-0383-5
10.1109/CVPR.2016.90
10.1021/jp004368u
10.1038/nchem.2804
10.1039/c0cp02722g
10.1007/BF00344251
10.1021/acs.jpca.0c05992
10.1039/b410579f
10.1021/ja00540a008
10.1021/ct400953f
10.1021/jp501128w
10.1021/cr050293k
10.1080/0144235X.2016.1200347
10.1021/ct800066q
10.1103/PhysRevLett.98.146401
10.1351/pac196714010019
10.1021/acsomega.8b03173
10.1016/j.cogsc.2020.100370
10.1093/bioinformatics/btu275
10.1038/s41570-018-0148
10.1021/acs.analchem.6b01622
10.1063/1.1741936
10.1090/S0025-5718-1981-0616367-1
10.1039/a908825c
10.1021/acs.jpcb.6b07203
10.1002/anie.201611308
10.1016/j.chempr.2018.02.002
10.1021/jp9818131
10.1002/jcc.22996
10.1063/1.1879792
10.1073/pnas.79.8.2554
10.1007/s11214-010-9712-5
10.1063/1.1382647
10.1038/s41587-020-0740-8
10.1016/j.compchemeng.2019.05.020
10.1063/5.0012230
10.1016/S0376-0421(03)00079-4
10.1126/science.aav2211
10.1016/j.jqsrt.2020.107211
10.5194/acp-15-6283-2015
10.1021/jp036603p
10.1021/ci600423u
10.1021/ar100087v
10.1039/C6CP05553B
10.1063/1.4811653
10.1146/annurev.physchem.58.032806.104637
10.1063/1.1394940
10.1021/acs.jpclett.0c01307
10.1351/pac200476010029
10.1021/acs.jpclett.0c00527
10.1021/acs.jctc.0c00535
10.1021/ci00008a001
10.1063/1.461551
10.1038/s41467-018-04824-2
10.1063/1.1383586
10.1021/acs.jpclett.0c00989
10.1063/1.4929527
10.1063/1.4964410
10.1021/acs.jpclett.9b01810
10.1146/annurev.pc.41.100190.001011
10.1038/s41598-017-02303-0
10.1088/1367-2630/ab0099
10.1016/S0009-2614(99)00874-X
10.1039/C1CP21830A
10.1021/acs.jpca.9b01006
10.1002/jcc.20035
10.1038/nature25978
10.1021/ci3003039
10.1063/1.4943002
10.1103/PhysRevLett.120.143001
10.1186/s13321-016-0116-8
10.1063/1.2831790
10.1039/C9CP01883B
10.1021/cr100212h
10.1063/1.5019779
10.1109/TCYB.2019.2921424
10.1016/j.bmcl.2015.03.049
10.1002/anie.200802019
10.1063/PT.3.3762
10.1016/S0032-3861(02)00761-9
10.1021/jp0222604
10.1021/jacs.7b02671
10.1063/1.1344887
10.1063/5.0038301
10.1021/acscentsci.8b00357
10.1063/1.4897263
10.1021/acs.energyfuels.0c03211
10.1002/anie.201506101
10.1016/0097-8493(77)90009-7
10.1038/s41467-018-03597-y
10.1063/5.0009628
10.1063/1.466801
10.1063/1.5017898
10.1016/S1367-5931(98)80112-9
10.1007/3-540-16904-0_14
10.1016/S0376-0421(00)00004-X
10.1063/1.1388547
10.1021/acscentsci.7b00550
10.1021/acscentsci.7b00492
10.1021/acs.chemrev.0c00665
10.1088/2632-2153/abc81d
10.1021/jacs.8b13879
10.1063/1.1697301
10.1080/01442350903234923
10.1088/1367-2630/ab81b5
10.1021/ja00754a026
10.1038/nchem.2099
10.1016/S0009-2614(03)01184-9
10.1146/annurev.pc.36.100185.003041
10.1109/TKDE.2009.191
10.1016/B978-0-12-800720-4.00001-5
10.1063/1.5092590
10.1146/annurev-biophys-121219-081520
10.1063/1.5097385
10.1063/1.480988
10.1021/acs.jpca.0c01870
10.1073/pnas.1509788112
10.1021/ja00905a002
10.1002/qua.20542
10.1021/cr200093j
10.1063/1.469591
10.1063/1.481911
10.1021/ct4003702
10.1016/j.sbi.2020.12.015
10.1002/aic.14418
10.1529/biophysj.105.071522
10.1016/0004-3702(93)90068-M
10.1080/08927020601156392
10.1126/science.aax1566
10.1063/1.868491
10.1039/C9CP05091D
10.1021/acs.jpca.7b01182
10.1016/j.cpc.2014.07.021
10.1021/jp074646q
10.1021/jp203480q
10.1021/acs.jpca.0c02395
10.1039/D0CP00668H
10.1016/j.cplett.2008.05.083
10.1007/978-1-4613-2913-8_16
10.1016/j.proci.2016.07.100
10.1063/1.1532001
10.1088/0067-0049/199/1/21
10.1063/1.4891675
10.1063/1.5039496
10.1021/acs.jpcb.9b03258
10.1351/pac199062101921
10.1063/1.479873
10.1021/acs.jctc.9b00605
10.1016/0167-7977(86)90011-0
10.1063/1.4990661
10.1021/acs.jpclett.0c02501
10.3390/ijms10052304
10.1021/acs.jpca.0c05173
10.1021/acs.jcim.7b00090
10.1021/acscentsci.8b00307
10.1039/C5CP03324A
10.1021/acs.jpca.0c05979
10.1063/5.0015896
10.1016/j.cpc.2015.12.021
10.1063/1.475132
10.7551/mitpress/3206.001.0001
10.1146/annurev-physchem-050317-021139
10.1063/1.470984
10.1021/jz301701x
10.1007/s10910-008-9354-y
10.26434/chemrxiv.13146404.v2
10.1038/s41467-019-10827-4
10.1103/RevModPhys.46.369
10.1103/PhysRevLett.68.1500
10.1021/acs.jctc.5b00099
10.1021/jp4081806
10.1063/5.0008223
10.1002/cphc.201402342
10.31635/ccschem.020.202000195
10.1016/S0301-4622(02)00093-5
10.1002/jcc.10206
10.1119/1.1972241
10.1021/acs.jctc.7b01210
10.1073/pnas.0802769105
10.1063/1.5108666
10.1021/jp973084f
10.1029/2007GL031032
10.1111/1467-9868.00294
10.1063/1.1603219
10.1021/jz200719x
10.1039/C9CP05259C
10.1063/1.478744
10.1063/1.470536
10.1021/acs.jctc.9b00181
10.1063/1.1346639
10.1080/00268977900101781
10.1088/0953-4075/49/22/224001
10.1021/acs.jpclett.0c02516
10.1021/jacs.9b02731
10.1039/D0CP02509G
10.1063/1.5046906
10.1039/C9CP06085E
10.1039/b509494a
10.1039/C4CP01832J
10.1002/kin.21172
10.1145/364338.364398
10.1002/cphc.201100681
10.1063/1.481269
10.1073/pnas.1118082108
10.1021/acs.jctc.9b00700
10.1063/1.3576052
10.1021/ja00905a003
10.1038/s41586-019-1923-7
10.1016/j.jms.2007.07.009
10.1021/ct400803f
10.1002/jcc.26172
10.1021/jacs.6b03156
10.1021/acs.jcim.0c00600
10.1021/es500319q
10.1126/science.197.4308.1041
10.1039/D0CP04221H
10.1198/TECH.2009.08040
10.1039/C4CP03761H
10.1021/jp910674d
10.1093/bioinformatics/bts437
10.1103/PhysRevB.87.184115
10.1002/anie.201604552
10.1063/1.4863138
10.1016/0020-0271(63)90012-3
10.1021/jo01299a001
10.1063/1.473683
10.1021/acs.jctc.5b00277
10.1002/anie.201204077
10.2478/disp-2019-0010
10.1021/acs.chemrev.0c01111
10.1038/nchem.2488
10.1021/acs.jctc.5b00830
10.1017/9781139683494
10.1021/acscentsci.6b00219
10.1146/annurev.biophys.32.110601.141807
10.1063/1.1672232
10.1063/5.0023492
10.1126/science.abd3623
10.1146/annurev-physchem-040214-121833
10.1038/s41570-019-0124-0
10.3389/fchem.2018.00189
10.1186/s13321-016-0174-y
10.1021/bi400215w
10.1126/science.166.3902.178
10.1039/C9SC02452B
10.1038/s41467-020-19267-x
10.1039/C6CP07142B
10.1016/0005-2795(75)90109-9
10.1021/ja00214a001
10.1103/PhysRevLett.121.255702
10.1063/1.479368
10.1021/ja01039a025
10.1038/323533a0
10.1093/nar/gku436
10.1126/science.1220712
10.1063/1.4757762
10.1021/acs.accounts.7b00010
10.1039/C6SC05720A
10.1016/j.paerosci.2011.10.001
10.1002/nme.1620151110
10.1021/acs.jpcb.6b07814
10.1126/scirobotics.aat5559
ContentType Journal Article
Copyright Copyright American Chemical Society Aug 25, 2021
Copyright_xml – notice: Copyright American Chemical Society Aug 25, 2021
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
DOI 10.1021/acs.chemrev.1c00033
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 10239
ExternalDocumentID 34097378
10_1021_acs_chemrev_1c00033
b737512628
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
29B
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UNM
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
CITATION
CUPRZ
XSW
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-a406t-6dc01170e5bde49ab57cd04579212ef80d35d130c1fa85a22708030fb72eba3e3
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Fri Jul 11 15:09:51 EDT 2025
Fri Jul 11 16:20:49 EDT 2025
Mon Jun 30 10:42:05 EDT 2025
Thu Apr 03 07:06:01 EDT 2025
Tue Jul 01 03:16:21 EDT 2025
Thu Apr 24 22:52:51 EDT 2025
Fri Aug 27 15:31:21 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-6dc01170e5bde49ab57cd04579212ef80d35d130c1fa85a22708030fb72eba3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7930-8806
PMID 34097378
PQID 2568712489
PQPubID 45407
PageCount 22
ParticipantIDs proquest_miscellaneous_2636792118
proquest_miscellaneous_2539210113
proquest_journals_2568712489
pubmed_primary_34097378
crossref_citationtrail_10_1021_acs_chemrev_1c00033
crossref_primary_10_1021_acs_chemrev_1c00033
acs_journals_10_1021_acs_chemrev_1c00033
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
Stone J. E. (ref280/cit280) 2001
ref181/cit181
ref111/cit111
ref255/cit255
ref113/cit113
ref183/cit183
ref257/cit257
Kingma D. (ref99/cit99) 2014
ref117/cit117
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
Vapnik V. N. (ref48/cit48) 1998
Häse F. (ref222/cit222) 2020
ref124/cit124
ref54/cit54
ref240/cit240
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref233/cit233
ref148/cit148
ref55/cit55
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref22/cit22
ref260/cit260
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref227/cit227
ref150/cit150
ref294/cit294
ref63/cit63
ref295/cit295
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref292/cit292
ref60/cit60
ref17/cit17
London F. (ref125/cit125) 1929; 35
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
Firsov O. (ref103/cit103) 1953; 24
ref230/cit230
Nair V. (ref96/cit96) 2010
ref145/cit145
Boyd I. D. (ref92/cit92) 2017; 42
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
Jang E. (ref225/cit225) 2016
ref213/cit213
ref284/cit284
ref286/cit286
ref78/cit78
ref211/cit211
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref270/cit270
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref289/cit289
ref15/cit15
ref180/cit180
ref235/cit235
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref281/cit281
ref7/cit7
ref45/cit45
Minsky M. (ref49/cit49) 1969
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
Klambauer G. (ref97/cit97) 2017; 30
ref89/cit89
ref19/cit19
ref107/cit107
ref191/cit191
ref265/cit265
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
Maddison C. J. (ref224/cit224) 2016
ref263/cit263
ref197/cit197
Hutson J. M. (ref131/cit131) 1991; 1
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref101/cit101
ref245/cit245
ref241/cit241
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref287/cit287
ref252/cit252
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
ref283/cit283
ref129/cit129
ref44/cit44
ref70/cit70
ref9/cit9
ref152/cit152
ref226/cit226
ref154/cit154
ref27/cit27
ref228/cit228
ref293/cit293
ref223/cit223
ref151/cit151
ref159/cit159
Eyring H. (ref126/cit126) 1931; 12
ref157/cit157
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref217/cit217
ref288/cit288
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref236/cit236
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref50/cit50
ref282/cit282
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref247/cit247
ref72/cit72
ref242/cit242
ref201/cit201
Huang B. (ref212/cit212) 2020
Veliz J. C. S. V. (ref91/cit91) 2021
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref274/cit274
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref239/cit239
ref250/cit250
Doshi-Velez F. (ref275/cit275) 2017
ref95/cit95
ref108/cit108
ref192/cit192
ref266/cit266
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
ref285/cit285
References_xml – ident: ref261/cit261
  doi: 10.1016/j.jms.2016.08.009
– ident: ref245/cit245
  doi: 10.1063/1.463188
– ident: ref22/cit22
  doi: 10.1063/1.1591727
– ident: ref202/cit202
  doi: 10.1073/pnas.53.1.134
– ident: ref237/cit237
  doi: 10.1038/s41467-020-19497-z
– ident: ref250/cit250
  doi: 10.1063/1.1379337
– ident: ref74/cit74
  doi: 10.1146/annurev.physchem.50.1.537
– start-page: 807
  year: 2010
  ident: ref96/cit96
  publication-title: Proceedings of the 27th International Conference on Machine Learning
– ident: ref110/cit110
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: ref168/cit168
  doi: 10.1103/PhysRevLett.114.166101
– ident: ref64/cit64
  doi: 10.1002/jcc.20090
– ident: ref56/cit56
  doi: 10.1021/acs.jpca.0c04348
– ident: ref52/cit52
  doi: 10.1007/BF01931367
– ident: ref38/cit38
  doi: 10.1007/s00214-002-0383-5
– ident: ref94/cit94
  doi: 10.1109/CVPR.2016.90
– ident: ref29/cit29
  doi: 10.1021/jp004368u
– ident: ref170/cit170
  doi: 10.1038/nchem.2804
– ident: ref39/cit39
  doi: 10.1039/c0cp02722g
– ident: ref50/cit50
  doi: 10.1007/BF00344251
– ident: ref57/cit57
  doi: 10.1021/acs.jpca.0c05992
– ident: ref258/cit258
  doi: 10.1039/b410579f
– ident: ref27/cit27
  doi: 10.1021/ja00540a008
– ident: ref34/cit34
  doi: 10.1021/ct400953f
– ident: ref70/cit70
  doi: 10.1021/jp501128w
– ident: ref43/cit43
  doi: 10.1021/cr050293k
– ident: ref160/cit160
  doi: 10.1080/0144235X.2016.1200347
– ident: ref33/cit33
  doi: 10.1021/ct800066q
– ident: ref77/cit77
  doi: 10.1103/PhysRevLett.98.146401
– volume: 35
  start-page: 552
  year: 1929
  ident: ref125/cit125
  publication-title: Z. Elektrochem.
– ident: ref196/cit196
  doi: 10.1351/pac196714010019
– ident: ref273/cit273
  doi: 10.1021/acsomega.8b03173
– ident: ref220/cit220
  doi: 10.1016/j.cogsc.2020.100370
– ident: ref232/cit232
  doi: 10.1093/bioinformatics/btu275
– ident: ref45/cit45
  doi: 10.1038/s41570-018-0148
– ident: ref193/cit193
  doi: 10.1021/acs.analchem.6b01622
– ident: ref127/cit127
  doi: 10.1063/1.1741936
– ident: ref138/cit138
  doi: 10.1090/S0025-5718-1981-0616367-1
– ident: ref248/cit248
  doi: 10.1039/a908825c
– ident: ref15/cit15
  doi: 10.1021/acs.jpcb.6b07203
– ident: ref277/cit277
  doi: 10.1002/anie.201611308
– ident: ref208/cit208
  doi: 10.1016/j.chempr.2018.02.002
– ident: ref28/cit28
  doi: 10.1021/jp9818131
– ident: ref66/cit66
  doi: 10.1002/jcc.22996
– ident: ref20/cit20
  doi: 10.1063/1.1879792
– ident: ref51/cit51
  doi: 10.1073/pnas.79.8.2554
– ident: ref150/cit150
  doi: 10.1007/s11214-010-9712-5
– ident: ref251/cit251
  doi: 10.1063/1.1382647
– ident: ref194/cit194
  doi: 10.1038/s41587-020-0740-8
– ident: ref223/cit223
  doi: 10.1016/j.compchemeng.2019.05.020
– ident: ref215/cit215
  doi: 10.1063/5.0012230
– ident: ref147/cit147
  doi: 10.1016/S0376-0421(03)00079-4
– ident: ref217/cit217
  doi: 10.1126/science.aav2211
– ident: ref263/cit263
  doi: 10.1016/j.jqsrt.2020.107211
– ident: ref157/cit157
  doi: 10.5194/acp-15-6283-2015
– ident: ref259/cit259
  doi: 10.1021/jp036603p
– ident: ref270/cit270
  doi: 10.1021/ci600423u
– ident: ref164/cit164
  doi: 10.1021/ar100087v
– ident: ref269/cit269
  doi: 10.1039/C6CP05553B
– ident: ref143/cit143
  doi: 10.1063/1.4811653
– ident: ref235/cit235
  doi: 10.1146/annurev.physchem.58.032806.104637
– ident: ref254/cit254
  doi: 10.1063/1.1394940
– ident: ref177/cit177
  doi: 10.1021/acs.jpclett.0c01307
– ident: ref257/cit257
  doi: 10.1351/pac200476010029
– ident: ref267/cit267
  doi: 10.1021/acs.jpclett.0c00527
– ident: ref120/cit120
  doi: 10.1021/acs.jctc.0c00535
– ident: ref227/cit227
  doi: 10.1021/ci00008a001
– ident: ref246/cit246
  doi: 10.1063/1.461551
– ident: ref152/cit152
  doi: 10.1038/s41467-018-04824-2
– ident: ref252/cit252
  doi: 10.1063/1.1383586
– ident: ref9/cit9
  doi: 10.1021/acs.jpclett.0c00989
– ident: ref117/cit117
  doi: 10.1063/1.4929527
– ident: ref10/cit10
  doi: 10.1063/1.4964410
– ident: ref55/cit55
  doi: 10.1021/acs.jpclett.9b01810
– ident: ref130/cit130
  doi: 10.1146/annurev.pc.41.100190.001011
– ident: ref209/cit209
  doi: 10.1038/s41598-017-02303-0
– ident: ref109/cit109
  doi: 10.1088/1367-2630/ab0099
– ident: ref16/cit16
  doi: 10.1016/S0009-2614(99)00874-X
– ident: ref85/cit85
  doi: 10.1039/C1CP21830A
– ident: ref292/cit292
  doi: 10.1021/acs.jpca.9b01006
– ident: ref63/cit63
  doi: 10.1002/jcc.20035
– ident: ref189/cit189
  doi: 10.1038/nature25978
– ident: ref207/cit207
  doi: 10.1021/ci3003039
– ident: ref169/cit169
  doi: 10.1063/1.4943002
– ident: ref238/cit238
  doi: 10.1103/PhysRevLett.120.143001
– ident: ref233/cit233
  doi: 10.1186/s13321-016-0116-8
– ident: ref140/cit140
  doi: 10.1063/1.2831790
– ident: ref102/cit102
  doi: 10.1039/C9CP01883B
– ident: ref5/cit5
  doi: 10.1021/cr100212h
– ident: ref78/cit78
  doi: 10.1063/1.5019779
– ident: ref295/cit295
  doi: 10.1109/TCYB.2019.2921424
– ident: ref274/cit274
  doi: 10.1016/j.bmcl.2015.03.049
– ident: ref12/cit12
  doi: 10.1002/anie.200802019
– ident: ref149/cit149
  doi: 10.1063/PT.3.3762
– ident: ref30/cit30
  doi: 10.1016/S0032-3861(02)00761-9
– ident: ref90/cit90
  doi: 10.1021/jp0222604
– volume: 24
  start-page: 279
  year: 1953
  ident: ref103/cit103
  publication-title: Zhur. Eksptl’. I Teoret Fiz.
– ident: ref44/cit44
  doi: 10.1021/jacs.7b02671
– ident: ref113/cit113
  doi: 10.1063/1.1344887
– ident: ref176/cit176
  doi: 10.1063/5.0038301
– ident: ref192/cit192
  doi: 10.1021/acscentsci.8b00357
– year: 2014
  ident: ref99/cit99
  publication-title: arXiv Preprint arXiv:1412.6980
– year: 2016
  ident: ref225/cit225
  publication-title: arXiv Preprint arXiv:1611.01144
– ident: ref88/cit88
  doi: 10.1063/1.4897263
– ident: ref243/cit243
  doi: 10.1021/acs.energyfuels.0c03211
– ident: ref210/cit210
  doi: 10.1002/anie.201506101
– year: 2016
  ident: ref224/cit224
  publication-title: arXiv Preprint arXiv:1611.00712
– volume: 30
  start-page: 971
  year: 2017
  ident: ref97/cit97
  publication-title: Advances in Neural Information Processing Systems
– ident: ref279/cit279
  doi: 10.1016/0097-8493(77)90009-7
– ident: ref289/cit289
  doi: 10.1038/s41467-018-03597-y
– ident: ref6/cit6
  doi: 10.1063/5.0009628
– ident: ref139/cit139
  doi: 10.1063/1.466801
– ident: ref98/cit98
  doi: 10.1063/1.5017898
– ident: ref181/cit181
  doi: 10.1016/S1367-5931(98)80112-9
– ident: ref206/cit206
  doi: 10.1007/3-540-16904-0_14
– ident: ref146/cit146
  doi: 10.1016/S0376-0421(00)00004-X
– ident: ref253/cit253
  doi: 10.1063/1.1388547
– ident: ref284/cit284
  doi: 10.1021/acscentsci.7b00550
– ident: ref191/cit191
  doi: 10.1021/acscentsci.7b00492
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.0c00665
– ident: ref60/cit60
  doi: 10.1088/2632-2153/abc81d
– ident: ref187/cit187
  doi: 10.1021/jacs.8b13879
– ident: ref26/cit26
  doi: 10.1063/1.1697301
– ident: ref159/cit159
  doi: 10.1080/01442350903234923
– volume: 1
  start-page: 1
  year: 1991
  ident: ref131/cit131
  publication-title: Adv. Mol. Vibrat. Coll. Dyn.
– ident: ref80/cit80
  doi: 10.1088/1367-2630/ab81b5
– ident: ref198/cit198
  doi: 10.1021/ja00754a026
– ident: ref236/cit236
  doi: 10.1038/nchem.2099
– ident: ref256/cit256
  doi: 10.1016/S0009-2614(03)01184-9
– ident: ref40/cit40
  doi: 10.1146/annurev.pc.36.100185.003041
– ident: ref178/cit178
  doi: 10.1109/TKDE.2009.191
– ident: ref278/cit278
  doi: 10.1016/B978-0-12-800720-4.00001-5
– ident: ref283/cit283
  doi: 10.1063/1.5092590
– ident: ref46/cit46
  doi: 10.1146/annurev-biophys-121219-081520
– ident: ref58/cit58
  doi: 10.1063/1.5097385
– volume-title: Perceptrons: An Introduction to Computational Geometry
  year: 1969
  ident: ref49/cit49
– year: 2020
  ident: ref212/cit212
  publication-title: arXiv Preprint arXiv:2012.07502
– ident: ref111/cit111
  doi: 10.1063/1.480988
– ident: ref72/cit72
  doi: 10.1021/acs.jpca.0c01870
– ident: ref142/cit142
  doi: 10.1080/01442350903234923
– ident: ref229/cit229
  doi: 10.1073/pnas.1509788112
– ident: ref24/cit24
  doi: 10.1021/ja00905a002
– ident: ref21/cit21
  doi: 10.1002/qua.20542
– ident: ref18/cit18
  doi: 10.1021/cr200093j
– ident: ref108/cit108
  doi: 10.1063/1.469591
– ident: ref249/cit249
  doi: 10.1063/1.481911
– ident: ref67/cit67
  doi: 10.1021/ct4003702
– year: 2021
  ident: ref91/cit91
  publication-title: Phys. Chem. Chem. Phys.
– ident: ref186/cit186
  doi: 10.1016/j.sbi.2020.12.015
– ident: ref241/cit241
  doi: 10.1002/aic.14418
– ident: ref32/cit32
  doi: 10.1529/biophysj.105.071522
– ident: ref203/cit203
  doi: 10.1016/0004-3702(93)90068-M
– ident: ref31/cit31
  doi: 10.1080/08927020601156392
– ident: ref218/cit218
  doi: 10.1126/science.aax1566
– ident: ref145/cit145
  doi: 10.1063/1.868491
– ident: ref291/cit291
  doi: 10.1039/C9CP05091D
– ident: ref71/cit71
  doi: 10.1021/acs.jpca.7b01182
– ident: ref116/cit116
  doi: 10.1016/j.cpc.2014.07.021
– ident: ref128/cit128
  doi: 10.1021/jp074646q
– ident: ref47/cit47
  doi: 10.1021/jp203480q
– ident: ref86/cit86
  doi: 10.1021/acs.jpca.0c02395
– ident: ref172/cit172
  doi: 10.1039/D0CP00668H
– ident: ref260/cit260
  doi: 10.1016/j.cplett.2008.05.083
– ident: ref83/cit83
  doi: 10.1007/978-1-4613-2913-8_16
– ident: ref2/cit2
  doi: 10.1016/j.proci.2016.07.100
– ident: ref255/cit255
  doi: 10.1063/1.1532001
– volume-title: Statistical Learning Theory
  year: 1998
  ident: ref48/cit48
– ident: ref3/cit3
  doi: 10.1088/0067-0049/199/1/21
– ident: ref165/cit165
  doi: 10.1063/1.4891675
– ident: ref265/cit265
  doi: 10.1063/1.5039496
– ident: ref36/cit36
  doi: 10.1021/acs.jpcb.9b03258
– ident: ref205/cit205
  doi: 10.1351/pac199062101921
– ident: ref247/cit247
  doi: 10.1063/1.479873
– ident: ref214/cit214
  doi: 10.1021/acs.jctc.9b00605
– ident: ref107/cit107
  doi: 10.1016/0167-7977(86)90011-0
– ident: ref134/cit134
  doi: 10.1063/1.4990661
– ident: ref144/cit144
  doi: 10.1021/acs.jpclett.0c02501
– ident: ref151/cit151
  doi: 10.3390/ijms10052304
– ident: ref59/cit59
  doi: 10.1021/acs.jpca.0c05173
– ident: ref75/cit75
  doi: 10.1021/acs.jcim.7b00090
– ident: ref221/cit221
  doi: 10.1021/acscentsci.8b00307
– ident: ref167/cit167
  doi: 10.1039/C5CP03324A
– ident: ref119/cit119
  doi: 10.1021/acs.jpca.0c05979
– ident: ref123/cit123
  doi: 10.1063/5.0015896
– ident: ref262/cit262
  doi: 10.1016/j.cpc.2015.12.021
– ident: ref87/cit87
  doi: 10.1063/1.475132
– ident: ref100/cit100
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref76/cit76
  doi: 10.1146/annurev-physchem-050317-021139
– ident: ref81/cit81
  doi: 10.1063/1.470984
– ident: ref156/cit156
  doi: 10.1021/jz301701x
– ident: ref141/cit141
  doi: 10.1007/s10910-008-9354-y
– ident: ref226/cit226
  doi: 10.26434/chemrxiv.13146404.v2
– ident: ref179/cit179
  doi: 10.1038/s41467-019-10827-4
– ident: ref105/cit105
  doi: 10.1103/RevModPhys.46.369
– ident: ref293/cit293
  doi: 10.1103/PhysRevLett.68.1500
– ident: ref175/cit175
  doi: 10.1021/acs.jctc.5b00099
– ident: ref264/cit264
  doi: 10.1021/jp4081806
– ident: ref129/cit129
  doi: 10.1063/5.0008223
– ident: ref282/cit282
  doi: 10.1002/cphc.201402342
– ident: ref171/cit171
  doi: 10.31635/ccschem.020.202000195
– ident: ref287/cit287
  doi: 10.1016/S0301-4622(02)00093-5
– ident: ref19/cit19
  doi: 10.1002/jcc.10206
– ident: ref54/cit54
– ident: ref288/cit288
  doi: 10.1119/1.1972241
– ident: ref35/cit35
  doi: 10.1021/acs.jctc.7b01210
– volume: 12
  start-page: 279
  year: 1931
  ident: ref126/cit126
  publication-title: Z. Phys. Chem. Abt. B
– ident: ref161/cit161
  doi: 10.1073/pnas.0802769105
– year: 2017
  ident: ref275/cit275
  publication-title: arXiv preprint arXiv:1702.08608
– ident: ref93/cit93
  doi: 10.1063/1.5108666
– ident: ref62/cit62
  doi: 10.1021/jp973084f
– ident: ref154/cit154
  doi: 10.1029/2007GL031032
– ident: ref244/cit244
  doi: 10.1111/1467-9868.00294
– ident: ref115/cit115
  doi: 10.1063/1.1603219
– ident: ref162/cit162
  doi: 10.1021/jz200719x
– ident: ref132/cit132
  doi: 10.1039/C9CP05259C
– ident: ref133/cit133
  doi: 10.1063/1.478744
– ident: ref136/cit136
  doi: 10.1063/1.470536
– ident: ref79/cit79
  doi: 10.1021/acs.jctc.9b00181
– ident: ref114/cit114
  doi: 10.1063/1.1346639
– ident: ref106/cit106
  doi: 10.1080/00268977900101781
– ident: ref101/cit101
  doi: 10.1088/0953-4075/49/22/224001
– ident: ref69/cit69
  doi: 10.1021/acs.jpclett.0c02516
– ident: ref199/cit199
– ident: ref185/cit185
  doi: 10.1021/jacs.9b02731
– ident: ref118/cit118
  doi: 10.1039/D0CP02509G
– ident: ref276/cit276
– ident: ref73/cit73
  doi: 10.1063/1.5046906
– ident: ref89/cit89
  doi: 10.1039/C9CP06085E
– ident: ref11/cit11
  doi: 10.1039/b509494a
– ident: ref158/cit158
  doi: 10.1039/C4CP01832J
– ident: ref1/cit1
  doi: 10.1002/kin.21172
– start-page: 191
  volume-title: Proceedings of the 2001 Symposium on Interactive 3D Graphics
  year: 2001
  ident: ref280/cit280
  doi: 10.1145/364338.364398
– ident: ref37/cit37
  doi: 10.1002/cphc.201100681
– ident: ref112/cit112
  doi: 10.1063/1.481269
– ident: ref184/cit184
  doi: 10.1073/pnas.1118082108
– ident: ref121/cit121
  doi: 10.1021/acs.jctc.9b00700
– year: 2020
  ident: ref222/cit222
  publication-title: arXiv Preprint arXiv:2003.12127
– ident: ref294/cit294
  doi: 10.1063/1.3576052
– ident: ref25/cit25
  doi: 10.1021/ja00905a003
– ident: ref271/cit271
  doi: 10.1038/s41586-019-1923-7
– ident: ref84/cit84
  doi: 10.1016/j.jms.2007.07.009
– ident: ref68/cit68
  doi: 10.1021/ct400803f
– ident: ref285/cit285
  doi: 10.1002/jcc.26172
– ident: ref13/cit13
  doi: 10.1021/jacs.6b03156
– ident: ref216/cit216
  doi: 10.1021/acs.jcim.0c00600
– ident: ref153/cit153
  doi: 10.1021/es500319q
– ident: ref200/cit200
  doi: 10.1126/science.197.4308.1041
– ident: ref174/cit174
  doi: 10.1039/D0CP04221H
– ident: ref242/cit242
  doi: 10.1198/TECH.2009.08040
– ident: ref166/cit166
  doi: 10.1039/C4CP03761H
– ident: ref65/cit65
  doi: 10.1021/jp910674d
– ident: ref272/cit272
– ident: ref231/cit231
  doi: 10.1093/bioinformatics/bts437
– ident: ref240/cit240
  doi: 10.1103/PhysRevB.87.184115
– ident: ref180/cit180
  doi: 10.1002/anie.201604552
– ident: ref163/cit163
  doi: 10.1063/1.4863138
– ident: ref195/cit195
  doi: 10.1016/0020-0271(63)90012-3
– ident: ref201/cit201
  doi: 10.1021/jo01299a001
– ident: ref82/cit82
  doi: 10.1063/1.473683
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.5b00277
– ident: ref182/cit182
  doi: 10.1002/anie.201204077
– ident: ref286/cit286
  doi: 10.2478/disp-2019-0010
– ident: ref7/cit7
  doi: 10.1021/acs.chemrev.0c01111
– ident: ref173/cit173
  doi: 10.1038/nchem.2488
– ident: ref290/cit290
  doi: 10.1021/acs.jctc.5b00830
– volume: 42
  volume-title: Nonequilibrium Gas Dynamics and Molecular Simulation
  year: 2017
  ident: ref92/cit92
  doi: 10.1017/9781139683494
– ident: ref188/cit188
  doi: 10.1021/acscentsci.6b00219
– ident: ref42/cit42
  doi: 10.1146/annurev.biophys.32.110601.141807
– ident: ref104/cit104
  doi: 10.1063/1.1672232
– ident: ref124/cit124
  doi: 10.1063/5.0023492
– ident: ref183/cit183
  doi: 10.1126/science.abd3623
– ident: ref41/cit41
  doi: 10.1146/annurev-physchem-040214-121833
– ident: ref190/cit190
  doi: 10.1038/s41570-019-0124-0
– ident: ref95/cit95
– ident: ref23/cit23
  doi: 10.3389/fchem.2018.00189
– ident: ref230/cit230
  doi: 10.1186/s13321-016-0174-y
– ident: ref4/cit4
  doi: 10.1021/bi400215w
– ident: ref197/cit197
  doi: 10.1126/science.166.3902.178
– ident: ref213/cit213
  doi: 10.1039/C9SC02452B
– ident: ref239/cit239
  doi: 10.1038/s41467-020-19267-x
– ident: ref266/cit266
  doi: 10.1039/C6CP07142B
– ident: ref234/cit234
  doi: 10.1016/0005-2795(75)90109-9
– ident: ref61/cit61
  doi: 10.1021/ja00214a001
– ident: ref122/cit122
  doi: 10.1103/PhysRevLett.121.255702
– ident: ref137/cit137
  doi: 10.1063/1.479368
– ident: ref204/cit204
  doi: 10.1021/ja01039a025
– ident: ref53/cit53
  doi: 10.1038/323533a0
– ident: ref228/cit228
  doi: 10.1093/nar/gku436
– ident: ref155/cit155
  doi: 10.1126/science.1220712
– ident: ref268/cit268
  doi: 10.1063/1.4757762
– ident: ref281/cit281
  doi: 10.1021/acs.accounts.7b00010
– ident: ref211/cit211
  doi: 10.1039/C6SC05720A
– ident: ref148/cit148
  doi: 10.1016/j.paerosci.2011.10.001
– ident: ref135/cit135
  doi: 10.1002/nme.1620151110
– ident: ref14/cit14
  doi: 10.1021/acs.jpcb.6b07814
– ident: ref219/cit219
  doi: 10.1126/scirobotics.aat5559
SSID ssj0005527
Score 2.7142136
SecondaryResourceType review_article
Snippet Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10218
SubjectTerms artificial intelligence
Bayesian analysis
Bayesian theory
Chemical reactions
combustion
fields
Machine learning
Neural networks
planning
Statistical inference
Title Machine Learning for Chemical Reactions
URI http://dx.doi.org/10.1021/acs.chemrev.1c00033
https://www.ncbi.nlm.nih.gov/pubmed/34097378
https://www.proquest.com/docview/2568712489
https://www.proquest.com/docview/2539210113
https://www.proquest.com/docview/2636792118
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005527
  issn: 0009-2665
  databaseCode: ACS
  dateStart: 19240401
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOcCFfQkUFCQkOJCS2ImdHKuKqkJqD0Cl3iLbcUACUkTTC1_POEvLWnFNbMszsT0vmvF7AGcad5GSRDq-n3LHj6R2RMqFIxPJBElSSgo5oP6A9Yb-zSgYfbqs_i2DT7wrodD5j_rFSLJ4ymB4ugwrhIWe-ddqd-7mFR21QqtJGjAW1CRDvw9iwpGafA1Hf2DMItZ0N2BQ39gpS0yeWtNcttT7TwLH_5mxCesV6rTb5TLZgiWdbcNqpxZ724HzflFUqe2Kb_XBRjBr12wC9q0u7z9MdmHYvb7v9JxKQ8ERGKpzhyXKsL65OpCJ9iMhA64ShHE8wpil09BNaJBgHFNeKsJAEMIRQlI3lZxoKaime9DIxpk-AJt4ifS5KylX2ldGs5oJZSATwWE1kRZcoJFxtQcmcZHeJl5sHlaWx5XlFpDa67GquMiNJMbz4k6Xs06vJRXH4ubN-nPO54SzxT9E4oeRBaez1-hrkyYRmR5PTRvEjHhSeXRBG0aZcaEXWrBfLpXZnKihEKM8PPy_P45gjZhaGRdPraAJjfxtqo8R7OTypFjiHyM0-Og
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHMaF92MwoEhIcKCjTdqmO6KJacC2A2zSblWSphyADdHtwq_H7tpNIJjgmiaR7Tz8VXY-A5wZPEVaMWV7XiJsr66MLRMhbRWrQLI44SwrB9TpBq2-dzfwB_mjMHoLg0KkOFOaBfHn7ALuFbWhGq9UmcXVBOX5MqxkXCgEiBqP88SOolArxQ6CwC-4hn6ehLySTr96pV-gZuZymuvQnwmbZZo81yZjVdMf33gc_6vNBqzlGNS6nm6aTVgywy0oN4rSb9tw3slSLI2Vs68-WQhtrYJbwHow09cQ6Q70mze9RsvOKyrYEh332A5iTRxwjvFVbLy6VL7QMYI6UUcPZpLQibkfo1fTbiJDXzImEFByJ1GCGSW54btQGo6GZh8s5sbKE47iQhtPUwXrQGoCUAynNUxV4AKVjPITkUZZsJu5ETXmmke55hVghfEjnTOTU4GMl8WDLmeD3qbEHIu7V4tVncuE0uL_IvPCegVOZ5_R1hQ0kUMzmlAfRJB4b7l8QZ-AB2RCN6zA3nTHzGTiRCjGRXjwd3ucQLnV67Sj9m33_hBWGWXROHif-VUojd8n5ghh0FgdZ7v-E4pmAWI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgnrx_ajPCIIeTE12k2x6lGrxjagFPYV9xYPaFtNe_PXOpElF0SJeN7vLzOxjvjCz3wDsWjxFWjHlBkEq3KCurCtTIV1lVCSZSTnLywFdXUenreD8IXyoQFy-hUEhMpwpy4P4dKq7Ji0YBvxDakdVXqk6i68JzvMxmAiJBI5AUePuM7mjLNZK8YMoCku-oZ8nIc-ks6-e6Re4mbud5iw8DgXOs02ea_2equn3b1yO_9FoDmYKLOocDTbPPFRsewGmGmUJuEXYu8pTLa1TsLA-OQhxnZJjwLm1g1cR2RK0mif3jVO3qKzgSnTgPTcymrjgPBsqY4O6VKHQBsGdqKMns2nsGR4a9G7aT2UcSsYEAkvupUowqyS3fBnG2522XQWH-UYFwlNcaBtoqmQdSU1AiuG0lqkq7KOSSXEysiQPejM_ocZC86TQvAqsXIBEFwzlVCjjZfSgg-Gg7oCgY3T3jXJlP2VCafG_kQVxvQo7w89oawqeyLbt9KkPIkm8v3w-ok_EIzKhH1dhZbBrhjJxIhbjIl77uz22YfLmuJlcnl1frMM0o2QaD6-1cAPGe299u4loqKe28o3_AdRAA9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Chemical+Reactions&rft.jtitle=Chemical+reviews&rft.au=Meuwly%2C+Markus&rft.date=2021-08-25&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=121&rft.issue=16&rft.spage=10218&rft_id=info:doi/10.1021%2Facs.chemrev.1c00033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon