Machine Learning for Chemical Reactions
Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving...
Saved in:
Published in | Chemical reviews Vol. 121; no. 16; pp. 10218 - 10239 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.08.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2665 1520-6890 1520-6890 |
DOI | 10.1021/acs.chemrev.1c00033 |
Cover
Abstract | Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching. |
---|---|
AbstractList | Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching. Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching. |
Author | Meuwly, Markus |
AuthorAffiliation | Department of Chemistry Brown University |
AuthorAffiliation_xml | – name: Brown University – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0001-7930-8806 surname: Meuwly fullname: Meuwly, Markus email: m.meuwly@unibas.ch organization: Brown University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34097378$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LAzEQhoNU7If-AkEWPOhl20my2ewepfgFFUH0HLLZWbtlP2qyK_jvTWnroYd6GjJ53peZecdk0LQNEnJJYUqB0Zk2bmqWWFv8nlIDAJyfkBEVDMI4SWFARr6XhiyOxZCMnVv5pxBMnpEhjyCVXCYjcvOizbJsMFigtk3ZfAZFa4O5ty2NroI31KYr28adk9NCVw4vdnVCPh7u3-dP4eL18Xl-twh1BHEXxrkBSiWgyHKMUp0JaXKIhEwZZVgkkHORUw6GFjoRmjEJCXAoMskw0xz5hNxufde2_erRdaouncGq0g22vVMs5vHGjCb_o4J70I_DPXp9gK7a3jZ-EU_FiaQsSlJPXe2oPqsxV2tb1tr-qP21PJBuAWNb5ywWypSd3tyns7qsFAW1SUb5ZNQuGbVLxmv5gXZvf1w126o2n38zH1P8Arczodk |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c01882 crossref_primary_10_1021_acs_jpclett_2c03288 crossref_primary_10_1021_acscatal_4c06717 crossref_primary_10_1021_acs_est_1c05970 crossref_primary_10_1021_acs_jpcc_2c00859 crossref_primary_10_1016_j_conbuildmat_2023_133324 crossref_primary_10_1063_5_0047760 crossref_primary_10_1021_acs_jcim_3c01468 crossref_primary_10_1002_aenm_202203874 crossref_primary_10_1021_jacs_4c16325 crossref_primary_10_1021_acs_jctc_4c01201 crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_3390_molecules28041900 crossref_primary_10_1021_acs_jpclett_3c00671 crossref_primary_10_1038_s41467_023_38872_0 crossref_primary_10_1021_acs_chemrev_2c00461 crossref_primary_10_1039_D4RA06114D crossref_primary_10_1016_j_jtice_2024_105926 crossref_primary_10_1021_acs_jpca_4c06669 crossref_primary_10_1021_acs_jcim_4c00478 crossref_primary_10_1002_anie_202401084 crossref_primary_10_1016_j_fuel_2022_126942 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1039_D4SC03433C crossref_primary_10_1088_2516_1075_ad48ec crossref_primary_10_1021_acs_jctc_4c00008 crossref_primary_10_1063_5_0078008 crossref_primary_10_1021_acs_jctc_2c01049 crossref_primary_10_1021_acs_jpca_4c02876 crossref_primary_10_1021_acscatal_2c01741 crossref_primary_10_1016_j_ensm_2024_103710 crossref_primary_10_1021_acs_jcim_2c00858 crossref_primary_10_1039_D4SC03921A crossref_primary_10_1021_acs_jctc_3c00364 crossref_primary_10_1016_j_patter_2022_100588 crossref_primary_10_1002_chem_202403501 crossref_primary_10_1002_jcc_27243 crossref_primary_10_1016_j_cpc_2024_109287 crossref_primary_10_1021_acs_jctc_4c01546 crossref_primary_10_1063_5_0201522 crossref_primary_10_1038_s41467_023_39214_w crossref_primary_10_1039_D3DD00213F crossref_primary_10_1186_s13321_024_00815_2 crossref_primary_10_1016_j_jenvman_2023_119900 crossref_primary_10_1021_acs_chemrev_2c00360 crossref_primary_10_1039_D1CP04393E crossref_primary_10_1039_D3DD00249G crossref_primary_10_1021_acs_jctc_3c00355 crossref_primary_10_3390_fire7070220 crossref_primary_10_1007_s00214_024_03159_0 crossref_primary_10_1016_j_dche_2024_100207 crossref_primary_10_1103_PhysRevA_110_032811 crossref_primary_10_1021_acs_analchem_2c02913 crossref_primary_10_1021_acs_jctc_4c01792 crossref_primary_10_1093_nsr_nwad321 crossref_primary_10_3390_life11111140 crossref_primary_10_1021_acs_jpca_4c05489 crossref_primary_10_1039_D2CP01211A crossref_primary_10_1021_acs_jctc_4c00465 crossref_primary_10_1063_1674_0068_cjcp2304040 crossref_primary_10_1021_acs_jctc_1c01015 crossref_primary_10_1016_j_aichem_2023_100032 crossref_primary_10_1063_5_0165835 crossref_primary_10_1002_smtd_202300214 crossref_primary_10_1016_j_aichem_2023_100033 crossref_primary_10_2174_0115701794295930240902050855 crossref_primary_10_1016_j_jhazmat_2024_134980 crossref_primary_10_1063_5_0088821 crossref_primary_10_1039_D2CP01583H crossref_primary_10_1186_s13321_023_00682_3 crossref_primary_10_1002_ange_202401084 crossref_primary_10_1002_chem_202401626 crossref_primary_10_1007_s13347_024_00782_4 crossref_primary_10_1039_D1EE01277K crossref_primary_10_1021_acscatal_4c07972 crossref_primary_10_1039_D3EN00702B crossref_primary_10_1063_5_0216562 crossref_primary_10_1002_aenm_202400564 crossref_primary_10_1038_s41929_023_01006_2 crossref_primary_10_1039_D2RA08180F crossref_primary_10_1021_acs_jctc_2c00827 crossref_primary_10_1039_D4FD00015C crossref_primary_10_1016_j_supflu_2023_106051 crossref_primary_10_1021_acs_jctc_2c00702 crossref_primary_10_1002_wcms_1697 crossref_primary_10_1016_j_ensm_2023_03_033 crossref_primary_10_1002_adsc_202301205 crossref_primary_10_1021_acs_jpca_2c02614 crossref_primary_10_1021_acs_jpclett_2c03625 crossref_primary_10_1021_acs_jctc_2c00151 crossref_primary_10_1088_2632_2153_ac3845 crossref_primary_10_1039_D3SC04928K crossref_primary_10_3390_molecules28114477 crossref_primary_10_1039_D2CP03893E crossref_primary_10_2208_jscejer_78_7_III_185 crossref_primary_10_1021_acs_jpca_3c02627 crossref_primary_10_1016_j_enrev_2023_100028 crossref_primary_10_1021_acs_jpclett_4c00893 crossref_primary_10_1038_s41467_022_33783_y crossref_primary_10_1088_2632_2153_acee42 crossref_primary_10_1039_D3CC01576A crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_3390_molecules29112703 crossref_primary_10_1021_acs_jcim_4c01299 crossref_primary_10_1021_acs_chemrev_2c00828 crossref_primary_10_1039_D2QO00188H crossref_primary_10_2477_jccj_2023_0012 crossref_primary_10_1021_acs_jpca_4c06521 crossref_primary_10_1038_s41557_023_01360_5 crossref_primary_10_1039_D4NA00214H crossref_primary_10_1146_annurev_chembioeng_092220_025342 crossref_primary_10_1002_aic_17644 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1039_D2SC04056E crossref_primary_10_1016_j_indcrop_2023_117753 crossref_primary_10_1016_j_aichem_2025_100085 crossref_primary_10_1002_admt_202401465 crossref_primary_10_1039_D2DD00102K crossref_primary_10_1021_acs_jcim_3c01633 crossref_primary_10_1021_acs_jctc_3c00274 crossref_primary_10_1002_advs_202202811 crossref_primary_10_1021_acs_jctc_3c01252 crossref_primary_10_1155_2022_8652349 crossref_primary_10_3762_bjoc_21_3 crossref_primary_10_1021_acs_chemmater_3c03180 crossref_primary_10_1016_j_applthermaleng_2025_126247 crossref_primary_10_1126_sciadv_adn4397 crossref_primary_10_1021_acscentsci_4c01606 crossref_primary_10_1021_acs_jpca_1c09160 crossref_primary_10_1063_5_0072004 crossref_primary_10_1021_acs_jctc_4c00821 crossref_primary_10_1063_5_0238311 crossref_primary_10_3389_fceng_2022_1055744 crossref_primary_10_1002_cjce_25465 crossref_primary_10_1016_j_watres_2023_120470 crossref_primary_10_3389_fchem_2021_798838 crossref_primary_10_1021_acs_iecr_2c01036 crossref_primary_10_1021_acs_jctc_2c00693 crossref_primary_10_1038_s41570_022_00424_3 crossref_primary_10_1039_D3CP05935A crossref_primary_10_1063_5_0085081 crossref_primary_10_1016_j_jcou_2024_102929 crossref_primary_10_1021_acs_jpclett_3c03405 crossref_primary_10_1002_smtd_202400158 crossref_primary_10_1016_j_aichem_2024_100083 crossref_primary_10_1021_acs_jcim_4c02259 crossref_primary_10_1021_acs_jpclett_2c02222 crossref_primary_10_1063_5_0228503 crossref_primary_10_1021_acs_chemrev_2c00061 crossref_primary_10_1021_acs_jcim_3c00643 crossref_primary_10_1021_acs_jcim_3c00889 crossref_primary_10_1063_5_0151122 crossref_primary_10_1021_acs_langmuir_4c04638 crossref_primary_10_1021_acs_jcim_4c01714 crossref_primary_10_1186_s13321_023_00784_y crossref_primary_10_3390_molecules30020355 crossref_primary_10_1021_acs_jpclett_3c01231 crossref_primary_10_1039_D2CP05975D crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1021_acs_chemrev_4c00572 crossref_primary_10_1016_j_cpc_2024_109446 crossref_primary_10_1016_j_aichem_2023_100017 crossref_primary_10_1021_acscatal_3c02513 crossref_primary_10_1016_j_jclepro_2023_138210 crossref_primary_10_1039_D3YA00057E crossref_primary_10_1021_acs_jpclett_4c02647 crossref_primary_10_1002_poc_4405 crossref_primary_10_1021_acs_jcim_5c00281 crossref_primary_10_1021_acs_joc_4c01763 crossref_primary_10_1016_j_cclet_2025_110968 crossref_primary_10_1021_acsestwater_2c00193 crossref_primary_10_1186_s13321_021_00579_z crossref_primary_10_1002_ange_202107369 crossref_primary_10_1016_j_ijhydene_2024_01_196 crossref_primary_10_1021_acsmeasuresciau_3c00060 crossref_primary_10_1016_j_est_2023_106688 crossref_primary_10_1021_acs_jcim_4c01473 crossref_primary_10_1021_jacs_3c02143 crossref_primary_10_1111_cbdd_14164 crossref_primary_10_1039_D3CC01570J crossref_primary_10_1021_acs_jctc_3c00469 crossref_primary_10_1021_acs_jpca_4c04039 crossref_primary_10_1039_D4FD00153B crossref_primary_10_1063_5_0155992 crossref_primary_10_1016_j_jechem_2021_10_037 crossref_primary_10_1038_s42256_024_00856_0 crossref_primary_10_1038_s43586_024_00291_w crossref_primary_10_1021_acs_jpcb_4c04100 crossref_primary_10_1021_acs_jcim_1c01125 crossref_primary_10_1063_5_0067176 crossref_primary_10_1002_anie_202107369 crossref_primary_10_1038_s43588_022_00369_z crossref_primary_10_1002_jcc_70056 crossref_primary_10_1002_qua_70036 crossref_primary_10_1039_D4FD00140K crossref_primary_10_1002_cphc_202200349 crossref_primary_10_1039_D4CC00010B crossref_primary_10_1016_j_energy_2024_131614 crossref_primary_10_1016_j_molliq_2024_124498 crossref_primary_10_1016_j_cplett_2024_141223 crossref_primary_10_1039_D1DD00050K crossref_primary_10_1146_annurev_physchem_062123_024417 crossref_primary_10_1002_qua_27087 crossref_primary_10_1016_j_jece_2023_111699 crossref_primary_10_1039_D2SC01334G crossref_primary_10_1021_acs_jcim_2c01104 crossref_primary_10_1016_j_cplett_2021_139290 crossref_primary_10_1021_acs_jpclett_1c01810 crossref_primary_10_1039_D3DT02126B crossref_primary_10_1039_D4DD00303A crossref_primary_10_1063_5_0211276 crossref_primary_10_1360_SSC_2024_0128 crossref_primary_10_1021_acsami_3c19377 crossref_primary_10_1016_j_wasman_2024_07_032 crossref_primary_10_1088_1361_648X_ad9657 crossref_primary_10_1021_acs_jpcb_2c00212 crossref_primary_10_1016_j_aichem_2024_100052 crossref_primary_10_1016_j_mlwa_2024_100584 crossref_primary_10_1039_D3SC03598K crossref_primary_10_1039_D5SC00541H crossref_primary_10_1016_j_aichem_2024_100050 crossref_primary_10_1039_D4RE00004H crossref_primary_10_1021_acs_chemmater_3c00731 crossref_primary_10_1038_s41598_024_62242_5 crossref_primary_10_1002_adfm_202210095 crossref_primary_10_3233_JIFS_234632 crossref_primary_10_1002_wcms_1645 crossref_primary_10_1021_acsearthspacechem_4c00214 crossref_primary_10_1002_jcc_27443 crossref_primary_10_1021_acscatal_3c05285 crossref_primary_10_1273_cbij_23_7 crossref_primary_10_1021_acs_jcim_1c00975 crossref_primary_10_1038_s41467_023_39212_y crossref_primary_10_1107_S2052252524002392 crossref_primary_10_1039_D2QO01954J crossref_primary_10_1002_wcms_1639 crossref_primary_10_1021_acs_jctc_3c01401 crossref_primary_10_1063_5_0151266 crossref_primary_10_1021_acsami_4c06276 crossref_primary_10_1021_acsphyschemau_3c00067 crossref_primary_10_1039_D2GC04750K crossref_primary_10_1021_acs_jpca_3c06265 crossref_primary_10_1186_s13321_024_00818_z crossref_primary_10_1039_D4VA00255E crossref_primary_10_1039_D2FD00026A |
Cites_doi | 10.1016/j.jms.2016.08.009 10.1063/1.463188 10.1063/1.1591727 10.1073/pnas.53.1.134 10.1038/s41467-020-19497-z 10.1063/1.1379337 10.1146/annurev.physchem.50.1.537 10.1090/S0002-9947-1950-0051437-7 10.1103/PhysRevLett.114.166101 10.1002/jcc.20090 10.1021/acs.jpca.0c04348 10.1007/BF01931367 10.1007/s00214-002-0383-5 10.1109/CVPR.2016.90 10.1021/jp004368u 10.1038/nchem.2804 10.1039/c0cp02722g 10.1007/BF00344251 10.1021/acs.jpca.0c05992 10.1039/b410579f 10.1021/ja00540a008 10.1021/ct400953f 10.1021/jp501128w 10.1021/cr050293k 10.1080/0144235X.2016.1200347 10.1021/ct800066q 10.1103/PhysRevLett.98.146401 10.1351/pac196714010019 10.1021/acsomega.8b03173 10.1016/j.cogsc.2020.100370 10.1093/bioinformatics/btu275 10.1038/s41570-018-0148 10.1021/acs.analchem.6b01622 10.1063/1.1741936 10.1090/S0025-5718-1981-0616367-1 10.1039/a908825c 10.1021/acs.jpcb.6b07203 10.1002/anie.201611308 10.1016/j.chempr.2018.02.002 10.1021/jp9818131 10.1002/jcc.22996 10.1063/1.1879792 10.1073/pnas.79.8.2554 10.1007/s11214-010-9712-5 10.1063/1.1382647 10.1038/s41587-020-0740-8 10.1016/j.compchemeng.2019.05.020 10.1063/5.0012230 10.1016/S0376-0421(03)00079-4 10.1126/science.aav2211 10.1016/j.jqsrt.2020.107211 10.5194/acp-15-6283-2015 10.1021/jp036603p 10.1021/ci600423u 10.1021/ar100087v 10.1039/C6CP05553B 10.1063/1.4811653 10.1146/annurev.physchem.58.032806.104637 10.1063/1.1394940 10.1021/acs.jpclett.0c01307 10.1351/pac200476010029 10.1021/acs.jpclett.0c00527 10.1021/acs.jctc.0c00535 10.1021/ci00008a001 10.1063/1.461551 10.1038/s41467-018-04824-2 10.1063/1.1383586 10.1021/acs.jpclett.0c00989 10.1063/1.4929527 10.1063/1.4964410 10.1021/acs.jpclett.9b01810 10.1146/annurev.pc.41.100190.001011 10.1038/s41598-017-02303-0 10.1088/1367-2630/ab0099 10.1016/S0009-2614(99)00874-X 10.1039/C1CP21830A 10.1021/acs.jpca.9b01006 10.1002/jcc.20035 10.1038/nature25978 10.1021/ci3003039 10.1063/1.4943002 10.1103/PhysRevLett.120.143001 10.1186/s13321-016-0116-8 10.1063/1.2831790 10.1039/C9CP01883B 10.1021/cr100212h 10.1063/1.5019779 10.1109/TCYB.2019.2921424 10.1016/j.bmcl.2015.03.049 10.1002/anie.200802019 10.1063/PT.3.3762 10.1016/S0032-3861(02)00761-9 10.1021/jp0222604 10.1021/jacs.7b02671 10.1063/1.1344887 10.1063/5.0038301 10.1021/acscentsci.8b00357 10.1063/1.4897263 10.1021/acs.energyfuels.0c03211 10.1002/anie.201506101 10.1016/0097-8493(77)90009-7 10.1038/s41467-018-03597-y 10.1063/5.0009628 10.1063/1.466801 10.1063/1.5017898 10.1016/S1367-5931(98)80112-9 10.1007/3-540-16904-0_14 10.1016/S0376-0421(00)00004-X 10.1063/1.1388547 10.1021/acscentsci.7b00550 10.1021/acscentsci.7b00492 10.1021/acs.chemrev.0c00665 10.1088/2632-2153/abc81d 10.1021/jacs.8b13879 10.1063/1.1697301 10.1080/01442350903234923 10.1088/1367-2630/ab81b5 10.1021/ja00754a026 10.1038/nchem.2099 10.1016/S0009-2614(03)01184-9 10.1146/annurev.pc.36.100185.003041 10.1109/TKDE.2009.191 10.1016/B978-0-12-800720-4.00001-5 10.1063/1.5092590 10.1146/annurev-biophys-121219-081520 10.1063/1.5097385 10.1063/1.480988 10.1021/acs.jpca.0c01870 10.1073/pnas.1509788112 10.1021/ja00905a002 10.1002/qua.20542 10.1021/cr200093j 10.1063/1.469591 10.1063/1.481911 10.1021/ct4003702 10.1016/j.sbi.2020.12.015 10.1002/aic.14418 10.1529/biophysj.105.071522 10.1016/0004-3702(93)90068-M 10.1080/08927020601156392 10.1126/science.aax1566 10.1063/1.868491 10.1039/C9CP05091D 10.1021/acs.jpca.7b01182 10.1016/j.cpc.2014.07.021 10.1021/jp074646q 10.1021/jp203480q 10.1021/acs.jpca.0c02395 10.1039/D0CP00668H 10.1016/j.cplett.2008.05.083 10.1007/978-1-4613-2913-8_16 10.1016/j.proci.2016.07.100 10.1063/1.1532001 10.1088/0067-0049/199/1/21 10.1063/1.4891675 10.1063/1.5039496 10.1021/acs.jpcb.9b03258 10.1351/pac199062101921 10.1063/1.479873 10.1021/acs.jctc.9b00605 10.1016/0167-7977(86)90011-0 10.1063/1.4990661 10.1021/acs.jpclett.0c02501 10.3390/ijms10052304 10.1021/acs.jpca.0c05173 10.1021/acs.jcim.7b00090 10.1021/acscentsci.8b00307 10.1039/C5CP03324A 10.1021/acs.jpca.0c05979 10.1063/5.0015896 10.1016/j.cpc.2015.12.021 10.1063/1.475132 10.7551/mitpress/3206.001.0001 10.1146/annurev-physchem-050317-021139 10.1063/1.470984 10.1021/jz301701x 10.1007/s10910-008-9354-y 10.26434/chemrxiv.13146404.v2 10.1038/s41467-019-10827-4 10.1103/RevModPhys.46.369 10.1103/PhysRevLett.68.1500 10.1021/acs.jctc.5b00099 10.1021/jp4081806 10.1063/5.0008223 10.1002/cphc.201402342 10.31635/ccschem.020.202000195 10.1016/S0301-4622(02)00093-5 10.1002/jcc.10206 10.1119/1.1972241 10.1021/acs.jctc.7b01210 10.1073/pnas.0802769105 10.1063/1.5108666 10.1021/jp973084f 10.1029/2007GL031032 10.1111/1467-9868.00294 10.1063/1.1603219 10.1021/jz200719x 10.1039/C9CP05259C 10.1063/1.478744 10.1063/1.470536 10.1021/acs.jctc.9b00181 10.1063/1.1346639 10.1080/00268977900101781 10.1088/0953-4075/49/22/224001 10.1021/acs.jpclett.0c02516 10.1021/jacs.9b02731 10.1039/D0CP02509G 10.1063/1.5046906 10.1039/C9CP06085E 10.1039/b509494a 10.1039/C4CP01832J 10.1002/kin.21172 10.1145/364338.364398 10.1002/cphc.201100681 10.1063/1.481269 10.1073/pnas.1118082108 10.1021/acs.jctc.9b00700 10.1063/1.3576052 10.1021/ja00905a003 10.1038/s41586-019-1923-7 10.1016/j.jms.2007.07.009 10.1021/ct400803f 10.1002/jcc.26172 10.1021/jacs.6b03156 10.1021/acs.jcim.0c00600 10.1021/es500319q 10.1126/science.197.4308.1041 10.1039/D0CP04221H 10.1198/TECH.2009.08040 10.1039/C4CP03761H 10.1021/jp910674d 10.1093/bioinformatics/bts437 10.1103/PhysRevB.87.184115 10.1002/anie.201604552 10.1063/1.4863138 10.1016/0020-0271(63)90012-3 10.1021/jo01299a001 10.1063/1.473683 10.1021/acs.jctc.5b00277 10.1002/anie.201204077 10.2478/disp-2019-0010 10.1021/acs.chemrev.0c01111 10.1038/nchem.2488 10.1021/acs.jctc.5b00830 10.1017/9781139683494 10.1021/acscentsci.6b00219 10.1146/annurev.biophys.32.110601.141807 10.1063/1.1672232 10.1063/5.0023492 10.1126/science.abd3623 10.1146/annurev-physchem-040214-121833 10.1038/s41570-019-0124-0 10.3389/fchem.2018.00189 10.1186/s13321-016-0174-y 10.1021/bi400215w 10.1126/science.166.3902.178 10.1039/C9SC02452B 10.1038/s41467-020-19267-x 10.1039/C6CP07142B 10.1016/0005-2795(75)90109-9 10.1021/ja00214a001 10.1103/PhysRevLett.121.255702 10.1063/1.479368 10.1021/ja01039a025 10.1038/323533a0 10.1093/nar/gku436 10.1126/science.1220712 10.1063/1.4757762 10.1021/acs.accounts.7b00010 10.1039/C6SC05720A 10.1016/j.paerosci.2011.10.001 10.1002/nme.1620151110 10.1021/acs.jpcb.6b07814 10.1126/scirobotics.aat5559 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Aug 25, 2021 |
Copyright_xml | – notice: Copyright American Chemical Society Aug 25, 2021 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
DOI | 10.1021/acs.chemrev.1c00033 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 10239 |
ExternalDocumentID | 34097378 10_1021_acs_chemrev_1c00033 b737512628 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 29B 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DU5 DZ EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UNM UPT VF5 VG9 VQA W1F WH7 X YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ XSW ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-6dc01170e5bde49ab57cd04579212ef80d35d130c1fa85a22708030fb72eba3e3 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Fri Jul 11 15:09:51 EDT 2025 Fri Jul 11 16:20:49 EDT 2025 Mon Jun 30 10:42:05 EDT 2025 Thu Apr 03 07:06:01 EDT 2025 Tue Jul 01 03:16:21 EDT 2025 Thu Apr 24 22:52:51 EDT 2025 Fri Aug 27 15:31:21 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-6dc01170e5bde49ab57cd04579212ef80d35d130c1fa85a22708030fb72eba3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7930-8806 |
PMID | 34097378 |
PQID | 2568712489 |
PQPubID | 45407 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2636792118 proquest_miscellaneous_2539210113 proquest_journals_2568712489 pubmed_primary_34097378 crossref_citationtrail_10_1021_acs_chemrev_1c00033 crossref_primary_10_1021_acs_chemrev_1c00033 acs_journals_10_1021_acs_chemrev_1c00033 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-25 |
PublicationDateYYYYMMDD | 2021-08-25 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 Stone J. E. (ref280/cit280) 2001 ref181/cit181 ref111/cit111 ref255/cit255 ref113/cit113 ref183/cit183 ref257/cit257 Kingma D. (ref99/cit99) 2014 ref117/cit117 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref253/cit253 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 Vapnik V. N. (ref48/cit48) 1998 Häse F. (ref222/cit222) 2020 ref124/cit124 ref54/cit54 ref240/cit240 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref244/cit244 ref271/cit271 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref279/cit279 ref203/cit203 ref233/cit233 ref148/cit148 ref55/cit55 ref144/cit144 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref22/cit22 ref260/cit260 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 ref153/cit153 ref227/cit227 ref150/cit150 ref294/cit294 ref63/cit63 ref295/cit295 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref292/cit292 ref60/cit60 ref17/cit17 London F. (ref125/cit125) 1929; 35 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 Firsov O. (ref103/cit103) 1953; 24 ref230/cit230 Nair V. (ref96/cit96) 2010 ref145/cit145 Boyd I. D. (ref92/cit92) 2017; 42 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 Jang E. (ref225/cit225) 2016 ref213/cit213 ref284/cit284 ref286/cit286 ref78/cit78 ref211/cit211 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 ref270/cit270 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref278/cit278 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref289/cit289 ref15/cit15 ref180/cit180 ref235/cit235 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref281/cit281 ref7/cit7 ref45/cit45 Minsky M. (ref49/cit49) 1969 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 Klambauer G. (ref97/cit97) 2017; 30 ref89/cit89 ref19/cit19 ref107/cit107 ref191/cit191 ref265/cit265 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 Maddison C. J. (ref224/cit224) 2016 ref263/cit263 ref197/cit197 Hutson J. M. (ref131/cit131) 1991; 1 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref101/cit101 ref245/cit245 ref241/cit241 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref287/cit287 ref252/cit252 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref249/cit249 ref283/cit283 ref129/cit129 ref44/cit44 ref70/cit70 ref9/cit9 ref152/cit152 ref226/cit226 ref154/cit154 ref27/cit27 ref228/cit228 ref293/cit293 ref223/cit223 ref151/cit151 ref159/cit159 Eyring H. (ref126/cit126) 1931; 12 ref157/cit157 ref31/cit31 ref290/cit290 ref220/cit220 ref291/cit291 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref217/cit217 ref288/cit288 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref236/cit236 ref75/cit75 ref24/cit24 ref141/cit141 ref215/cit215 ref50/cit50 ref282/cit282 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref247/cit247 ref72/cit72 ref242/cit242 ref201/cit201 Huang B. (ref212/cit212) 2020 Veliz J. C. S. V. (ref91/cit91) 2021 ref51/cit51 ref277/cit277 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref274/cit274 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref239/cit239 ref250/cit250 Doshi-Velez F. (ref275/cit275) 2017 ref95/cit95 ref108/cit108 ref192/cit192 ref266/cit266 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 ref285/cit285 |
References_xml | – ident: ref261/cit261 doi: 10.1016/j.jms.2016.08.009 – ident: ref245/cit245 doi: 10.1063/1.463188 – ident: ref22/cit22 doi: 10.1063/1.1591727 – ident: ref202/cit202 doi: 10.1073/pnas.53.1.134 – ident: ref237/cit237 doi: 10.1038/s41467-020-19497-z – ident: ref250/cit250 doi: 10.1063/1.1379337 – ident: ref74/cit74 doi: 10.1146/annurev.physchem.50.1.537 – start-page: 807 year: 2010 ident: ref96/cit96 publication-title: Proceedings of the 27th International Conference on Machine Learning – ident: ref110/cit110 doi: 10.1090/S0002-9947-1950-0051437-7 – ident: ref168/cit168 doi: 10.1103/PhysRevLett.114.166101 – ident: ref64/cit64 doi: 10.1002/jcc.20090 – ident: ref56/cit56 doi: 10.1021/acs.jpca.0c04348 – ident: ref52/cit52 doi: 10.1007/BF01931367 – ident: ref38/cit38 doi: 10.1007/s00214-002-0383-5 – ident: ref94/cit94 doi: 10.1109/CVPR.2016.90 – ident: ref29/cit29 doi: 10.1021/jp004368u – ident: ref170/cit170 doi: 10.1038/nchem.2804 – ident: ref39/cit39 doi: 10.1039/c0cp02722g – ident: ref50/cit50 doi: 10.1007/BF00344251 – ident: ref57/cit57 doi: 10.1021/acs.jpca.0c05992 – ident: ref258/cit258 doi: 10.1039/b410579f – ident: ref27/cit27 doi: 10.1021/ja00540a008 – ident: ref34/cit34 doi: 10.1021/ct400953f – ident: ref70/cit70 doi: 10.1021/jp501128w – ident: ref43/cit43 doi: 10.1021/cr050293k – ident: ref160/cit160 doi: 10.1080/0144235X.2016.1200347 – ident: ref33/cit33 doi: 10.1021/ct800066q – ident: ref77/cit77 doi: 10.1103/PhysRevLett.98.146401 – volume: 35 start-page: 552 year: 1929 ident: ref125/cit125 publication-title: Z. Elektrochem. – ident: ref196/cit196 doi: 10.1351/pac196714010019 – ident: ref273/cit273 doi: 10.1021/acsomega.8b03173 – ident: ref220/cit220 doi: 10.1016/j.cogsc.2020.100370 – ident: ref232/cit232 doi: 10.1093/bioinformatics/btu275 – ident: ref45/cit45 doi: 10.1038/s41570-018-0148 – ident: ref193/cit193 doi: 10.1021/acs.analchem.6b01622 – ident: ref127/cit127 doi: 10.1063/1.1741936 – ident: ref138/cit138 doi: 10.1090/S0025-5718-1981-0616367-1 – ident: ref248/cit248 doi: 10.1039/a908825c – ident: ref15/cit15 doi: 10.1021/acs.jpcb.6b07203 – ident: ref277/cit277 doi: 10.1002/anie.201611308 – ident: ref208/cit208 doi: 10.1016/j.chempr.2018.02.002 – ident: ref28/cit28 doi: 10.1021/jp9818131 – ident: ref66/cit66 doi: 10.1002/jcc.22996 – ident: ref20/cit20 doi: 10.1063/1.1879792 – ident: ref51/cit51 doi: 10.1073/pnas.79.8.2554 – ident: ref150/cit150 doi: 10.1007/s11214-010-9712-5 – ident: ref251/cit251 doi: 10.1063/1.1382647 – ident: ref194/cit194 doi: 10.1038/s41587-020-0740-8 – ident: ref223/cit223 doi: 10.1016/j.compchemeng.2019.05.020 – ident: ref215/cit215 doi: 10.1063/5.0012230 – ident: ref147/cit147 doi: 10.1016/S0376-0421(03)00079-4 – ident: ref217/cit217 doi: 10.1126/science.aav2211 – ident: ref263/cit263 doi: 10.1016/j.jqsrt.2020.107211 – ident: ref157/cit157 doi: 10.5194/acp-15-6283-2015 – ident: ref259/cit259 doi: 10.1021/jp036603p – ident: ref270/cit270 doi: 10.1021/ci600423u – ident: ref164/cit164 doi: 10.1021/ar100087v – ident: ref269/cit269 doi: 10.1039/C6CP05553B – ident: ref143/cit143 doi: 10.1063/1.4811653 – ident: ref235/cit235 doi: 10.1146/annurev.physchem.58.032806.104637 – ident: ref254/cit254 doi: 10.1063/1.1394940 – ident: ref177/cit177 doi: 10.1021/acs.jpclett.0c01307 – ident: ref257/cit257 doi: 10.1351/pac200476010029 – ident: ref267/cit267 doi: 10.1021/acs.jpclett.0c00527 – ident: ref120/cit120 doi: 10.1021/acs.jctc.0c00535 – ident: ref227/cit227 doi: 10.1021/ci00008a001 – ident: ref246/cit246 doi: 10.1063/1.461551 – ident: ref152/cit152 doi: 10.1038/s41467-018-04824-2 – ident: ref252/cit252 doi: 10.1063/1.1383586 – ident: ref9/cit9 doi: 10.1021/acs.jpclett.0c00989 – ident: ref117/cit117 doi: 10.1063/1.4929527 – ident: ref10/cit10 doi: 10.1063/1.4964410 – ident: ref55/cit55 doi: 10.1021/acs.jpclett.9b01810 – ident: ref130/cit130 doi: 10.1146/annurev.pc.41.100190.001011 – ident: ref209/cit209 doi: 10.1038/s41598-017-02303-0 – ident: ref109/cit109 doi: 10.1088/1367-2630/ab0099 – ident: ref16/cit16 doi: 10.1016/S0009-2614(99)00874-X – ident: ref85/cit85 doi: 10.1039/C1CP21830A – ident: ref292/cit292 doi: 10.1021/acs.jpca.9b01006 – ident: ref63/cit63 doi: 10.1002/jcc.20035 – ident: ref189/cit189 doi: 10.1038/nature25978 – ident: ref207/cit207 doi: 10.1021/ci3003039 – ident: ref169/cit169 doi: 10.1063/1.4943002 – ident: ref238/cit238 doi: 10.1103/PhysRevLett.120.143001 – ident: ref233/cit233 doi: 10.1186/s13321-016-0116-8 – ident: ref140/cit140 doi: 10.1063/1.2831790 – ident: ref102/cit102 doi: 10.1039/C9CP01883B – ident: ref5/cit5 doi: 10.1021/cr100212h – ident: ref78/cit78 doi: 10.1063/1.5019779 – ident: ref295/cit295 doi: 10.1109/TCYB.2019.2921424 – ident: ref274/cit274 doi: 10.1016/j.bmcl.2015.03.049 – ident: ref12/cit12 doi: 10.1002/anie.200802019 – ident: ref149/cit149 doi: 10.1063/PT.3.3762 – ident: ref30/cit30 doi: 10.1016/S0032-3861(02)00761-9 – ident: ref90/cit90 doi: 10.1021/jp0222604 – volume: 24 start-page: 279 year: 1953 ident: ref103/cit103 publication-title: Zhur. Eksptl’. I Teoret Fiz. – ident: ref44/cit44 doi: 10.1021/jacs.7b02671 – ident: ref113/cit113 doi: 10.1063/1.1344887 – ident: ref176/cit176 doi: 10.1063/5.0038301 – ident: ref192/cit192 doi: 10.1021/acscentsci.8b00357 – year: 2014 ident: ref99/cit99 publication-title: arXiv Preprint arXiv:1412.6980 – year: 2016 ident: ref225/cit225 publication-title: arXiv Preprint arXiv:1611.01144 – ident: ref88/cit88 doi: 10.1063/1.4897263 – ident: ref243/cit243 doi: 10.1021/acs.energyfuels.0c03211 – ident: ref210/cit210 doi: 10.1002/anie.201506101 – year: 2016 ident: ref224/cit224 publication-title: arXiv Preprint arXiv:1611.00712 – volume: 30 start-page: 971 year: 2017 ident: ref97/cit97 publication-title: Advances in Neural Information Processing Systems – ident: ref279/cit279 doi: 10.1016/0097-8493(77)90009-7 – ident: ref289/cit289 doi: 10.1038/s41467-018-03597-y – ident: ref6/cit6 doi: 10.1063/5.0009628 – ident: ref139/cit139 doi: 10.1063/1.466801 – ident: ref98/cit98 doi: 10.1063/1.5017898 – ident: ref181/cit181 doi: 10.1016/S1367-5931(98)80112-9 – ident: ref206/cit206 doi: 10.1007/3-540-16904-0_14 – ident: ref146/cit146 doi: 10.1016/S0376-0421(00)00004-X – ident: ref253/cit253 doi: 10.1063/1.1388547 – ident: ref284/cit284 doi: 10.1021/acscentsci.7b00550 – ident: ref191/cit191 doi: 10.1021/acscentsci.7b00492 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.0c00665 – ident: ref60/cit60 doi: 10.1088/2632-2153/abc81d – ident: ref187/cit187 doi: 10.1021/jacs.8b13879 – ident: ref26/cit26 doi: 10.1063/1.1697301 – ident: ref159/cit159 doi: 10.1080/01442350903234923 – volume: 1 start-page: 1 year: 1991 ident: ref131/cit131 publication-title: Adv. Mol. Vibrat. Coll. Dyn. – ident: ref80/cit80 doi: 10.1088/1367-2630/ab81b5 – ident: ref198/cit198 doi: 10.1021/ja00754a026 – ident: ref236/cit236 doi: 10.1038/nchem.2099 – ident: ref256/cit256 doi: 10.1016/S0009-2614(03)01184-9 – ident: ref40/cit40 doi: 10.1146/annurev.pc.36.100185.003041 – ident: ref178/cit178 doi: 10.1109/TKDE.2009.191 – ident: ref278/cit278 doi: 10.1016/B978-0-12-800720-4.00001-5 – ident: ref283/cit283 doi: 10.1063/1.5092590 – ident: ref46/cit46 doi: 10.1146/annurev-biophys-121219-081520 – ident: ref58/cit58 doi: 10.1063/1.5097385 – volume-title: Perceptrons: An Introduction to Computational Geometry year: 1969 ident: ref49/cit49 – year: 2020 ident: ref212/cit212 publication-title: arXiv Preprint arXiv:2012.07502 – ident: ref111/cit111 doi: 10.1063/1.480988 – ident: ref72/cit72 doi: 10.1021/acs.jpca.0c01870 – ident: ref142/cit142 doi: 10.1080/01442350903234923 – ident: ref229/cit229 doi: 10.1073/pnas.1509788112 – ident: ref24/cit24 doi: 10.1021/ja00905a002 – ident: ref21/cit21 doi: 10.1002/qua.20542 – ident: ref18/cit18 doi: 10.1021/cr200093j – ident: ref108/cit108 doi: 10.1063/1.469591 – ident: ref249/cit249 doi: 10.1063/1.481911 – ident: ref67/cit67 doi: 10.1021/ct4003702 – year: 2021 ident: ref91/cit91 publication-title: Phys. Chem. Chem. Phys. – ident: ref186/cit186 doi: 10.1016/j.sbi.2020.12.015 – ident: ref241/cit241 doi: 10.1002/aic.14418 – ident: ref32/cit32 doi: 10.1529/biophysj.105.071522 – ident: ref203/cit203 doi: 10.1016/0004-3702(93)90068-M – ident: ref31/cit31 doi: 10.1080/08927020601156392 – ident: ref218/cit218 doi: 10.1126/science.aax1566 – ident: ref145/cit145 doi: 10.1063/1.868491 – ident: ref291/cit291 doi: 10.1039/C9CP05091D – ident: ref71/cit71 doi: 10.1021/acs.jpca.7b01182 – ident: ref116/cit116 doi: 10.1016/j.cpc.2014.07.021 – ident: ref128/cit128 doi: 10.1021/jp074646q – ident: ref47/cit47 doi: 10.1021/jp203480q – ident: ref86/cit86 doi: 10.1021/acs.jpca.0c02395 – ident: ref172/cit172 doi: 10.1039/D0CP00668H – ident: ref260/cit260 doi: 10.1016/j.cplett.2008.05.083 – ident: ref83/cit83 doi: 10.1007/978-1-4613-2913-8_16 – ident: ref2/cit2 doi: 10.1016/j.proci.2016.07.100 – ident: ref255/cit255 doi: 10.1063/1.1532001 – volume-title: Statistical Learning Theory year: 1998 ident: ref48/cit48 – ident: ref3/cit3 doi: 10.1088/0067-0049/199/1/21 – ident: ref165/cit165 doi: 10.1063/1.4891675 – ident: ref265/cit265 doi: 10.1063/1.5039496 – ident: ref36/cit36 doi: 10.1021/acs.jpcb.9b03258 – ident: ref205/cit205 doi: 10.1351/pac199062101921 – ident: ref247/cit247 doi: 10.1063/1.479873 – ident: ref214/cit214 doi: 10.1021/acs.jctc.9b00605 – ident: ref107/cit107 doi: 10.1016/0167-7977(86)90011-0 – ident: ref134/cit134 doi: 10.1063/1.4990661 – ident: ref144/cit144 doi: 10.1021/acs.jpclett.0c02501 – ident: ref151/cit151 doi: 10.3390/ijms10052304 – ident: ref59/cit59 doi: 10.1021/acs.jpca.0c05173 – ident: ref75/cit75 doi: 10.1021/acs.jcim.7b00090 – ident: ref221/cit221 doi: 10.1021/acscentsci.8b00307 – ident: ref167/cit167 doi: 10.1039/C5CP03324A – ident: ref119/cit119 doi: 10.1021/acs.jpca.0c05979 – ident: ref123/cit123 doi: 10.1063/5.0015896 – ident: ref262/cit262 doi: 10.1016/j.cpc.2015.12.021 – ident: ref87/cit87 doi: 10.1063/1.475132 – ident: ref100/cit100 doi: 10.7551/mitpress/3206.001.0001 – ident: ref76/cit76 doi: 10.1146/annurev-physchem-050317-021139 – ident: ref81/cit81 doi: 10.1063/1.470984 – ident: ref156/cit156 doi: 10.1021/jz301701x – ident: ref141/cit141 doi: 10.1007/s10910-008-9354-y – ident: ref226/cit226 doi: 10.26434/chemrxiv.13146404.v2 – ident: ref179/cit179 doi: 10.1038/s41467-019-10827-4 – ident: ref105/cit105 doi: 10.1103/RevModPhys.46.369 – ident: ref293/cit293 doi: 10.1103/PhysRevLett.68.1500 – ident: ref175/cit175 doi: 10.1021/acs.jctc.5b00099 – ident: ref264/cit264 doi: 10.1021/jp4081806 – ident: ref129/cit129 doi: 10.1063/5.0008223 – ident: ref282/cit282 doi: 10.1002/cphc.201402342 – ident: ref171/cit171 doi: 10.31635/ccschem.020.202000195 – ident: ref287/cit287 doi: 10.1016/S0301-4622(02)00093-5 – ident: ref19/cit19 doi: 10.1002/jcc.10206 – ident: ref54/cit54 – ident: ref288/cit288 doi: 10.1119/1.1972241 – ident: ref35/cit35 doi: 10.1021/acs.jctc.7b01210 – volume: 12 start-page: 279 year: 1931 ident: ref126/cit126 publication-title: Z. Phys. Chem. Abt. B – ident: ref161/cit161 doi: 10.1073/pnas.0802769105 – year: 2017 ident: ref275/cit275 publication-title: arXiv preprint arXiv:1702.08608 – ident: ref93/cit93 doi: 10.1063/1.5108666 – ident: ref62/cit62 doi: 10.1021/jp973084f – ident: ref154/cit154 doi: 10.1029/2007GL031032 – ident: ref244/cit244 doi: 10.1111/1467-9868.00294 – ident: ref115/cit115 doi: 10.1063/1.1603219 – ident: ref162/cit162 doi: 10.1021/jz200719x – ident: ref132/cit132 doi: 10.1039/C9CP05259C – ident: ref133/cit133 doi: 10.1063/1.478744 – ident: ref136/cit136 doi: 10.1063/1.470536 – ident: ref79/cit79 doi: 10.1021/acs.jctc.9b00181 – ident: ref114/cit114 doi: 10.1063/1.1346639 – ident: ref106/cit106 doi: 10.1080/00268977900101781 – ident: ref101/cit101 doi: 10.1088/0953-4075/49/22/224001 – ident: ref69/cit69 doi: 10.1021/acs.jpclett.0c02516 – ident: ref199/cit199 – ident: ref185/cit185 doi: 10.1021/jacs.9b02731 – ident: ref118/cit118 doi: 10.1039/D0CP02509G – ident: ref276/cit276 – ident: ref73/cit73 doi: 10.1063/1.5046906 – ident: ref89/cit89 doi: 10.1039/C9CP06085E – ident: ref11/cit11 doi: 10.1039/b509494a – ident: ref158/cit158 doi: 10.1039/C4CP01832J – ident: ref1/cit1 doi: 10.1002/kin.21172 – start-page: 191 volume-title: Proceedings of the 2001 Symposium on Interactive 3D Graphics year: 2001 ident: ref280/cit280 doi: 10.1145/364338.364398 – ident: ref37/cit37 doi: 10.1002/cphc.201100681 – ident: ref112/cit112 doi: 10.1063/1.481269 – ident: ref184/cit184 doi: 10.1073/pnas.1118082108 – ident: ref121/cit121 doi: 10.1021/acs.jctc.9b00700 – year: 2020 ident: ref222/cit222 publication-title: arXiv Preprint arXiv:2003.12127 – ident: ref294/cit294 doi: 10.1063/1.3576052 – ident: ref25/cit25 doi: 10.1021/ja00905a003 – ident: ref271/cit271 doi: 10.1038/s41586-019-1923-7 – ident: ref84/cit84 doi: 10.1016/j.jms.2007.07.009 – ident: ref68/cit68 doi: 10.1021/ct400803f – ident: ref285/cit285 doi: 10.1002/jcc.26172 – ident: ref13/cit13 doi: 10.1021/jacs.6b03156 – ident: ref216/cit216 doi: 10.1021/acs.jcim.0c00600 – ident: ref153/cit153 doi: 10.1021/es500319q – ident: ref200/cit200 doi: 10.1126/science.197.4308.1041 – ident: ref174/cit174 doi: 10.1039/D0CP04221H – ident: ref242/cit242 doi: 10.1198/TECH.2009.08040 – ident: ref166/cit166 doi: 10.1039/C4CP03761H – ident: ref65/cit65 doi: 10.1021/jp910674d – ident: ref272/cit272 – ident: ref231/cit231 doi: 10.1093/bioinformatics/bts437 – ident: ref240/cit240 doi: 10.1103/PhysRevB.87.184115 – ident: ref180/cit180 doi: 10.1002/anie.201604552 – ident: ref163/cit163 doi: 10.1063/1.4863138 – ident: ref195/cit195 doi: 10.1016/0020-0271(63)90012-3 – ident: ref201/cit201 doi: 10.1021/jo01299a001 – ident: ref82/cit82 doi: 10.1063/1.473683 – ident: ref17/cit17 doi: 10.1021/acs.jctc.5b00277 – ident: ref182/cit182 doi: 10.1002/anie.201204077 – ident: ref286/cit286 doi: 10.2478/disp-2019-0010 – ident: ref7/cit7 doi: 10.1021/acs.chemrev.0c01111 – ident: ref173/cit173 doi: 10.1038/nchem.2488 – ident: ref290/cit290 doi: 10.1021/acs.jctc.5b00830 – volume: 42 volume-title: Nonequilibrium Gas Dynamics and Molecular Simulation year: 2017 ident: ref92/cit92 doi: 10.1017/9781139683494 – ident: ref188/cit188 doi: 10.1021/acscentsci.6b00219 – ident: ref42/cit42 doi: 10.1146/annurev.biophys.32.110601.141807 – ident: ref104/cit104 doi: 10.1063/1.1672232 – ident: ref124/cit124 doi: 10.1063/5.0023492 – ident: ref183/cit183 doi: 10.1126/science.abd3623 – ident: ref41/cit41 doi: 10.1146/annurev-physchem-040214-121833 – ident: ref190/cit190 doi: 10.1038/s41570-019-0124-0 – ident: ref95/cit95 – ident: ref23/cit23 doi: 10.3389/fchem.2018.00189 – ident: ref230/cit230 doi: 10.1186/s13321-016-0174-y – ident: ref4/cit4 doi: 10.1021/bi400215w – ident: ref197/cit197 doi: 10.1126/science.166.3902.178 – ident: ref213/cit213 doi: 10.1039/C9SC02452B – ident: ref239/cit239 doi: 10.1038/s41467-020-19267-x – ident: ref266/cit266 doi: 10.1039/C6CP07142B – ident: ref234/cit234 doi: 10.1016/0005-2795(75)90109-9 – ident: ref61/cit61 doi: 10.1021/ja00214a001 – ident: ref122/cit122 doi: 10.1103/PhysRevLett.121.255702 – ident: ref137/cit137 doi: 10.1063/1.479368 – ident: ref204/cit204 doi: 10.1021/ja01039a025 – ident: ref53/cit53 doi: 10.1038/323533a0 – ident: ref228/cit228 doi: 10.1093/nar/gku436 – ident: ref155/cit155 doi: 10.1126/science.1220712 – ident: ref268/cit268 doi: 10.1063/1.4757762 – ident: ref281/cit281 doi: 10.1021/acs.accounts.7b00010 – ident: ref211/cit211 doi: 10.1039/C6SC05720A – ident: ref148/cit148 doi: 10.1016/j.paerosci.2011.10.001 – ident: ref135/cit135 doi: 10.1002/nme.1620151110 – ident: ref14/cit14 doi: 10.1021/acs.jpcb.6b07814 – ident: ref219/cit219 doi: 10.1126/scirobotics.aat5559 |
SSID | ssj0005527 |
Score | 2.7142136 |
SecondaryResourceType | review_article |
Snippet | Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10218 |
SubjectTerms | artificial intelligence Bayesian analysis Bayesian theory Chemical reactions combustion fields Machine learning Neural networks planning Statistical inference |
Title | Machine Learning for Chemical Reactions |
URI | http://dx.doi.org/10.1021/acs.chemrev.1c00033 https://www.ncbi.nlm.nih.gov/pubmed/34097378 https://www.proquest.com/docview/2568712489 https://www.proquest.com/docview/2539210113 https://www.proquest.com/docview/2636792118 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-6890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005527 issn: 0009-2665 databaseCode: ACS dateStart: 19240401 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOcCFfQkUFCQkOJCS2ImdHKuKqkJqD0Cl3iLbcUACUkTTC1_POEvLWnFNbMszsT0vmvF7AGcad5GSRDq-n3LHj6R2RMqFIxPJBElSSgo5oP6A9Yb-zSgYfbqs_i2DT7wrodD5j_rFSLJ4ymB4ugwrhIWe-ddqd-7mFR21QqtJGjAW1CRDvw9iwpGafA1Hf2DMItZ0N2BQ39gpS0yeWtNcttT7TwLH_5mxCesV6rTb5TLZgiWdbcNqpxZ724HzflFUqe2Kb_XBRjBr12wC9q0u7z9MdmHYvb7v9JxKQ8ERGKpzhyXKsL65OpCJ9iMhA64ShHE8wpil09BNaJBgHFNeKsJAEMIRQlI3lZxoKaime9DIxpk-AJt4ifS5KylX2ldGs5oJZSATwWE1kRZcoJFxtQcmcZHeJl5sHlaWx5XlFpDa67GquMiNJMbz4k6Xs06vJRXH4ubN-nPO54SzxT9E4oeRBaez1-hrkyYRmR5PTRvEjHhSeXRBG0aZcaEXWrBfLpXZnKihEKM8PPy_P45gjZhaGRdPraAJjfxtqo8R7OTypFjiHyM0-Og |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHMaF92MwoEhIcKCjTdqmO6KJacC2A2zSblWSphyADdHtwq_H7tpNIJjgmiaR7Tz8VXY-A5wZPEVaMWV7XiJsr66MLRMhbRWrQLI44SwrB9TpBq2-dzfwB_mjMHoLg0KkOFOaBfHn7ALuFbWhGq9UmcXVBOX5MqxkXCgEiBqP88SOolArxQ6CwC-4hn6ehLySTr96pV-gZuZymuvQnwmbZZo81yZjVdMf33gc_6vNBqzlGNS6nm6aTVgywy0oN4rSb9tw3slSLI2Vs68-WQhtrYJbwHow09cQ6Q70mze9RsvOKyrYEh332A5iTRxwjvFVbLy6VL7QMYI6UUcPZpLQibkfo1fTbiJDXzImEFByJ1GCGSW54btQGo6GZh8s5sbKE47iQhtPUwXrQGoCUAynNUxV4AKVjPITkUZZsJu5ETXmmke55hVghfEjnTOTU4GMl8WDLmeD3qbEHIu7V4tVncuE0uL_IvPCegVOZ5_R1hQ0kUMzmlAfRJB4b7l8QZ-AB2RCN6zA3nTHzGTiRCjGRXjwd3ucQLnV67Sj9m33_hBWGWXROHif-VUojd8n5ghh0FgdZ7v-E4pmAWI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgnrx_ajPCIIeTE12k2x6lGrxjagFPYV9xYPaFtNe_PXOpElF0SJeN7vLzOxjvjCz3wDsWjxFWjHlBkEq3KCurCtTIV1lVCSZSTnLywFdXUenreD8IXyoQFy-hUEhMpwpy4P4dKq7Ji0YBvxDakdVXqk6i68JzvMxmAiJBI5AUePuM7mjLNZK8YMoCku-oZ8nIc-ks6-e6Re4mbud5iw8DgXOs02ea_2equn3b1yO_9FoDmYKLOocDTbPPFRsewGmGmUJuEXYu8pTLa1TsLA-OQhxnZJjwLm1g1cR2RK0mif3jVO3qKzgSnTgPTcymrjgPBsqY4O6VKHQBsGdqKMns2nsGR4a9G7aT2UcSsYEAkvupUowqyS3fBnG2522XQWH-UYFwlNcaBtoqmQdSU1AiuG0lqkq7KOSSXEysiQPejM_ocZC86TQvAqsXIBEFwzlVCjjZfSgg-Gg7oCgY3T3jXJlP2VCafG_kQVxvQo7w89oawqeyLbt9KkPIkm8v3w-ok_EIzKhH1dhZbBrhjJxIhbjIl77uz22YfLmuJlcnl1frMM0o2QaD6-1cAPGe299u4loqKe28o3_AdRAA9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Chemical+Reactions&rft.jtitle=Chemical+reviews&rft.au=Meuwly%2C+Markus&rft.date=2021-08-25&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=121&rft.issue=16&rft.spage=10218&rft_id=info:doi/10.1021%2Facs.chemrev.1c00033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |