Quantum Interference, Graphs, Walks, and Polynomials
In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to...
Saved in:
Published in | Chemical reviews Vol. 118; no. 10; pp. 4887 - 4911 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2665 1520-6890 1520-6890 |
DOI | 10.1021/acs.chemrev.7b00733 |
Cover
Abstract | In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function. |
---|---|
AbstractList | In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function. In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley-Hamilton theorem for characteristic polynomials and the Coulson-Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green's function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green's function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green's function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green's function.In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley-Hamilton theorem for characteristic polynomials and the Coulson-Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green's function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green's function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green's function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green's function. In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function. |
Author | Hoffmann, Roald Estrada, Ernesto Movassagh, Ramis Tsuji, Yuta |
AuthorAffiliation | Institute for Materials Chemistry and Engineering and IRCCS University of Strathclyde Cornell University Department of Mathematics and Statistics Kyushu University Department of Chemistry and Chemical Biology |
AuthorAffiliation_xml | – name: Cornell University – name: Department of Mathematics and Statistics – name: Department of Chemistry and Chemical Biology – name: Kyushu University – name: Institute for Materials Chemistry and Engineering and IRCCS – name: University of Strathclyde |
Author_xml | – sequence: 1 givenname: Yuta orcidid: 0000-0003-4224-4532 surname: Tsuji fullname: Tsuji, Yuta organization: Kyushu University – sequence: 2 givenname: Ernesto orcidid: 0000-0002-3066-7418 surname: Estrada fullname: Estrada, Ernesto organization: University of Strathclyde – sequence: 3 givenname: Ramis surname: Movassagh fullname: Movassagh, Ramis – sequence: 4 givenname: Roald orcidid: 0000-0001-5369-6046 surname: Hoffmann fullname: Hoffmann, Roald email: rh34@cornell.edu organization: Cornell University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29630345$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9LwzAUxYNM3Jx-AkEGvviwzpukSdNHGf4ZCCooPpY0vcXONp1JK_jtjaz64IN7OoT7O4d7cw7JyLYWCTmhsKDA6IU2fmFesXH4sUhygITzPTKhgkEkVQojMgGANGJSijE59H4dnkKw5ICMWSo58FhMSPzYa9v1zWxlO3QlOrQG57Mbpzevfj570fVbEG2L2UNbf9q2qXTtj8h-GQSPB52S5-urp-VtdHd_s1pe3kU6BtlFghU5lbFJgGsVM6E4B50UVOlYFSqlpRBGa4ZCIoOiwFzmCWJsTFKUaZwKPiXn29yNa9979F3WVN5gXWuLbe8zRjlVKeMheScKjCdcMMoCevYHXbe9s-GQEAigFOVMBup0oPq8wSLbuKrR7jP7-boA8C1gXOu9w_IXoZB9F5SFgrKhoGwoKLjSPy5TdbqrWts5XdU7vBdb7_fwd-f_HF-aLKb0 |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118358 crossref_primary_10_1021_acs_jpcc_0c08957 crossref_primary_10_1021_acs_jpcc_2c04656 crossref_primary_10_1002_adts_202000203 crossref_primary_10_1021_acs_jpcc_1c04242 crossref_primary_10_1021_acs_jcim_4c01997 crossref_primary_10_1016_j_coelec_2025_101688 crossref_primary_10_1007_s40324_021_00275_w crossref_primary_10_1021_acs_jpclett_2c02349 crossref_primary_10_3390_app12042139 crossref_primary_10_1049_itr2_12209 crossref_primary_10_1039_D0NR07819K crossref_primary_10_1039_D1NR01230D crossref_primary_10_3175_molsci_15_A0120 crossref_primary_10_1039_C9TC02626F crossref_primary_10_1063_1_5097330 crossref_primary_10_1002_cphc_202100010 crossref_primary_10_1103_PhysRevB_105_165428 crossref_primary_10_1021_acs_jpcc_9b08595 crossref_primary_10_1103_PhysRevB_105_155303 crossref_primary_10_1380_vss_66_158 crossref_primary_10_1103_PhysRevB_108_235307 crossref_primary_10_1134_S002136401921001X crossref_primary_10_1021_acs_jpcc_8b05190 crossref_primary_10_1039_D1CP04475C crossref_primary_10_1021_acs_jpcc_0c06198 crossref_primary_10_1021_acs_jpcc_1c10502 crossref_primary_10_1039_C9CP03233A crossref_primary_10_1039_D1CP02504J crossref_primary_10_1021_acs_jpcc_8b05661 crossref_primary_10_1021_acsomega_0c04913 crossref_primary_10_3390_app112411696 crossref_primary_10_1021_jacs_9b01420 crossref_primary_10_1021_acs_jpcc_2c05572 crossref_primary_10_15407_fm26_01_152 crossref_primary_10_1063_1_5048955 crossref_primary_10_1103_PhysRevLett_133_076501 crossref_primary_10_1088_1361_648X_adb921 crossref_primary_10_1063_5_0083486 crossref_primary_10_1021_acs_nanolett_1c02390 crossref_primary_10_1002_smll_202002808 crossref_primary_10_1103_RevModPhys_92_035001 crossref_primary_10_1002_qua_26260 crossref_primary_10_1021_jacs_4c09771 crossref_primary_10_1039_D2CP02036J crossref_primary_10_1103_PhysRevB_101_235318 crossref_primary_10_1021_acs_jpcc_8b07753 crossref_primary_10_1063_5_0009196 crossref_primary_10_15407_fm27_04_800 crossref_primary_10_15407_fm27_01_147 crossref_primary_10_2477_jccj_2021_0013 crossref_primary_10_1103_PhysRevB_103_125307 |
Cites_doi | 10.1007/BF01205340 10.1088/0022-3719/5/20/004 10.1016/j.cplett.2008.09.048 10.1103/PhysRevB.37.10125 10.1016/j.cplett.2004.12.102 10.1021/jacs.7b04410 10.1016/j.cplett.2015.04.043 10.1038/nnano.2012.37 10.1021/jacs.6b10837 10.1063/1.4981916 10.1351/PAC-CON-10-10-16 10.1073/pnas.1518206113 10.1021/jp3125389 10.1039/c3cp44578j 10.1063/1.4995544 10.1088/0957-4484/15/4/001 10.1021/j100115a023 10.1002/anie.201311134 10.1007/BF00527654 10.1063/1.3603444 10.1126/science.1656523 10.1063/1.4977080 10.1007/978-1-4612-4288-8 10.1088/0022-3719/6/21/012 10.1063/1.2958275 10.2174/1385272819666141216231017 10.1007/BF01046555 10.1016/j.dam.2017.06.007 10.1021/j100186a014 10.1002/9781118558409 10.1038/natrevmats.2016.2 10.1007/b136300 10.1021/ed048p749 10.1002/9781444300017 10.1007/978-3-642-70982-1 10.1007/978-3-642-77894-0 10.1016/0166-218X(88)90017-0 10.1039/C5CP05423K 10.1021/j100125a004 10.1063/1.3330900 10.1021/ja801379b 10.1017/CBO9781139050807 10.1016/j.ssc.2005.05.005 10.1063/1.4913415 10.1246/bcsj.53.3418 10.1021/ja00297a010 10.3762/bjnano.2.95 10.1007/978-1-4615-3846-2_27 10.1002/cphc.200290006 10.1021/acs.jpcc.7b07950 10.1016/0166-1280(85)85100-9 10.1063/1.3451265 10.1021/cr9903656 10.1038/nchem.392 10.1021/acs.jpca.6b07153 10.1063/1.3272669 10.1038/ncomms7389 10.1002/anie.201609051 10.1063/1.4972572 10.1103/PhysRevB.65.155419 10.1021/ja8044053 10.1103/PhysRevB.48.2460 10.1126/science.1134862 10.1016/S0009-2614(02)01150-8 10.1139/v87-124 10.1021/j100152a008 10.1063/1.4972992 10.1063/1.1697189 10.1016/j.chemphys.2008.12.015 10.1246/bcsj.58.288 10.1080/00018736700101495 10.1103/RevModPhys.42.271 10.1016/0378-4371(86)90217-7 10.1103/PhysRevLett.70.218 10.1039/C6SC00454G 10.1201/b19046 10.1021/ar50037a001 10.1063/1.1730344 10.1038/nchem.2314 10.1017/S0305004100025639 10.1063/1.2804867 10.1016/j.physrep.2016.07.001 10.1088/0022-3719/8/16/011 10.1103/PhysRevB.90.125413 10.1063/1.3182849 10.1063/1.4903043 10.1039/C4CS00203B 10.1007/978-1-4899-7445-7 10.1103/PhysRevB.83.075437 10.1021/jp9117216 10.1002/9780470192597 10.1021/nl0608442 10.1016/j.cplett.2008.05.062 10.1016/0009-2614(74)85031-1 10.1515/zna-2015-0251 10.1103/PhysRevB.73.245329 10.1093/oso/9780198517870.001.0001 10.1103/RevModPhys.20.367 10.1088/0034-4885/70/6/R03 10.1021/acs.jpcc.6b11951 10.1017/S0305004100017163 10.1073/pnas.1409514111 10.1007/BF02110098 10.1021/ar300075f 10.1039/C3CP53866D 10.1080/14786445108646735 10.1021/acs.jpcc.7b07120 10.1021/nl5010702 10.1021/ja800638t 10.1063/1.2715932 10.1021/acs.jpcc.7b02274 10.1007/BF01164627 10.1021/nl101688a 10.1038/nchem.546 10.1007/BF00527288 10.1021/acs.jpcc.5b10395 10.1007/BF00526290 10.1007/BF00540026 10.1063/1.3259548 10.1246/bcsj.44.2332 10.1021/ed069p695 10.1021/acs.jpcc.5b10407 10.1002/jcc.540010410 10.1098/rspa.1952.0184 10.1021/j100186a015 10.1201/9781315368689 10.1021/acs.jpcc.7b10877 10.1016/j.physe.2007.08.149 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society May 23, 2018 |
Copyright_xml | – notice: Copyright American Chemical Society May 23, 2018 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
DOI | 10.1021/acs.chemrev.7b00733 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 4911 |
ExternalDocumentID | 29630345 10_1021_acs_chemrev_7b00733 d161282548 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 29B 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X .DC 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-52db164c703a84258330a7d18a48d891f55caa2e56e20ddeb6b7ee4cc7df94953 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Wed Oct 01 14:08:11 EDT 2025 Fri Jul 11 08:27:26 EDT 2025 Mon Jun 30 08:45:10 EDT 2025 Mon Jul 21 05:55:03 EDT 2025 Tue Jul 01 03:16:16 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Thu Aug 27 13:42:10 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-52db164c703a84258330a7d18a48d891f55caa2e56e20ddeb6b7ee4cc7df94953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5369-6046 0000-0002-3066-7418 0000-0003-4224-4532 |
PMID | 29630345 |
PQID | 2100881326 |
PQPubID | 45407 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2131892358 proquest_miscellaneous_2023735212 proquest_journals_2100881326 pubmed_primary_29630345 crossref_primary_10_1021_acs_chemrev_7b00733 crossref_citationtrail_10_1021_acs_chemrev_7b00733 acs_journals_10_1021_acs_chemrev_7b00733 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-23 |
PublicationDateYYYYMMDD | 2018-05-23 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 Hackbusch W. (ref138/cit138) 1994 ref16/cit16 ref52/cit52 ref23/cit23 ref116/cit116 ref110/cit110 Coulson C. A. (ref66/cit66) 1978 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 Martin R. M. (ref139/cit139) 2016 ref19/cit19 ref93/cit93 Shaik S. (ref120/cit120) 2007 ref42/cit42 ref96/cit96 ref107/cit107 Ghaboussi J. (ref137/cit137) 2016 ref109/cit109 Bonchev D. (ref140/cit140) 2005 ref13/cit13 ref900/cit900 ref122/cit122 ref105/cit105 ref61/cit61 Jeffrey A. (ref81/cit81) 2002 ref38/cit38 ref90/cit90 ref124/cit124 ref64/cit64 ref54/cit54 Datta S. (ref2/cit2) 2012 ref6/cit6 ref18/cit18 ref136/cit136 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 Pettifor D. G. (ref114/cit114) 1995 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 Zohta Y. (ref7/cit7) 1991; 277 ref144/cit144 ref12/cit12 Leszczynski J. (ref141/cit141) 2014 Datta K. B. (ref78/cit78) 2016 Gutman I. (ref125/cit125) 1986 ref22/cit22 ref121/cit121 Dias J. R. (ref134/cit134) 1993 ref33/cit33 ref87/cit87 Albright T. A. (ref132/cit132) 2013 Trinajstić N. (ref100/cit100) 1992 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 Randić M. (ref111/cit111) 2016 Datta S. (ref49/cit49) 1997 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref88/cit88 ref17/cit17 Klán P. (ref133/cit133) 2009 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref46/cit46 ref75/cit75 ref24/cit24 ref50/cit50 ref36/cit36 ref79/cit79 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 Heilbronner E. (ref65/cit65) 1976 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 Datta S. (ref1/cit1) 2006 ref26/cit26 ref142/cit142 Estrada E. (ref60/cit60) 2018 ref73/cit73 Cvetković D. M. (ref82/cit82) 1970; 320 ref69/cit69 Rumer G. (ref119/cit119) 1932; 27 Poole D. (ref128/cit128) 2014 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 Burdett J. K. (ref115/cit115) 1995 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref123/cit123 Biggs N. L. (ref83/cit83) 1993 |
References_xml | – ident: ref112/cit112 doi: 10.1007/BF01205340 – ident: ref58/cit58 doi: 10.1088/0022-3719/5/20/004 – ident: ref108/cit108 – ident: ref72/cit72 doi: 10.1016/j.cplett.2008.09.048 – ident: ref51/cit51 doi: 10.1103/PhysRevB.37.10125 – volume: 320 start-page: 27 year: 1970 ident: ref82/cit82 publication-title: Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mater. Fiz. – ident: ref70/cit70 doi: 10.1016/j.cplett.2004.12.102 – volume-title: Advanced Engineering Mathematics year: 2002 ident: ref81/cit81 – ident: ref900/cit900 doi: 10.1021/jacs.7b04410 – ident: ref24/cit24 doi: 10.1016/j.cplett.2015.04.043 – ident: ref3/cit3 doi: 10.1038/nnano.2012.37 – ident: ref22/cit22 doi: 10.1021/jacs.6b10837 – ident: ref74/cit74 doi: 10.1063/1.4981916 – ident: ref63/cit63 doi: 10.1351/PAC-CON-10-10-16 – ident: ref27/cit27 doi: 10.1073/pnas.1518206113 – ident: ref84/cit84 doi: 10.1021/jp3125389 – ident: ref14/cit14 doi: 10.1039/c3cp44578j – ident: ref85/cit85 doi: 10.1063/1.4995544 – ident: ref17/cit17 doi: 10.1088/0957-4484/15/4/001 – volume-title: Mathematical Concepts in Organic Chemistry year: 1986 ident: ref125/cit125 – ident: ref34/cit34 doi: 10.1021/j100115a023 – ident: ref94/cit94 doi: 10.1002/anie.201311134 – ident: ref105/cit105 doi: 10.1007/BF00527654 – volume-title: Chemical Graph Theory year: 1992 ident: ref100/cit100 – ident: ref20/cit20 doi: 10.1063/1.3603444 – ident: ref29/cit29 doi: 10.1126/science.1656523 – ident: ref90/cit90 doi: 10.1063/1.4977080 – volume-title: Quantum Transport: Atom to Transistor year: 2006 ident: ref1/cit1 – volume-title: Iterative Solution of Large Sparse Systems of Equations year: 1994 ident: ref138/cit138 doi: 10.1007/978-1-4612-4288-8 – ident: ref56/cit56 doi: 10.1088/0022-3719/6/21/012 – ident: ref12/cit12 doi: 10.1063/1.2958275 – ident: ref26/cit26 doi: 10.2174/1385272819666141216231017 – ident: ref101/cit101 doi: 10.1007/BF01046555 – ident: ref147/cit147 doi: 10.1016/j.dam.2017.06.007 – ident: ref31/cit31 doi: 10.1021/j100186a014 – volume-title: Orbital Interactions in Chemistry year: 2013 ident: ref132/cit132 doi: 10.1002/9781118558409 – ident: ref6/cit6 doi: 10.1038/natrevmats.2016.2 – volume-title: Complexity in Chemistry, Biology and Ecology year: 2005 ident: ref140/cit140 doi: 10.1007/b136300 – ident: ref131/cit131 doi: 10.1021/ed048p749 – volume-title: Photochemistry of Organic Componds: From Concepts to Practice year: 2009 ident: ref133/cit133 doi: 10.1002/9781444300017 – ident: ref118/cit118 doi: 10.1007/978-3-642-70982-1 – volume-title: Molecular Orbital Calculations Using Chemical Graph Theory year: 1993 ident: ref134/cit134 doi: 10.1007/978-3-642-77894-0 – ident: ref122/cit122 doi: 10.1016/0166-218X(88)90017-0 – ident: ref18/cit18 doi: 10.1039/C5CP05423K – ident: ref35/cit35 doi: 10.1021/j100125a004 – ident: ref73/cit73 doi: 10.1063/1.3330900 – ident: ref96/cit96 doi: 10.1021/ja801379b – volume-title: Interacting Electrons - Theory and Computational Approaches year: 2016 ident: ref139/cit139 doi: 10.1017/CBO9781139050807 – ident: ref8/cit8 doi: 10.1016/j.ssc.2005.05.005 – ident: ref23/cit23 doi: 10.1063/1.4913415 – ident: ref79/cit79 doi: 10.1246/bcsj.53.3418 – ident: ref57/cit57 doi: 10.1021/ja00297a010 – ident: ref99/cit99 doi: 10.3762/bjnano.2.95 – volume: 277 start-page: 285 volume-title: Resonant Tunneling in Semiconductors. NATO ASI Series (Series B: Physics) year: 1991 ident: ref7/cit7 doi: 10.1007/978-1-4615-3846-2_27 – ident: ref86/cit86 doi: 10.1002/cphc.200290006 – ident: ref46/cit46 doi: 10.1021/acs.jpcc.7b07950 – ident: ref55/cit55 doi: 10.1016/0166-1280(85)85100-9 – ident: ref21/cit21 doi: 10.1063/1.3451265 – ident: ref54/cit54 doi: 10.1021/cr9903656 – ident: ref145/cit145 doi: 10.1038/nchem.392 – ident: ref28/cit28 doi: 10.1021/acs.jpca.6b07153 – volume-title: Chemical Bonding in Solids year: 1995 ident: ref115/cit115 – ident: ref62/cit62 doi: 10.1063/1.3272669 – ident: ref4/cit4 doi: 10.1038/ncomms7389 – ident: ref5/cit5 doi: 10.1002/anie.201609051 – ident: ref19/cit19 doi: 10.1063/1.4972572 – ident: ref123/cit123 doi: 10.1103/PhysRevB.65.155419 – ident: ref89/cit89 doi: 10.1021/ja8044053 – ident: ref110/cit110 doi: 10.1103/PhysRevB.48.2460 – ident: ref32/cit32 doi: 10.1126/science.1134862 – ident: ref142/cit142 doi: 10.1016/S0009-2614(02)01150-8 – ident: ref135/cit135 doi: 10.1139/v87-124 – ident: ref36/cit36 doi: 10.1021/j100152a008 – ident: ref77/cit77 doi: 10.1063/1.4972992 – ident: ref102/cit102 doi: 10.1063/1.1697189 – ident: ref39/cit39 doi: 10.1016/j.chemphys.2008.12.015 – ident: ref80/cit80 doi: 10.1246/bcsj.58.288 – ident: ref113/cit113 doi: 10.1080/00018736700101495 – ident: ref10/cit10 doi: 10.1103/RevModPhys.42.271 – ident: ref50/cit50 doi: 10.1016/0378-4371(86)90217-7 – ident: ref143/cit143 doi: 10.1103/PhysRevLett.70.218 – ident: ref129/cit129 doi: 10.1039/C6SC00454G – volume-title: Solved and Unsolved Problems of Structural Chemistry year: 2016 ident: ref111/cit111 doi: 10.1201/b19046 – ident: ref130/cit130 doi: 10.1021/ar50037a001 – volume-title: Algebraic Graph Theory year: 1993 ident: ref83/cit83 – start-page: 445 volume-title: Quantum Chemistry at the Dawn of the 21st Century year: 2018 ident: ref60/cit60 – ident: ref136/cit136 doi: 10.1063/1.1730344 – ident: ref42/cit42 doi: 10.1038/nchem.2314 – volume-title: The HMO-Model and Its Applications, Basis and Manipulation year: 1976 ident: ref65/cit65 – ident: ref107/cit107 doi: 10.1017/S0305004100025639 – volume: 27 start-page: 337 year: 1932 ident: ref119/cit119 publication-title: Gottinger Nachr. – ident: ref76/cit76 doi: 10.1063/1.2804867 – ident: ref64/cit64 doi: 10.1016/j.physrep.2016.07.001 – ident: ref59/cit59 doi: 10.1088/0022-3719/8/16/011 – ident: ref9/cit9 doi: 10.1103/PhysRevB.90.125413 – ident: ref61/cit61 doi: 10.1063/1.3182849 – ident: ref91/cit91 doi: 10.1063/1.4903043 – ident: ref38/cit38 doi: 10.1039/C4CS00203B – volume-title: Practical Aspects of Computational Chemistry year: 2014 ident: ref141/cit141 doi: 10.1007/978-1-4899-7445-7 – ident: ref43/cit43 doi: 10.1103/PhysRevB.83.075437 – ident: ref37/cit37 doi: 10.1021/jp9117216 – volume-title: A Chemist’s Guide to Valence Bond Theory year: 2007 ident: ref120/cit120 doi: 10.1002/9780470192597 – ident: ref40/cit40 doi: 10.1021/nl0608442 – ident: ref71/cit71 doi: 10.1016/j.cplett.2008.05.062 – ident: ref144/cit144 doi: 10.1016/0009-2614(74)85031-1 – ident: ref53/cit53 doi: 10.1515/zna-2015-0251 – ident: ref48/cit48 doi: 10.1103/PhysRevB.73.245329 – volume-title: Bonding and Structures of Molecules and Solids year: 1995 ident: ref114/cit114 doi: 10.1093/oso/9780198517870.001.0001 – ident: ref47/cit47 doi: 10.1103/RevModPhys.20.367 – ident: ref146/cit146 doi: 10.1088/0034-4885/70/6/R03 – ident: ref44/cit44 doi: 10.1021/acs.jpcc.6b11951 – ident: ref11/cit11 doi: 10.1017/S0305004100017163 – ident: ref69/cit69 doi: 10.1073/pnas.1409514111 – ident: ref30/cit30 doi: 10.1007/BF02110098 – volume-title: Matrix and Linear Algebra Aided with Matlab year: 2016 ident: ref78/cit78 – ident: ref88/cit88 doi: 10.1021/ar300075f – ident: ref95/cit95 doi: 10.1039/C3CP53866D – volume-title: A New Perspective on Transport year: 2012 ident: ref2/cit2 – ident: ref124/cit124 doi: 10.1080/14786445108646735 – ident: ref45/cit45 doi: 10.1021/acs.jpcc.7b07120 – ident: ref98/cit98 doi: 10.1021/nl5010702 – ident: ref87/cit87 doi: 10.1021/ja800638t – volume-title: Linear Algebra. A Modern Introduction year: 2014 ident: ref128/cit128 – ident: ref75/cit75 doi: 10.1063/1.2715932 – ident: ref97/cit97 doi: 10.1021/acs.jpcc.7b02274 – ident: ref68/cit68 doi: 10.1007/BF01164627 – ident: ref15/cit15 doi: 10.1021/nl101688a – ident: ref13/cit13 doi: 10.1038/nchem.546 – ident: ref93/cit93 doi: 10.1007/BF00527288 – ident: ref25/cit25 doi: 10.1021/acs.jpcc.5b10395 – ident: ref92/cit92 doi: 10.1007/BF00526290 – ident: ref116/cit116 doi: 10.1007/BF00540026 – ident: ref41/cit41 doi: 10.1063/1.3259548 – ident: ref117/cit117 doi: 10.1246/bcsj.44.2332 – ident: ref109/cit109 doi: 10.1021/ed069p695 – ident: ref16/cit16 doi: 10.1021/acs.jpcc.5b10407 – ident: ref103/cit103 doi: 10.1002/jcc.540010410 – ident: ref104/cit104 doi: 10.1098/rspa.1952.0184 – ident: ref33/cit33 doi: 10.1021/j100186a015 – volume-title: Numerical Methods in Computational Mechanics year: 2016 ident: ref137/cit137 doi: 10.1201/9781315368689 – volume-title: Hückel Theory for Orgnic Chemists year: 1978 ident: ref66/cit66 – ident: ref121/cit121 doi: 10.1021/acs.jpcc.7b10877 – volume-title: Electronic Transport in Mesoscopic Systems year: 1997 ident: ref49/cit49 – ident: ref52/cit52 doi: 10.1016/j.physe.2007.08.149 |
SSID | ssj0005527 |
Score | 2.5010111 |
SecondaryResourceType | review_article |
Snippet | In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4887 |
SubjectTerms | Electric noise electron transfer Electron transport Finite element analysis Graph theory graphs Hydrocarbons Interference graphs Lattices Materials science mathematical theory Perturbation theory Polynomials Power series Quantum dots Resistance Series expansion Theorems Thermal expansion Vortices |
Title | Quantum Interference, Graphs, Walks, and Polynomials |
URI | http://dx.doi.org/10.1021/acs.chemrev.7b00733 https://www.ncbi.nlm.nih.gov/pubmed/29630345 https://www.proquest.com/docview/2100881326 https://www.proquest.com/docview/2023735212 https://www.proquest.com/docview/2131892358 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-6890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005527 issn: 0009-2665 databaseCode: ACS dateStart: 19240401 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4xeNheGDC2dSsok3jgoekax06cx6oaVEhUQ6wab9HZcTSJkk60eYBfv7s0aRkbVZ8iJbZln8--u9x9dwAneUx6bc6IHqsTX1oMfYxR-9aglblCZTMGJ1-OouFYXtyomydg9WcefBF8RUvE_-XuuCRLbKoig69gR0Q6YFurP7heRXQ0FVrZaRBFqkky9P9BWBzZ2d_i6AUds5I1Z29h1CB2FiEmt91ybrr28d8EjpstYw92a63T6y_YZB-2XHEArwdNsbd3IK9KInF551V_CGsMYMc753TWs473Eye39MAi875PJw8MZSa2PYTx2bcfg6FfF1TwkeT2nIzOzJB5ZOmUI7vfdBj2MM4CjVJnOglypSyicCpyokf3nolM7Jy0Ns7yhANR38N2MS3cR_C0s1L1UOdIOojViobRWSJD4yI0JtEtOKUVp_WBmKWVr1sEKb-syZDWZGiBaLYgtXVicq6PMVnfqbPs9HuRl2N983azt6s5CU5spMkcj1rwZfmZCM8-EyzctKQ2pNPEIQOc17QJ6GJMGHPcgg8LvlnOSdAF1wul-rQ5PT7DG9LKNIcoiLAN2_P70h2R5jM3xxW__wEdMP62 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xcGAvvPZBeQaJA4eGbRI7cY6oAspTrKBabtHYcS6UFJHmAL-emTRpxWqpllMkx7Hs8WM-Z-abAdjPIsK1GTN6jIpdYTBwMULlGo1GZBKlSZmcfHUd9vri_F7e16Qw5sJQJwpqqaiM-NPoAt4vLqNhPHJmlkhXuQa_wEIVC4UBUfd26tjRJGpl20EYyibW0L8bYa1kivda6QOoWamck2XoTzpbeZo8HJYjfWhe_4rj-NnRrMBSjUGdo_GiWYU5m6_BYrdJ_fYNxO-SBF4-OtX_wpoR2HZOObh10Xb-4OCBHpinzs1w8MLEZlrE36F_cnzX7bl1egUXSYuP6AqaarosGdrzyMY4FQQdjFJPoVCpir1MSoPoWxlav0OnoA51ZK0wJkqzmN1Sf8B8PsztOjjKGiE7qDIkRGKUpGZUGotA2xC1jlULDmjESb09iqSyfPtewoW1GJJaDC3wm5lITB2mnLNlDGZ_1J589DSO0jG7-lYzxdM--RzmSNHlPGzB3uQ1CZ4tKJjbYUl1COFEAdOdZ9Tx6JiMmYHcgp_j5TPpk0_HXScQcuP_5bELi727q8vk8uz6YhO-El5T7LzgB1swP3ou7TZhopHeqbbAGxKkBzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLeAScAL2_i8jY0i8cDDFa5t0qaP6NgNxodAgICnyknTF44eotcH-Otn99pDoO2EeKqUppHjxLFT2z8DbGUR2bUZZ_QYFbvCYOBihMo1Go3IJEqTcnLyyWl4cCX-3MibKVBNLgwRUdBIReXEZ6l-SLMaYcDb5Xaayj1XZ4l0VW9wGj5JBoFjo6h78RLc0RRrZf9BGMoGb-jfg7BmMsVrzfQfc7NSO73PcDsmuIo2udsph3rHPL_BcvzIjL7AQm2LOnujzfMVpmy-CHPdpgTcEojzkhhf3jvVf8M6M7Dt_GaQ66LtXGP_jh6Yp87ZoP_ECc60mZfhqvfrsnvg1mUWXCRtPqSraKrp0mRI9pGdcioIOhilnkKhUhV7mZQG0bcytH6HTkMd6shaYUyUZjGHp67ATD7I7Ro4yhohO6gyJMvEKEnDqDQWgbYhah2rFmzTjJNaTIqk8oD7XsKNNRuSmg0t8JvVSEwNV85VM_qTP2qPP3oYoXVM7r7eLPMLTT7DHSm6pIct2By_JsazJwVzOyipD1k6UcBpzxP6eHRcxpyJ3ILV0RYa0-TTsdcJhPz2fn5swOzZfi85Pjw9-g7zZLYpjmHwg3WYGT6W9geZRkP9s5KCv3wnCao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Interference%2C+Graphs%2C+Walks%2C+and+Polynomials&rft.jtitle=Chemical+reviews&rft.au=Tsuji%2C+Yuta&rft.au=Estrada%2C+Ernesto&rft.au=Movassagh%2C+Ramis&rft.au=Hoffmann%2C+Roald&rft.date=2018-05-23&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=118&rft.issue=10&rft.spage=4887&rft_id=info:doi/10.1021%2Facs.chemrev.7b00733&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |