Quantum Interference, Graphs, Walks, and Polynomials

In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 118; no. 10; pp. 4887 - 4911
Main Authors Tsuji, Yuta, Estrada, Ernesto, Movassagh, Ramis, Hoffmann, Roald
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.05.2018
Subjects
Online AccessGet full text
ISSN0009-2665
1520-6890
1520-6890
DOI10.1021/acs.chemrev.7b00733

Cover

Abstract In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function.
AbstractList In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function.
In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley-Hamilton theorem for characteristic polynomials and the Coulson-Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green's function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green's function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green's function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green's function.In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley-Hamilton theorem for characteristic polynomials and the Coulson-Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green's function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green's function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green's function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green's function.
In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function.
Author Hoffmann, Roald
Estrada, Ernesto
Movassagh, Ramis
Tsuji, Yuta
AuthorAffiliation Institute for Materials Chemistry and Engineering and IRCCS
University of Strathclyde
Cornell University
Department of Mathematics and Statistics
Kyushu University
Department of Chemistry and Chemical Biology
AuthorAffiliation_xml – name: Cornell University
– name: Department of Mathematics and Statistics
– name: Department of Chemistry and Chemical Biology
– name: Kyushu University
– name: Institute for Materials Chemistry and Engineering and IRCCS
– name: University of Strathclyde
Author_xml – sequence: 1
  givenname: Yuta
  orcidid: 0000-0003-4224-4532
  surname: Tsuji
  fullname: Tsuji, Yuta
  organization: Kyushu University
– sequence: 2
  givenname: Ernesto
  orcidid: 0000-0002-3066-7418
  surname: Estrada
  fullname: Estrada, Ernesto
  organization: University of Strathclyde
– sequence: 3
  givenname: Ramis
  surname: Movassagh
  fullname: Movassagh, Ramis
– sequence: 4
  givenname: Roald
  orcidid: 0000-0001-5369-6046
  surname: Hoffmann
  fullname: Hoffmann, Roald
  email: rh34@cornell.edu
  organization: Cornell University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29630345$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9LwzAUxYNM3Jx-AkEGvviwzpukSdNHGf4ZCCooPpY0vcXONp1JK_jtjaz64IN7OoT7O4d7cw7JyLYWCTmhsKDA6IU2fmFesXH4sUhygITzPTKhgkEkVQojMgGANGJSijE59H4dnkKw5ICMWSo58FhMSPzYa9v1zWxlO3QlOrQG57Mbpzevfj570fVbEG2L2UNbf9q2qXTtj8h-GQSPB52S5-urp-VtdHd_s1pe3kU6BtlFghU5lbFJgGsVM6E4B50UVOlYFSqlpRBGa4ZCIoOiwFzmCWJsTFKUaZwKPiXn29yNa9979F3WVN5gXWuLbe8zRjlVKeMheScKjCdcMMoCevYHXbe9s-GQEAigFOVMBup0oPq8wSLbuKrR7jP7-boA8C1gXOu9w_IXoZB9F5SFgrKhoGwoKLjSPy5TdbqrWts5XdU7vBdb7_fwd-f_HF-aLKb0
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118358
crossref_primary_10_1021_acs_jpcc_0c08957
crossref_primary_10_1021_acs_jpcc_2c04656
crossref_primary_10_1002_adts_202000203
crossref_primary_10_1021_acs_jpcc_1c04242
crossref_primary_10_1021_acs_jcim_4c01997
crossref_primary_10_1016_j_coelec_2025_101688
crossref_primary_10_1007_s40324_021_00275_w
crossref_primary_10_1021_acs_jpclett_2c02349
crossref_primary_10_3390_app12042139
crossref_primary_10_1049_itr2_12209
crossref_primary_10_1039_D0NR07819K
crossref_primary_10_1039_D1NR01230D
crossref_primary_10_3175_molsci_15_A0120
crossref_primary_10_1039_C9TC02626F
crossref_primary_10_1063_1_5097330
crossref_primary_10_1002_cphc_202100010
crossref_primary_10_1103_PhysRevB_105_165428
crossref_primary_10_1021_acs_jpcc_9b08595
crossref_primary_10_1103_PhysRevB_105_155303
crossref_primary_10_1380_vss_66_158
crossref_primary_10_1103_PhysRevB_108_235307
crossref_primary_10_1134_S002136401921001X
crossref_primary_10_1021_acs_jpcc_8b05190
crossref_primary_10_1039_D1CP04475C
crossref_primary_10_1021_acs_jpcc_0c06198
crossref_primary_10_1021_acs_jpcc_1c10502
crossref_primary_10_1039_C9CP03233A
crossref_primary_10_1039_D1CP02504J
crossref_primary_10_1021_acs_jpcc_8b05661
crossref_primary_10_1021_acsomega_0c04913
crossref_primary_10_3390_app112411696
crossref_primary_10_1021_jacs_9b01420
crossref_primary_10_1021_acs_jpcc_2c05572
crossref_primary_10_15407_fm26_01_152
crossref_primary_10_1063_1_5048955
crossref_primary_10_1103_PhysRevLett_133_076501
crossref_primary_10_1088_1361_648X_adb921
crossref_primary_10_1063_5_0083486
crossref_primary_10_1021_acs_nanolett_1c02390
crossref_primary_10_1002_smll_202002808
crossref_primary_10_1103_RevModPhys_92_035001
crossref_primary_10_1002_qua_26260
crossref_primary_10_1021_jacs_4c09771
crossref_primary_10_1039_D2CP02036J
crossref_primary_10_1103_PhysRevB_101_235318
crossref_primary_10_1021_acs_jpcc_8b07753
crossref_primary_10_1063_5_0009196
crossref_primary_10_15407_fm27_04_800
crossref_primary_10_15407_fm27_01_147
crossref_primary_10_2477_jccj_2021_0013
crossref_primary_10_1103_PhysRevB_103_125307
Cites_doi 10.1007/BF01205340
10.1088/0022-3719/5/20/004
10.1016/j.cplett.2008.09.048
10.1103/PhysRevB.37.10125
10.1016/j.cplett.2004.12.102
10.1021/jacs.7b04410
10.1016/j.cplett.2015.04.043
10.1038/nnano.2012.37
10.1021/jacs.6b10837
10.1063/1.4981916
10.1351/PAC-CON-10-10-16
10.1073/pnas.1518206113
10.1021/jp3125389
10.1039/c3cp44578j
10.1063/1.4995544
10.1088/0957-4484/15/4/001
10.1021/j100115a023
10.1002/anie.201311134
10.1007/BF00527654
10.1063/1.3603444
10.1126/science.1656523
10.1063/1.4977080
10.1007/978-1-4612-4288-8
10.1088/0022-3719/6/21/012
10.1063/1.2958275
10.2174/1385272819666141216231017
10.1007/BF01046555
10.1016/j.dam.2017.06.007
10.1021/j100186a014
10.1002/9781118558409
10.1038/natrevmats.2016.2
10.1007/b136300
10.1021/ed048p749
10.1002/9781444300017
10.1007/978-3-642-70982-1
10.1007/978-3-642-77894-0
10.1016/0166-218X(88)90017-0
10.1039/C5CP05423K
10.1021/j100125a004
10.1063/1.3330900
10.1021/ja801379b
10.1017/CBO9781139050807
10.1016/j.ssc.2005.05.005
10.1063/1.4913415
10.1246/bcsj.53.3418
10.1021/ja00297a010
10.3762/bjnano.2.95
10.1007/978-1-4615-3846-2_27
10.1002/cphc.200290006
10.1021/acs.jpcc.7b07950
10.1016/0166-1280(85)85100-9
10.1063/1.3451265
10.1021/cr9903656
10.1038/nchem.392
10.1021/acs.jpca.6b07153
10.1063/1.3272669
10.1038/ncomms7389
10.1002/anie.201609051
10.1063/1.4972572
10.1103/PhysRevB.65.155419
10.1021/ja8044053
10.1103/PhysRevB.48.2460
10.1126/science.1134862
10.1016/S0009-2614(02)01150-8
10.1139/v87-124
10.1021/j100152a008
10.1063/1.4972992
10.1063/1.1697189
10.1016/j.chemphys.2008.12.015
10.1246/bcsj.58.288
10.1080/00018736700101495
10.1103/RevModPhys.42.271
10.1016/0378-4371(86)90217-7
10.1103/PhysRevLett.70.218
10.1039/C6SC00454G
10.1201/b19046
10.1021/ar50037a001
10.1063/1.1730344
10.1038/nchem.2314
10.1017/S0305004100025639
10.1063/1.2804867
10.1016/j.physrep.2016.07.001
10.1088/0022-3719/8/16/011
10.1103/PhysRevB.90.125413
10.1063/1.3182849
10.1063/1.4903043
10.1039/C4CS00203B
10.1007/978-1-4899-7445-7
10.1103/PhysRevB.83.075437
10.1021/jp9117216
10.1002/9780470192597
10.1021/nl0608442
10.1016/j.cplett.2008.05.062
10.1016/0009-2614(74)85031-1
10.1515/zna-2015-0251
10.1103/PhysRevB.73.245329
10.1093/oso/9780198517870.001.0001
10.1103/RevModPhys.20.367
10.1088/0034-4885/70/6/R03
10.1021/acs.jpcc.6b11951
10.1017/S0305004100017163
10.1073/pnas.1409514111
10.1007/BF02110098
10.1021/ar300075f
10.1039/C3CP53866D
10.1080/14786445108646735
10.1021/acs.jpcc.7b07120
10.1021/nl5010702
10.1021/ja800638t
10.1063/1.2715932
10.1021/acs.jpcc.7b02274
10.1007/BF01164627
10.1021/nl101688a
10.1038/nchem.546
10.1007/BF00527288
10.1021/acs.jpcc.5b10395
10.1007/BF00526290
10.1007/BF00540026
10.1063/1.3259548
10.1246/bcsj.44.2332
10.1021/ed069p695
10.1021/acs.jpcc.5b10407
10.1002/jcc.540010410
10.1098/rspa.1952.0184
10.1021/j100186a015
10.1201/9781315368689
10.1021/acs.jpcc.7b10877
10.1016/j.physe.2007.08.149
ContentType Journal Article
Copyright Copyright American Chemical Society May 23, 2018
Copyright_xml – notice: Copyright American Chemical Society May 23, 2018
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
DOI 10.1021/acs.chemrev.7b00733
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 4911
ExternalDocumentID 29630345
10_1021_acs_chemrev_7b00733
d161282548
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
29B
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-a406t-52db164c703a84258330a7d18a48d891f55caa2e56e20ddeb6b7ee4cc7df94953
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Wed Oct 01 14:08:11 EDT 2025
Fri Jul 11 08:27:26 EDT 2025
Mon Jun 30 08:45:10 EDT 2025
Mon Jul 21 05:55:03 EDT 2025
Tue Jul 01 03:16:16 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Thu Aug 27 13:42:10 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-52db164c703a84258330a7d18a48d891f55caa2e56e20ddeb6b7ee4cc7df94953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5369-6046
0000-0002-3066-7418
0000-0003-4224-4532
PMID 29630345
PQID 2100881326
PQPubID 45407
PageCount 25
ParticipantIDs proquest_miscellaneous_2131892358
proquest_miscellaneous_2023735212
proquest_journals_2100881326
pubmed_primary_29630345
crossref_primary_10_1021_acs_chemrev_7b00733
crossref_citationtrail_10_1021_acs_chemrev_7b00733
acs_journals_10_1021_acs_chemrev_7b00733
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-23
PublicationDateYYYYMMDD 2018-05-23
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
Hackbusch W. (ref138/cit138) 1994
ref16/cit16
ref52/cit52
ref23/cit23
ref116/cit116
ref110/cit110
Coulson C. A. (ref66/cit66) 1978
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
Martin R. M. (ref139/cit139) 2016
ref19/cit19
ref93/cit93
Shaik S. (ref120/cit120) 2007
ref42/cit42
ref96/cit96
ref107/cit107
Ghaboussi J. (ref137/cit137) 2016
ref109/cit109
Bonchev D. (ref140/cit140) 2005
ref13/cit13
ref900/cit900
ref122/cit122
ref105/cit105
ref61/cit61
Jeffrey A. (ref81/cit81) 2002
ref38/cit38
ref90/cit90
ref124/cit124
ref64/cit64
ref54/cit54
Datta S. (ref2/cit2) 2012
ref6/cit6
ref18/cit18
ref136/cit136
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
Pettifor D. G. (ref114/cit114) 1995
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
Zohta Y. (ref7/cit7) 1991; 277
ref144/cit144
ref12/cit12
Leszczynski J. (ref141/cit141) 2014
Datta K. B. (ref78/cit78) 2016
Gutman I. (ref125/cit125) 1986
ref22/cit22
ref121/cit121
Dias J. R. (ref134/cit134) 1993
ref33/cit33
ref87/cit87
Albright T. A. (ref132/cit132) 2013
Trinajstić N. (ref100/cit100) 1992
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
Randić M. (ref111/cit111) 2016
Datta S. (ref49/cit49) 1997
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref88/cit88
ref17/cit17
Klán P. (ref133/cit133) 2009
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref46/cit46
ref75/cit75
ref24/cit24
ref50/cit50
ref36/cit36
ref79/cit79
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
Heilbronner E. (ref65/cit65) 1976
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
Datta S. (ref1/cit1) 2006
ref26/cit26
ref142/cit142
Estrada E. (ref60/cit60) 2018
ref73/cit73
Cvetković D. M. (ref82/cit82) 1970; 320
ref69/cit69
Rumer G. (ref119/cit119) 1932; 27
Poole D. (ref128/cit128) 2014
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
Burdett J. K. (ref115/cit115) 1995
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref123/cit123
Biggs N. L. (ref83/cit83) 1993
References_xml – ident: ref112/cit112
  doi: 10.1007/BF01205340
– ident: ref58/cit58
  doi: 10.1088/0022-3719/5/20/004
– ident: ref108/cit108
– ident: ref72/cit72
  doi: 10.1016/j.cplett.2008.09.048
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.37.10125
– volume: 320
  start-page: 27
  year: 1970
  ident: ref82/cit82
  publication-title: Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mater. Fiz.
– ident: ref70/cit70
  doi: 10.1016/j.cplett.2004.12.102
– volume-title: Advanced Engineering Mathematics
  year: 2002
  ident: ref81/cit81
– ident: ref900/cit900
  doi: 10.1021/jacs.7b04410
– ident: ref24/cit24
  doi: 10.1016/j.cplett.2015.04.043
– ident: ref3/cit3
  doi: 10.1038/nnano.2012.37
– ident: ref22/cit22
  doi: 10.1021/jacs.6b10837
– ident: ref74/cit74
  doi: 10.1063/1.4981916
– ident: ref63/cit63
  doi: 10.1351/PAC-CON-10-10-16
– ident: ref27/cit27
  doi: 10.1073/pnas.1518206113
– ident: ref84/cit84
  doi: 10.1021/jp3125389
– ident: ref14/cit14
  doi: 10.1039/c3cp44578j
– ident: ref85/cit85
  doi: 10.1063/1.4995544
– ident: ref17/cit17
  doi: 10.1088/0957-4484/15/4/001
– volume-title: Mathematical Concepts in Organic Chemistry
  year: 1986
  ident: ref125/cit125
– ident: ref34/cit34
  doi: 10.1021/j100115a023
– ident: ref94/cit94
  doi: 10.1002/anie.201311134
– ident: ref105/cit105
  doi: 10.1007/BF00527654
– volume-title: Chemical Graph Theory
  year: 1992
  ident: ref100/cit100
– ident: ref20/cit20
  doi: 10.1063/1.3603444
– ident: ref29/cit29
  doi: 10.1126/science.1656523
– ident: ref90/cit90
  doi: 10.1063/1.4977080
– volume-title: Quantum Transport: Atom to Transistor
  year: 2006
  ident: ref1/cit1
– volume-title: Iterative Solution of Large Sparse Systems of Equations
  year: 1994
  ident: ref138/cit138
  doi: 10.1007/978-1-4612-4288-8
– ident: ref56/cit56
  doi: 10.1088/0022-3719/6/21/012
– ident: ref12/cit12
  doi: 10.1063/1.2958275
– ident: ref26/cit26
  doi: 10.2174/1385272819666141216231017
– ident: ref101/cit101
  doi: 10.1007/BF01046555
– ident: ref147/cit147
  doi: 10.1016/j.dam.2017.06.007
– ident: ref31/cit31
  doi: 10.1021/j100186a014
– volume-title: Orbital Interactions in Chemistry
  year: 2013
  ident: ref132/cit132
  doi: 10.1002/9781118558409
– ident: ref6/cit6
  doi: 10.1038/natrevmats.2016.2
– volume-title: Complexity in Chemistry, Biology and Ecology
  year: 2005
  ident: ref140/cit140
  doi: 10.1007/b136300
– ident: ref131/cit131
  doi: 10.1021/ed048p749
– volume-title: Photochemistry of Organic Componds: From Concepts to Practice
  year: 2009
  ident: ref133/cit133
  doi: 10.1002/9781444300017
– ident: ref118/cit118
  doi: 10.1007/978-3-642-70982-1
– volume-title: Molecular Orbital Calculations Using Chemical Graph Theory
  year: 1993
  ident: ref134/cit134
  doi: 10.1007/978-3-642-77894-0
– ident: ref122/cit122
  doi: 10.1016/0166-218X(88)90017-0
– ident: ref18/cit18
  doi: 10.1039/C5CP05423K
– ident: ref35/cit35
  doi: 10.1021/j100125a004
– ident: ref73/cit73
  doi: 10.1063/1.3330900
– ident: ref96/cit96
  doi: 10.1021/ja801379b
– volume-title: Interacting Electrons - Theory and Computational Approaches
  year: 2016
  ident: ref139/cit139
  doi: 10.1017/CBO9781139050807
– ident: ref8/cit8
  doi: 10.1016/j.ssc.2005.05.005
– ident: ref23/cit23
  doi: 10.1063/1.4913415
– ident: ref79/cit79
  doi: 10.1246/bcsj.53.3418
– ident: ref57/cit57
  doi: 10.1021/ja00297a010
– ident: ref99/cit99
  doi: 10.3762/bjnano.2.95
– volume: 277
  start-page: 285
  volume-title: Resonant Tunneling in Semiconductors. NATO ASI Series (Series B: Physics)
  year: 1991
  ident: ref7/cit7
  doi: 10.1007/978-1-4615-3846-2_27
– ident: ref86/cit86
  doi: 10.1002/cphc.200290006
– ident: ref46/cit46
  doi: 10.1021/acs.jpcc.7b07950
– ident: ref55/cit55
  doi: 10.1016/0166-1280(85)85100-9
– ident: ref21/cit21
  doi: 10.1063/1.3451265
– ident: ref54/cit54
  doi: 10.1021/cr9903656
– ident: ref145/cit145
  doi: 10.1038/nchem.392
– ident: ref28/cit28
  doi: 10.1021/acs.jpca.6b07153
– volume-title: Chemical Bonding in Solids
  year: 1995
  ident: ref115/cit115
– ident: ref62/cit62
  doi: 10.1063/1.3272669
– ident: ref4/cit4
  doi: 10.1038/ncomms7389
– ident: ref5/cit5
  doi: 10.1002/anie.201609051
– ident: ref19/cit19
  doi: 10.1063/1.4972572
– ident: ref123/cit123
  doi: 10.1103/PhysRevB.65.155419
– ident: ref89/cit89
  doi: 10.1021/ja8044053
– ident: ref110/cit110
  doi: 10.1103/PhysRevB.48.2460
– ident: ref32/cit32
  doi: 10.1126/science.1134862
– ident: ref142/cit142
  doi: 10.1016/S0009-2614(02)01150-8
– ident: ref135/cit135
  doi: 10.1139/v87-124
– ident: ref36/cit36
  doi: 10.1021/j100152a008
– ident: ref77/cit77
  doi: 10.1063/1.4972992
– ident: ref102/cit102
  doi: 10.1063/1.1697189
– ident: ref39/cit39
  doi: 10.1016/j.chemphys.2008.12.015
– ident: ref80/cit80
  doi: 10.1246/bcsj.58.288
– ident: ref113/cit113
  doi: 10.1080/00018736700101495
– ident: ref10/cit10
  doi: 10.1103/RevModPhys.42.271
– ident: ref50/cit50
  doi: 10.1016/0378-4371(86)90217-7
– ident: ref143/cit143
  doi: 10.1103/PhysRevLett.70.218
– ident: ref129/cit129
  doi: 10.1039/C6SC00454G
– volume-title: Solved and Unsolved Problems of Structural Chemistry
  year: 2016
  ident: ref111/cit111
  doi: 10.1201/b19046
– ident: ref130/cit130
  doi: 10.1021/ar50037a001
– volume-title: Algebraic Graph Theory
  year: 1993
  ident: ref83/cit83
– start-page: 445
  volume-title: Quantum Chemistry at the Dawn of the 21st Century
  year: 2018
  ident: ref60/cit60
– ident: ref136/cit136
  doi: 10.1063/1.1730344
– ident: ref42/cit42
  doi: 10.1038/nchem.2314
– volume-title: The HMO-Model and Its Applications, Basis and Manipulation
  year: 1976
  ident: ref65/cit65
– ident: ref107/cit107
  doi: 10.1017/S0305004100025639
– volume: 27
  start-page: 337
  year: 1932
  ident: ref119/cit119
  publication-title: Gottinger Nachr.
– ident: ref76/cit76
  doi: 10.1063/1.2804867
– ident: ref64/cit64
  doi: 10.1016/j.physrep.2016.07.001
– ident: ref59/cit59
  doi: 10.1088/0022-3719/8/16/011
– ident: ref9/cit9
  doi: 10.1103/PhysRevB.90.125413
– ident: ref61/cit61
  doi: 10.1063/1.3182849
– ident: ref91/cit91
  doi: 10.1063/1.4903043
– ident: ref38/cit38
  doi: 10.1039/C4CS00203B
– volume-title: Practical Aspects of Computational Chemistry
  year: 2014
  ident: ref141/cit141
  doi: 10.1007/978-1-4899-7445-7
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.83.075437
– ident: ref37/cit37
  doi: 10.1021/jp9117216
– volume-title: A Chemist’s Guide to Valence Bond Theory
  year: 2007
  ident: ref120/cit120
  doi: 10.1002/9780470192597
– ident: ref40/cit40
  doi: 10.1021/nl0608442
– ident: ref71/cit71
  doi: 10.1016/j.cplett.2008.05.062
– ident: ref144/cit144
  doi: 10.1016/0009-2614(74)85031-1
– ident: ref53/cit53
  doi: 10.1515/zna-2015-0251
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.73.245329
– volume-title: Bonding and Structures of Molecules and Solids
  year: 1995
  ident: ref114/cit114
  doi: 10.1093/oso/9780198517870.001.0001
– ident: ref47/cit47
  doi: 10.1103/RevModPhys.20.367
– ident: ref146/cit146
  doi: 10.1088/0034-4885/70/6/R03
– ident: ref44/cit44
  doi: 10.1021/acs.jpcc.6b11951
– ident: ref11/cit11
  doi: 10.1017/S0305004100017163
– ident: ref69/cit69
  doi: 10.1073/pnas.1409514111
– ident: ref30/cit30
  doi: 10.1007/BF02110098
– volume-title: Matrix and Linear Algebra Aided with Matlab
  year: 2016
  ident: ref78/cit78
– ident: ref88/cit88
  doi: 10.1021/ar300075f
– ident: ref95/cit95
  doi: 10.1039/C3CP53866D
– volume-title: A New Perspective on Transport
  year: 2012
  ident: ref2/cit2
– ident: ref124/cit124
  doi: 10.1080/14786445108646735
– ident: ref45/cit45
  doi: 10.1021/acs.jpcc.7b07120
– ident: ref98/cit98
  doi: 10.1021/nl5010702
– ident: ref87/cit87
  doi: 10.1021/ja800638t
– volume-title: Linear Algebra. A Modern Introduction
  year: 2014
  ident: ref128/cit128
– ident: ref75/cit75
  doi: 10.1063/1.2715932
– ident: ref97/cit97
  doi: 10.1021/acs.jpcc.7b02274
– ident: ref68/cit68
  doi: 10.1007/BF01164627
– ident: ref15/cit15
  doi: 10.1021/nl101688a
– ident: ref13/cit13
  doi: 10.1038/nchem.546
– ident: ref93/cit93
  doi: 10.1007/BF00527288
– ident: ref25/cit25
  doi: 10.1021/acs.jpcc.5b10395
– ident: ref92/cit92
  doi: 10.1007/BF00526290
– ident: ref116/cit116
  doi: 10.1007/BF00540026
– ident: ref41/cit41
  doi: 10.1063/1.3259548
– ident: ref117/cit117
  doi: 10.1246/bcsj.44.2332
– ident: ref109/cit109
  doi: 10.1021/ed069p695
– ident: ref16/cit16
  doi: 10.1021/acs.jpcc.5b10407
– ident: ref103/cit103
  doi: 10.1002/jcc.540010410
– ident: ref104/cit104
  doi: 10.1098/rspa.1952.0184
– ident: ref33/cit33
  doi: 10.1021/j100186a015
– volume-title: Numerical Methods in Computational Mechanics
  year: 2016
  ident: ref137/cit137
  doi: 10.1201/9781315368689
– volume-title: Hückel Theory for Orgnic Chemists
  year: 1978
  ident: ref66/cit66
– ident: ref121/cit121
  doi: 10.1021/acs.jpcc.7b10877
– volume-title: Electronic Transport in Mesoscopic Systems
  year: 1997
  ident: ref49/cit49
– ident: ref52/cit52
  doi: 10.1016/j.physe.2007.08.149
SSID ssj0005527
Score 2.5010111
SecondaryResourceType review_article
Snippet In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4887
SubjectTerms Electric noise
electron transfer
Electron transport
Finite element analysis
Graph theory
graphs
Hydrocarbons
Interference graphs
Lattices
Materials science
mathematical theory
Perturbation theory
Polynomials
Power series
Quantum dots
Resistance
Series expansion
Theorems
Thermal expansion
Vortices
Title Quantum Interference, Graphs, Walks, and Polynomials
URI http://dx.doi.org/10.1021/acs.chemrev.7b00733
https://www.ncbi.nlm.nih.gov/pubmed/29630345
https://www.proquest.com/docview/2100881326
https://www.proquest.com/docview/2023735212
https://www.proquest.com/docview/2131892358
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005527
  issn: 0009-2665
  databaseCode: ACS
  dateStart: 19240401
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4xeNheGDC2dSsok3jgoekax06cx6oaVEhUQ6wab9HZcTSJkk60eYBfv7s0aRkbVZ8iJbZln8--u9x9dwAneUx6bc6IHqsTX1oMfYxR-9aglblCZTMGJ1-OouFYXtyomydg9WcefBF8RUvE_-XuuCRLbKoig69gR0Q6YFurP7heRXQ0FVrZaRBFqkky9P9BWBzZ2d_i6AUds5I1Z29h1CB2FiEmt91ybrr28d8EjpstYw92a63T6y_YZB-2XHEArwdNsbd3IK9KInF551V_CGsMYMc753TWs473Eye39MAi875PJw8MZSa2PYTx2bcfg6FfF1TwkeT2nIzOzJB5ZOmUI7vfdBj2MM4CjVJnOglypSyicCpyokf3nolM7Jy0Ns7yhANR38N2MS3cR_C0s1L1UOdIOojViobRWSJD4yI0JtEtOKUVp_WBmKWVr1sEKb-syZDWZGiBaLYgtXVicq6PMVnfqbPs9HuRl2N983azt6s5CU5spMkcj1rwZfmZCM8-EyzctKQ2pNPEIQOc17QJ6GJMGHPcgg8LvlnOSdAF1wul-rQ5PT7DG9LKNIcoiLAN2_P70h2R5jM3xxW__wEdMP62
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xcGAvvPZBeQaJA4eGbRI7cY6oAspTrKBabtHYcS6UFJHmAL-emTRpxWqpllMkx7Hs8WM-Z-abAdjPIsK1GTN6jIpdYTBwMULlGo1GZBKlSZmcfHUd9vri_F7e16Qw5sJQJwpqqaiM-NPoAt4vLqNhPHJmlkhXuQa_wEIVC4UBUfd26tjRJGpl20EYyibW0L8bYa1kivda6QOoWamck2XoTzpbeZo8HJYjfWhe_4rj-NnRrMBSjUGdo_GiWYU5m6_BYrdJ_fYNxO-SBF4-OtX_wpoR2HZOObh10Xb-4OCBHpinzs1w8MLEZlrE36F_cnzX7bl1egUXSYuP6AqaarosGdrzyMY4FQQdjFJPoVCpir1MSoPoWxlav0OnoA51ZK0wJkqzmN1Sf8B8PsztOjjKGiE7qDIkRGKUpGZUGotA2xC1jlULDmjESb09iqSyfPtewoW1GJJaDC3wm5lITB2mnLNlDGZ_1J589DSO0jG7-lYzxdM--RzmSNHlPGzB3uQ1CZ4tKJjbYUl1COFEAdOdZ9Tx6JiMmYHcgp_j5TPpk0_HXScQcuP_5bELi727q8vk8uz6YhO-El5T7LzgB1swP3ou7TZhopHeqbbAGxKkBzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLeAScAL2_i8jY0i8cDDFa5t0qaP6NgNxodAgICnyknTF44eotcH-Otn99pDoO2EeKqUppHjxLFT2z8DbGUR2bUZZ_QYFbvCYOBihMo1Go3IJEqTcnLyyWl4cCX-3MibKVBNLgwRUdBIReXEZ6l-SLMaYcDb5Xaayj1XZ4l0VW9wGj5JBoFjo6h78RLc0RRrZf9BGMoGb-jfg7BmMsVrzfQfc7NSO73PcDsmuIo2udsph3rHPL_BcvzIjL7AQm2LOnujzfMVpmy-CHPdpgTcEojzkhhf3jvVf8M6M7Dt_GaQ66LtXGP_jh6Yp87ZoP_ECc60mZfhqvfrsnvg1mUWXCRtPqSraKrp0mRI9pGdcioIOhilnkKhUhV7mZQG0bcytH6HTkMd6shaYUyUZjGHp67ATD7I7Ro4yhohO6gyJMvEKEnDqDQWgbYhah2rFmzTjJNaTIqk8oD7XsKNNRuSmg0t8JvVSEwNV85VM_qTP2qPP3oYoXVM7r7eLPMLTT7DHSm6pIct2By_JsazJwVzOyipD1k6UcBpzxP6eHRcxpyJ3ILV0RYa0-TTsdcJhPz2fn5swOzZfi85Pjw9-g7zZLYpjmHwg3WYGT6W9geZRkP9s5KCv3wnCao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Interference%2C+Graphs%2C+Walks%2C+and+Polynomials&rft.jtitle=Chemical+reviews&rft.au=Tsuji%2C+Yuta&rft.au=Estrada%2C+Ernesto&rft.au=Movassagh%2C+Ramis&rft.au=Hoffmann%2C+Roald&rft.date=2018-05-23&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=118&rft.issue=10&rft.spage=4887&rft_id=info:doi/10.1021%2Facs.chemrev.7b00733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon