AnalyZr: A Python application for zircon grain image segmentation and shape analysis
Zircon grain shape is traditionally interpreted as a product of the physico-chemical conditions during crystal growth and may be modified during grain transport processes. The analysis of magmatic zircon grain shape has been proposed to inform on crystallization conditions, whereas detrital zircon g...
Saved in:
| Published in | Computers & geosciences Vol. 162; p. 105057 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-3004 1873-7803 |
| DOI | 10.1016/j.cageo.2022.105057 |
Cover
| Abstract | Zircon grain shape is traditionally interpreted as a product of the physico-chemical conditions during crystal growth and may be modified during grain transport processes. The analysis of magmatic zircon grain shape has been proposed to inform on crystallization conditions, whereas detrital zircon grain shape has been proposed to complement traditional sediment provenance analysis. Shape parameters can be automatically measured from digital images of zircon mounts; however, this requires extraction of individual grain boundaries for measurement. Existing image segmentation software may require the use of proprietary languages, or knowledge of scripting to develop automated image segmentation routines, and is typically not tailored towards the geosciences. Furthermore, the separation of touching zircon grains in images remains a challenge for existing algorithms. To facilitate zircon grain shape analysis, we present AnalyZr, an open-source graphical Python application designed to segment reflected and transmitted light images of zircons mounted in resin. A new segmentation algorithm is implemented to improve the separation of touching zircon grains. Shape parameters are automatically measured from the segmented images and may be output to a .csv or .mdb file. Two case studies demonstrate the use of the application in resolving geologically relevant information in zircon grains sourced from: i) compositionally and age-distinct granite, diorite, and gabbro samples from across Western Australia, and ii) age-distinct detrital zircons from the Canning Basin, Western Australia.
•Open-source software for segmentation and shape measurement of imaged mineral grains.•New grain separation algorithm for improved particle segmentation.•Chemically distinct host rocks show statistically significant differences in zircon shape.•Software to link shape measurements to isotopic analyses per mineral grain. |
|---|---|
| AbstractList | Zircon grain shape is traditionally interpreted as a product of the physico-chemical conditions during crystal growth and may be modified during grain transport processes. The analysis of magmatic zircon grain shape has been proposed to inform on crystallization conditions, whereas detrital zircon grain shape has been proposed to complement traditional sediment provenance analysis. Shape parameters can be automatically measured from digital images of zircon mounts; however, this requires extraction of individual grain boundaries for measurement. Existing image segmentation software may require the use of proprietary languages, or knowledge of scripting to develop automated image segmentation routines, and is typically not tailored towards the geosciences. Furthermore, the separation of touching zircon grains in images remains a challenge for existing algorithms. To facilitate zircon grain shape analysis, we present AnalyZr, an open-source graphical Python application designed to segment reflected and transmitted light images of zircons mounted in resin. A new segmentation algorithm is implemented to improve the separation of touching zircon grains. Shape parameters are automatically measured from the segmented images and may be output to a .csv or .mdb file. Two case studies demonstrate the use of the application in resolving geologically relevant information in zircon grains sourced from: i) compositionally and age-distinct granite, diorite, and gabbro samples from across Western Australia, and ii) age-distinct detrital zircons from the Canning Basin, Western Australia.
•Open-source software for segmentation and shape measurement of imaged mineral grains.•New grain separation algorithm for improved particle segmentation.•Chemically distinct host rocks show statistically significant differences in zircon shape.•Software to link shape measurements to isotopic analyses per mineral grain. Zircon grain shape is traditionally interpreted as a product of the physico-chemical conditions during crystal growth and may be modified during grain transport processes. The analysis of magmatic zircon grain shape has been proposed to inform on crystallization conditions, whereas detrital zircon grain shape has been proposed to complement traditional sediment provenance analysis. Shape parameters can be automatically measured from digital images of zircon mounts; however, this requires extraction of individual grain boundaries for measurement. Existing image segmentation software may require the use of proprietary languages, or knowledge of scripting to develop automated image segmentation routines, and is typically not tailored towards the geosciences. Furthermore, the separation of touching zircon grains in images remains a challenge for existing algorithms. To facilitate zircon grain shape analysis, we present AnalyZr, an open-source graphical Python application designed to segment reflected and transmitted light images of zircons mounted in resin. A new segmentation algorithm is implemented to improve the separation of touching zircon grains. Shape parameters are automatically measured from the segmented images and may be output to a .csv or .mdb file. Two case studies demonstrate the use of the application in resolving geologically relevant information in zircon grains sourced from: i) compositionally and age-distinct granite, diorite, and gabbro samples from across Western Australia, and ii) age-distinct detrital zircons from the Canning Basin, Western Australia. |
| ArticleNumber | 105057 |
| Author | Kirkland, C.L. Barham, M. Scharf, T. Daggitt, M.L. Puzyrev, V. |
| Author_xml | – sequence: 1 givenname: T. orcidid: 0000-0002-2791-430X surname: Scharf fullname: Scharf, T. email: t.scharf@postgrad.curtin.edu.au organization: Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Western Australia, 6102, Australia – sequence: 2 givenname: C.L. surname: Kirkland fullname: Kirkland, C.L. organization: Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Western Australia, 6102, Australia – sequence: 3 givenname: M.L. surname: Daggitt fullname: Daggitt, M.L. organization: School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK – sequence: 4 givenname: M. orcidid: 0000-0003-0392-7306 surname: Barham fullname: Barham, M. organization: Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Western Australia, 6102, Australia – sequence: 5 givenname: V. surname: Puzyrev fullname: Puzyrev, V. organization: Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Western Australia, 6102, Australia |
| BookMark | eNqNkL1OwzAURj0UiRZ4ApaMLC03iRMnSAxVxZ9UCYaysFg3zk3rKnWCnYLC0-MSJgZg8mf7ns_WmbCRaQwxdh7CLIQwvdzOFK6pmUUQRf4kgUSM2Bggz6YxAD9mE-e2AP42S8ZsNTdY9y_2KpgHT323aUyAbVtrhZ32uWps8KGt8nFtUZtA73x54Gi9I9MNM2jKwG2wJZ98l9PulB1VWDs6-15P2PPtzWpxP10-3j0s5sspcuDdtFAQcYGZKEIEAWmVUylEEeVJlog0SSLkHArBQ-H3mSizjDAPVS5KhJKneXzC-NC7Ny3271jXsrX-h7aXIciDDbmVXzbkwYYcbHjsYsBa27zuyXVyp52iukZDzd7JSIRZFMdpfBiNh1FlG-csVf98IP9BKT3I6rzE-g_2emDJi3vTZKVTmoyiUltSnSwb_Sv_CbDYnjE |
| CitedBy_id | crossref_primary_10_1016_j_epsl_2024_118745 crossref_primary_10_1007_s10044_023_01195_3 crossref_primary_10_3390_min12091112 crossref_primary_10_1029_2023GC011018 crossref_primary_10_1007_s00603_024_03955_x crossref_primary_10_5194_gchron_5_109_2023 crossref_primary_10_1016_j_cageo_2023_105455 crossref_primary_10_1080_17445647_2023_2282593 crossref_primary_10_1002_gj_5038 crossref_primary_10_1016_j_palwor_2022_11_001 crossref_primary_10_1016_j_jsames_2023_104677 crossref_primary_10_1007_s12145_024_01478_1 crossref_primary_10_1016_j_gsf_2023_101579 |
| Cites_doi | 10.1016/j.gsf.2018.04.001 10.1111/bre.12204 10.1016/j.enggeo.2007.05.005 10.1038/nmeth.2019 10.1016/j.cretres.2021.104955 10.1093/petrology/egl013 10.1016/0009-2541(93)90245-E 10.1016/j.precamres.2021.106343 10.1007/BF00321749 10.2138/am-2001-8-909 10.1016/S0037-0738(98)00118-3 10.2113/0530469 10.1038/nmeth.2089 10.1016/j.compind.2012.05.005 10.1038/s41598-018-26200-2 10.1002/gj.3225 10.1038/s41592-019-0686-2 10.1016/j.biosystemseng.2010.10.011 10.1130/G38000.1 10.3390/min9070438 10.1016/j.sedgeo.2016.06.016 10.1016/j.cageo.2019.05.009 10.1016/j.sedgeo.2016.09.010 10.1016/0146-664X(82)90034-X 10.1016/j.earscirev.2020.103093 10.1007/BF00381441 10.1016/j.cageo.2019.104391 10.1016/j.epsl.2019.115953 10.1016/j.gsf.2017.04.004 10.7717/peerj.453 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.cageo.2022.105057 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| ExternalDocumentID | 10.1016/j.cageo.2022.105057 10_1016_j_cageo_2022_105057 S0098300422000231 |
| GeographicLocations | Western Australia |
| GeographicLocations_xml | – name: Western Australia |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSH SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG SSE ~HD 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-a404t-bc0247a87b1a0706f9ed77b2958576552a440b741785787d88ea91c97da0d4693 |
| IEDL.DBID | .~1 |
| ISSN | 0098-3004 1873-7803 |
| IngestDate | Tue Aug 19 22:37:20 EDT 2025 Sun Sep 28 02:39:22 EDT 2025 Thu Oct 02 04:39:11 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Boundary detection Grain separation Shape measurement Zircon provenance analysis Particle segmentation |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a404t-bc0247a87b1a0706f9ed77b2958576552a440b741785787d88ea91c97da0d4693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0392-7306 0000-0002-2791-430X |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0098300422000231 |
| PQID | 2718233637 |
| PQPubID | 24069 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cageo_2022_105057 proquest_miscellaneous_2718233637 crossref_primary_10_1016_j_cageo_2022_105057 crossref_citationtrail_10_1016_j_cageo_2022_105057 elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105057 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Vavra (bib41) 1993; 110 Mebatsion, Paliwal (bib26) 2011; 108 van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (bib40) 2014 Kirkland, Wingate, Evins (bib18) 2011 Campaña, Benito-Calvo, Pérez-González, Bermúdez de Castro, Carbonell (bib7) 2016; 346 Schneider, Rasband, Eliceiri (bib33) 2012; 9 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bib32) 2012; 9 Sláma, Košler (bib37) 2012; 13 Tunwal, Mulchrone, Meere (bib39) 2020; 135 Barham, Kirkland, Reynolds, O’Leary, Evans, Allen, Haines, Hocking, McDonald, Belousova, Goodall (bib3) 2016; 44 Vermeesch (bib43) 2018; 9 Morton, Hallsworth (bib27) 1999; 124 Bradski (bib6) 2000 Yue, Yue, Zhang, Liu, Song (bib47) 2019; 9 Nelson, D. R. 1999, Compilation of geochronology data, 1998: Western Australia Geological Survey, Record 1999/2, 222p. . Shoji, Noguchi, Otsuki, Hino (bib36) 2018; 8 Dröllner, Barham, Kirkland, Ware (bib13) 2021 Zutterkirch, Kirkland, Barham, Elders (bib50) 2021 Cox, Budhu (bib12) 2008; 96 Ferreira, Rasband (bib14) 2012 Maitre, Bouchard, Bédard (bib21) 2019; 130 Benisek, Finger (bib4) 1993; 114 Chew, O’Sullivan, Caracciolo, Mark, Tyrrell (bib9) 2020; 202 Shaanan, Rosenbaum (bib35) 2018; 30 Pupin (bib31) 1980; 73 Kirkland, Barham, Danišík (bib17) 2020; 531 Mebatsion, Paliwal (bib25) 2012; 63 OpenCV, 2016. OpenCV-Python Tutorials. URL scikit-imageorg (bib34) 2021 Lu, Wingate, Maidment (bib20) 2018 Zeh, Cabral (bib48) 2021; 364 Makuluni, Kirkland, Barham (bib22) 2019; 54 Balan, Neuville, Trocellier, Fritsch, Muller, Calas (bib2) 2001; 86 Abràmoff, Magalhães, Ram (bib1) 2004; 11 Chae, Ha, Choi, Kim, Kim, Lim (bib8) 2021 Nelson (bib29) 1997 Blidh (bib5) 2016 Janoušek, Farrow, Erban (bib16) 2006; 47 Wingate, Lu, Normore, Haines (bib45) 2021 Gillies (bib15) 2007 Markwitz, Kirkland, Mehnert, Gessner, Shaw (bib24) 2017; 18 Wingate, Hickman (bib46) 2009 Kuhl, Giardina (bib19) 1982; 18 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, Vijaykumar, Bardelli, Rothberg, Hilboll, Kloeckner, Scopatz, Lee, Rokem, Woods, Fulton, Masson, Häggström, Fitzgerald, Nicholson, Hagen, Pasechnik, Olivetti, Martin, Wieser, Silva, Lenders, Wilhelm, Young, Price, Ingold, Allen, Lee, Audren, Probst, Dietrich, Silterra, Webber, Slavič, Nothman, Buchner, Kulick, Schönberger, de Miranda Cardoso, Reimer, Harrington, Rodríguez, Nunez-Iglesias, Kuczynski, Tritz, Thoma, Newville, Kümmerer, Bolingbroke, Tartre, Pak, Smith, Nowaczyk, Shebanov, Pavlyk, Brodtkorb, Lee, McGibbon, Feldbauer, Lewis, Tygier, Sievert, Vigna, Peterson, More, Pudlik, Oshima, Pingel, Robitaille, Spura, Jones, Cera, Leslie, Zito, Krauss, Upadhyay, Halchenko, Vázquez-Baeza (bib44) 2020; 17 Zoleikhaei, Frei, Morton, Zamanzadeh (bib49) 2016; 342 Chinga (bib10) 2005 Corfu, Hanchar, Hoskin, Kinny (bib11) 2003; 53 Markwitz, Kirkland (bib23) 2018; 9 Janoušek (10.1016/j.cageo.2022.105057_bib16) 2006; 47 Shaanan (10.1016/j.cageo.2022.105057_bib35) 2018; 30 Pupin (10.1016/j.cageo.2022.105057_bib31) 1980; 73 Chew (10.1016/j.cageo.2022.105057_bib9) 2020; 202 Makuluni (10.1016/j.cageo.2022.105057_bib22) 2019; 54 Cox (10.1016/j.cageo.2022.105057_bib12) 2008; 96 Mebatsion (10.1016/j.cageo.2022.105057_bib25) 2012; 63 10.1016/j.cageo.2022.105057_bib30 Virtanen (10.1016/j.cageo.2022.105057_bib44) 2020; 17 Sláma (10.1016/j.cageo.2022.105057_bib37) 2012; 13 Vermeesch (10.1016/j.cageo.2022.105057_bib43) 2018; 9 Morton (10.1016/j.cageo.2022.105057_bib27) 1999; 124 Shoji (10.1016/j.cageo.2022.105057_bib36) 2018; 8 Markwitz (10.1016/j.cageo.2022.105057_bib23) 2018; 9 Benisek (10.1016/j.cageo.2022.105057_bib4) 1993; 114 Chae (10.1016/j.cageo.2022.105057_bib8) 2021 Markwitz (10.1016/j.cageo.2022.105057_bib24) 2017; 18 Nelson (10.1016/j.cageo.2022.105057_bib29) 1997 Bradski (10.1016/j.cageo.2022.105057_bib6) 2000 Wingate (10.1016/j.cageo.2022.105057_bib45) 2021 Kirkland (10.1016/j.cageo.2022.105057_bib18) 2011 Lu (10.1016/j.cageo.2022.105057_bib20) 2018 Zeh (10.1016/j.cageo.2022.105057_bib48) 2021; 364 scikit-imageorg (10.1016/j.cageo.2022.105057_bib34) 2021 Zutterkirch (10.1016/j.cageo.2022.105057_bib50) 2021 Maitre (10.1016/j.cageo.2022.105057_bib21) 2019; 130 Zoleikhaei (10.1016/j.cageo.2022.105057_bib49) 2016; 342 Campaña (10.1016/j.cageo.2022.105057_bib7) 2016; 346 Yue (10.1016/j.cageo.2022.105057_bib47) 2019; 9 Dröllner (10.1016/j.cageo.2022.105057_bib13) 2021 Tunwal (10.1016/j.cageo.2022.105057_bib39) 2020; 135 Schneider (10.1016/j.cageo.2022.105057_bib33) 2012; 9 Ferreira (10.1016/j.cageo.2022.105057_bib14) 2012 Barham (10.1016/j.cageo.2022.105057_bib3) 2016; 44 Corfu (10.1016/j.cageo.2022.105057_bib11) 2003; 53 Chinga (10.1016/j.cageo.2022.105057_bib10) 2005 Schindelin (10.1016/j.cageo.2022.105057_bib32) 2012; 9 Balan (10.1016/j.cageo.2022.105057_bib2) 2001; 86 10.1016/j.cageo.2022.105057_bib28 Wingate (10.1016/j.cageo.2022.105057_bib46) 2009 Mebatsion (10.1016/j.cageo.2022.105057_bib26) 2011; 108 Gillies (10.1016/j.cageo.2022.105057_bib15) 2007 van der Walt (10.1016/j.cageo.2022.105057_bib40) 2014 Abràmoff (10.1016/j.cageo.2022.105057_bib1) 2004; 11 Kirkland (10.1016/j.cageo.2022.105057_bib17) 2020; 531 Blidh (10.1016/j.cageo.2022.105057_bib5) 2016 Vavra (10.1016/j.cageo.2022.105057_bib41) 1993; 110 Kuhl (10.1016/j.cageo.2022.105057_bib19) 1982; 18 |
| References_xml | – volume: 73 start-page: 207 year: 1980 end-page: 220 ident: bib31 article-title: Zircon and granite petrology publication-title: Contrib. Mineral. Petrol. – volume: 11 start-page: 36 year: 2004 end-page: 41 ident: bib1 article-title: Image processing with ImageJ publication-title: Biophot. Int. – volume: 202 year: 2020 ident: bib9 article-title: Sourcing the sand: accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis publication-title: Earth Sci. Rev. – volume: 63 start-page: 723 year: 2012 end-page: 730 ident: bib25 article-title: Machine vision based automatic separation of touching convex shaped objects publication-title: Comput. Ind. – year: 2018 ident: bib20 article-title: 189936: biotite– hornblende granodiorite, Lewis Range; Geochronology Record 1511 – volume: 13 start-page: 1 year: 2012 end-page: 17 ident: bib37 article-title: Effects of sampling and mineral separation on accuracy of detrital zircon studies publication-title: G-cubed – year: 2007 ident: bib15 article-title: Shapely: Manipulation and Analysis of Geometric Objects – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: bib44 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – volume: 9 year: 2019 ident: bib47 article-title: Morphology of detrital zircon as a fingerprint to trace sediment provenance: case study of the Yangtze Delta publication-title: Minerals – volume: 108 start-page: 66 year: 2011 end-page: 74 ident: bib26 article-title: A Fourier analysis based algorithm to separate touching kernels in digital images publication-title: Biosyst. Eng. – reference: OpenCV, 2016. OpenCV-Python Tutorials. URL – volume: 114 start-page: 441 year: 1993 end-page: 451 ident: bib4 article-title: Factors controlling the development of prism faces in granite zircons: a microprobe study publication-title: Contrib. Mineral. Petrol. – volume: 531 year: 2020 ident: bib17 article-title: Find a match with triple-dating : antarctic sub-ice zircon detritus on the modern shore of Western Australia publication-title: Earth Planet Sci. Lett. – year: 2021 ident: bib8 article-title: Detrital zircon provenance of the Lower Cretaceous Duwon Formation based on LA-MC-ICPMS U-Pb ages and morphology in the Goheung area, southern Korea: a new supply mechanism of Early Cretaceous zircons publication-title: Cretac. Res. – volume: 54 year: 2019 ident: bib22 article-title: Zircon grain-shape holds provenance information ; a case study from southwestern Australia publication-title: Geol. J. – volume: 346 start-page: 72 year: 2016 end-page: 83 ident: bib7 article-title: Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site (Burgos, Spain) publication-title: Sediment. Geol. – year: 2021 ident: bib50 article-title: Thin-section detrital zircon geochronology mitigates bias in provenance investigations publication-title: J. Geol. Soc. – volume: 9 start-page: 415 year: 2018 end-page: 430 ident: bib23 article-title: Source to sink zircon grain shape: constraints on selective preservation and significance for Western Australian Proterozoic basin provenance publication-title: Geosci. Front. – volume: 124 start-page: 3 year: 1999 end-page: 29 ident: bib27 article-title: Processes controlling the composition of heavy mineral assemblages in sandstones publication-title: Sediment. Geol. – reference: Nelson, D. R. 1999, Compilation of geochronology data, 1998: Western Australia Geological Survey, Record 1999/2, 222p. – year: 2005 ident: bib10 article-title: Shape Descriptors – volume: 342 start-page: 106 year: 2016 end-page: 117 ident: bib49 article-title: Roundness of heavy minerals (zircon and apatite) as a provenance tool for unraveling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran publication-title: Sediment. Geol. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib33 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: bib36 article-title: Classification of volcanic ash particles using a convolutional neural network and probability publication-title: Sci Rep – year: 2021 ident: bib45 publication-title: 195464: quartz sandstone, Sally May 2; Geochronology Record 1755 – volume: 53 start-page: 469 year: 2003 end-page: 500 ident: bib11 article-title: Atlas of zircon textures publication-title: Rev. Mineral. Geochem. – year: 2021 ident: bib34 article-title: Scikit-Image 0.18.0 Docs – year: 2016 ident: bib5 article-title: PyEFD – volume: 96 start-page: 1 year: 2008 end-page: 16 ident: bib12 article-title: A practical approach to grain shape quantification publication-title: Eng. Geol. – year: 2014 ident: bib40 article-title: scikit-image: image processing in Python publication-title: PeerJ – year: 2000 ident: bib6 article-title: The OpenCV Library – volume: 18 start-page: 4655 year: 2017 end-page: 4673 ident: bib24 article-title: 3-D characterization of detrital zircon grains and its implications for fluvial transport, mixing, and preservation bias publication-title: G-cubed – volume: 9 start-page: 1479 year: 2018 end-page: 1493 ident: bib43 article-title: IsoplotR: a free and open toolbox for geochronology publication-title: Geosci. Front. – year: 2011 ident: bib18 article-title: 194763: gabbro, Jamieson Range; Geochronology Record 964 – year: 2012 ident: bib14 article-title: ImageJ User Guide – start-page: 1 year: 2021 end-page: 8 ident: bib13 article-title: Every zircon deserves a date: selection bias in detrital geochronology publication-title: Geol. Mag. – volume: 18 start-page: 236 year: 1982 end-page: 258 ident: bib19 article-title: Elliptic fourier features of a closed contour publication-title: Comput. Graph. Image Process. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib32 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 47 start-page: 1255 year: 2006 end-page: 1259 ident: bib16 article-title: Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit) publication-title: J. Petrol. – volume: 30 start-page: 36 year: 2018 end-page: 47 ident: bib35 article-title: Detrital zircons as palaeodrainage indicators: insights into southeastern Gondwana from Permian basins in eastern Australia publication-title: Basin Res. – volume: 86 start-page: 1025 year: 2001 end-page: 1033 ident: bib2 article-title: Metamictization and chemical durability of detrital zircon publication-title: Am. Mineral. – volume: 130 start-page: 84 year: 2019 end-page: 93 ident: bib21 article-title: Mineral grains recognition using computer vision and machine learning publication-title: Comput. Geosci. – year: 2009 ident: bib46 article-title: 178164: Leucogabbro, Bottom Bore; Geochronology Record 803 – reference: . – volume: 110 start-page: 15 year: 1993 end-page: 28 ident: bib41 article-title: A guide to quantitative morphology of accessory zircon publication-title: Chem. Geol. – year: 1997 ident: bib29 article-title: Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1996 – volume: 135 year: 2020 ident: bib39 article-title: Image based particle shape analysis toolbox (IPSAT) publication-title: Comput. Geosci. – volume: 44 start-page: 643 year: 2016 end-page: 646 ident: bib3 article-title: The answers are blowin’ in the wind: ultra-distal ashfall zircons, indicators of Cretaceous super-eruptions in eastern Gondwana publication-title: Geology – volume: 364 year: 2021 ident: bib48 article-title: Combining detrital zircon shape and U–Pb–Hf isotope analyses for provenance studies – an example from the Aquiri region, Amazon Craton, Brazil publication-title: Precambrian Res. – year: 2007 ident: 10.1016/j.cageo.2022.105057_bib15 – volume: 9 start-page: 1479 year: 2018 ident: 10.1016/j.cageo.2022.105057_bib43 article-title: IsoplotR: a free and open toolbox for geochronology publication-title: Geosci. Front. doi: 10.1016/j.gsf.2018.04.001 – year: 2011 ident: 10.1016/j.cageo.2022.105057_bib18 – year: 2009 ident: 10.1016/j.cageo.2022.105057_bib46 – year: 2012 ident: 10.1016/j.cageo.2022.105057_bib14 – volume: 30 start-page: 36 year: 2018 ident: 10.1016/j.cageo.2022.105057_bib35 article-title: Detrital zircons as palaeodrainage indicators: insights into southeastern Gondwana from Permian basins in eastern Australia publication-title: Basin Res. doi: 10.1111/bre.12204 – volume: 96 start-page: 1 year: 2008 ident: 10.1016/j.cageo.2022.105057_bib12 article-title: A practical approach to grain shape quantification publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.05.005 – ident: 10.1016/j.cageo.2022.105057_bib28 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.cageo.2022.105057_bib32 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – year: 2021 ident: 10.1016/j.cageo.2022.105057_bib8 article-title: Detrital zircon provenance of the Lower Cretaceous Duwon Formation based on LA-MC-ICPMS U-Pb ages and morphology in the Goheung area, southern Korea: a new supply mechanism of Early Cretaceous zircons publication-title: Cretac. Res. doi: 10.1016/j.cretres.2021.104955 – year: 2021 ident: 10.1016/j.cageo.2022.105057_bib50 article-title: Thin-section detrital zircon geochronology mitigates bias in provenance investigations publication-title: J. Geol. Soc. – volume: 47 start-page: 1255 year: 2006 ident: 10.1016/j.cageo.2022.105057_bib16 article-title: Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit) publication-title: J. Petrol. doi: 10.1093/petrology/egl013 – volume: 110 start-page: 15 year: 1993 ident: 10.1016/j.cageo.2022.105057_bib41 article-title: A guide to quantitative morphology of accessory zircon publication-title: Chem. Geol. doi: 10.1016/0009-2541(93)90245-E – year: 2021 ident: 10.1016/j.cageo.2022.105057_bib45 – year: 2016 ident: 10.1016/j.cageo.2022.105057_bib5 – volume: 364 year: 2021 ident: 10.1016/j.cageo.2022.105057_bib48 article-title: Combining detrital zircon shape and U–Pb–Hf isotope analyses for provenance studies – an example from the Aquiri region, Amazon Craton, Brazil publication-title: Precambrian Res. doi: 10.1016/j.precamres.2021.106343 – volume: 114 start-page: 441 year: 1993 ident: 10.1016/j.cageo.2022.105057_bib4 article-title: Factors controlling the development of prism faces in granite zircons: a microprobe study publication-title: Contrib. Mineral. Petrol. doi: 10.1007/BF00321749 – volume: 86 start-page: 1025 year: 2001 ident: 10.1016/j.cageo.2022.105057_bib2 article-title: Metamictization and chemical durability of detrital zircon publication-title: Am. Mineral. doi: 10.2138/am-2001-8-909 – year: 2018 ident: 10.1016/j.cageo.2022.105057_bib20 – volume: 124 start-page: 3 year: 1999 ident: 10.1016/j.cageo.2022.105057_bib27 article-title: Processes controlling the composition of heavy mineral assemblages in sandstones publication-title: Sediment. Geol. doi: 10.1016/S0037-0738(98)00118-3 – volume: 53 start-page: 469 year: 2003 ident: 10.1016/j.cageo.2022.105057_bib11 article-title: Atlas of zircon textures publication-title: Rev. Mineral. Geochem. doi: 10.2113/0530469 – ident: 10.1016/j.cageo.2022.105057_bib30 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.cageo.2022.105057_bib33 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – year: 2021 ident: 10.1016/j.cageo.2022.105057_bib34 – volume: 63 start-page: 723 year: 2012 ident: 10.1016/j.cageo.2022.105057_bib25 article-title: Machine vision based automatic separation of touching convex shaped objects publication-title: Comput. Ind. doi: 10.1016/j.compind.2012.05.005 – volume: 11 start-page: 36 year: 2004 ident: 10.1016/j.cageo.2022.105057_bib1 article-title: Image processing with ImageJ publication-title: Biophot. Int. – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.cageo.2022.105057_bib36 article-title: Classification of volcanic ash particles using a convolutional neural network and probability publication-title: Sci Rep doi: 10.1038/s41598-018-26200-2 – year: 1997 ident: 10.1016/j.cageo.2022.105057_bib29 – start-page: 1 year: 2021 ident: 10.1016/j.cageo.2022.105057_bib13 article-title: Every zircon deserves a date: selection bias in detrital geochronology publication-title: Geol. Mag. – volume: 54 year: 2019 ident: 10.1016/j.cageo.2022.105057_bib22 article-title: Zircon grain-shape holds provenance information ; a case study from southwestern Australia publication-title: Geol. J. doi: 10.1002/gj.3225 – volume: 13 start-page: 1 year: 2012 ident: 10.1016/j.cageo.2022.105057_bib37 article-title: Effects of sampling and mineral separation on accuracy of detrital zircon studies publication-title: G-cubed – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.cageo.2022.105057_bib44 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 18 start-page: 4655 year: 2017 ident: 10.1016/j.cageo.2022.105057_bib24 article-title: 3-D characterization of detrital zircon grains and its implications for fluvial transport, mixing, and preservation bias publication-title: G-cubed – volume: 108 start-page: 66 year: 2011 ident: 10.1016/j.cageo.2022.105057_bib26 article-title: A Fourier analysis based algorithm to separate touching kernels in digital images publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2010.10.011 – volume: 44 start-page: 643 year: 2016 ident: 10.1016/j.cageo.2022.105057_bib3 article-title: The answers are blowin’ in the wind: ultra-distal ashfall zircons, indicators of Cretaceous super-eruptions in eastern Gondwana publication-title: Geology doi: 10.1130/G38000.1 – year: 2005 ident: 10.1016/j.cageo.2022.105057_bib10 – volume: 9 year: 2019 ident: 10.1016/j.cageo.2022.105057_bib47 article-title: Morphology of detrital zircon as a fingerprint to trace sediment provenance: case study of the Yangtze Delta publication-title: Minerals doi: 10.3390/min9070438 – volume: 342 start-page: 106 year: 2016 ident: 10.1016/j.cageo.2022.105057_bib49 article-title: Roundness of heavy minerals (zircon and apatite) as a provenance tool for unraveling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran publication-title: Sediment. Geol. doi: 10.1016/j.sedgeo.2016.06.016 – volume: 130 start-page: 84 year: 2019 ident: 10.1016/j.cageo.2022.105057_bib21 article-title: Mineral grains recognition using computer vision and machine learning publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.05.009 – volume: 346 start-page: 72 year: 2016 ident: 10.1016/j.cageo.2022.105057_bib7 article-title: Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site (Burgos, Spain) publication-title: Sediment. Geol. doi: 10.1016/j.sedgeo.2016.09.010 – volume: 18 start-page: 236 year: 1982 ident: 10.1016/j.cageo.2022.105057_bib19 article-title: Elliptic fourier features of a closed contour publication-title: Comput. Graph. Image Process. doi: 10.1016/0146-664X(82)90034-X – volume: 202 year: 2020 ident: 10.1016/j.cageo.2022.105057_bib9 article-title: Sourcing the sand: accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103093 – volume: 73 start-page: 207 year: 1980 ident: 10.1016/j.cageo.2022.105057_bib31 article-title: Zircon and granite petrology publication-title: Contrib. Mineral. Petrol. doi: 10.1007/BF00381441 – volume: 135 year: 2020 ident: 10.1016/j.cageo.2022.105057_bib39 article-title: Image based particle shape analysis toolbox (IPSAT) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104391 – volume: 531 year: 2020 ident: 10.1016/j.cageo.2022.105057_bib17 article-title: Find a match with triple-dating : antarctic sub-ice zircon detritus on the modern shore of Western Australia publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2019.115953 – volume: 9 start-page: 415 year: 2018 ident: 10.1016/j.cageo.2022.105057_bib23 article-title: Source to sink zircon grain shape: constraints on selective preservation and significance for Western Australian Proterozoic basin provenance publication-title: Geosci. Front. doi: 10.1016/j.gsf.2017.04.004 – year: 2014 ident: 10.1016/j.cageo.2022.105057_bib40 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – year: 2000 ident: 10.1016/j.cageo.2022.105057_bib6 |
| SSID | ssj0002285 |
| Score | 2.4329925 |
| Snippet | Zircon grain shape is traditionally interpreted as a product of the physico-chemical conditions during crystal growth and may be modified during grain... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105057 |
| SubjectTerms | algorithms automation basins Boundary detection computer software crystallization diorite Grain separation granite image analysis Particle segmentation provenance Python sediments Shape measurement Western Australia zircon Zircon provenance analysis |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IT75LU5UIvhoR5u0TevbEKcIjj1soL6EJE392rqxdcj213vpx5iiY7714ZK0uUvvd1zudwhduKEEVE890EBMLJM6swLqKohSPBEzP1SBZwqcH1r-Xde9f_QeC55tUwvzLX-f3cNScK5MlR4hpictwIt1VPU9AN4VVO222o2nkhXTcEeZ8Cpg1GKBTUuOod9n-csPLeDMzUkyFNNP0estuJzmdl7LPc6YCs1Nk4_6JJV1NfvB47ji1-ygrQJ64kZuK7toTSd7aOM2a-073UedjJ_keXSFG7g9NZQCeCG7jQHc4tnbCMJn_GLaSuC3PiyCx_qlX5QvgXwS4fGrGGp4yrlODlC3edO5vrOKnguWcG03taQCp81EwKQj4G_gx6GOGJMkhLCC-Z5HhOvaEmAIC8xZj4JAi9BRIYuEHUGoTQ9RJRkk-gjhkMpYShFDBKNcxwaZGCbXjnJiEkcsrCFSaoCrgpDc9MXo8fLm2TvPtoub7eL5dtXQ5XzQMOfjWC7ul6rlBaTIoQIH1SwfeF4aAocDZ7IoItGDyZgT8OaEUp-CjDW3kFVe5vif8ieoko4m-hRQTyrPCmv_AkoY-nw priority: 102 providerName: Unpaywall |
| Title | AnalyZr: A Python application for zircon grain image segmentation and shape analysis |
| URI | https://dx.doi.org/10.1016/j.cageo.2022.105057 https://www.proquest.com/docview/2718233637 https://doi.org/10.1016/j.cageo.2022.105057 |
| UnpaywallVersion | publishedVersion |
| Volume | 162 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0098-3004 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002285 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0098-3004 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002285 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0098-3004 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002285 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0098-3004 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002285 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0098-3004 databaseCode: AKRWK dateStart: 19930101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iiL6Inzg_RgQfrbZp2jS-DXFOxeGDg-lLSNp0TrY69oHMB_92L2mrE2SIT_3gWo67XO6O3P0OoWPKFUT1fgAaSIljjs6cyKcxZCmBTFnI4ygwDc53zbDRojftoL2ALspeGFNWWez9-Z5ud-vizVkhzbNBt2t6fHnkWwwri9piO9gpM1MMTj--yzwIiYISN9NQl8hDtsYrBps1HYCEmHm3rvFRv3unmehzZZIN5PRN9nozjqi-jtaKCBLXciY30ILONtHylZ3QO91CDxZm5Gl4jmv4fmqQAfDMITWGGBW_d4eQBeOOmQ6Bu33gDo90p190IQF9luDRsxxouMshS7ZRq375cNFwitEJjqQuHTsqBt_LZMSUJ8Gow5TrhDFFOGQHLAwCIil1FUQTLDImm0SRltyLOUukm0DG7O-gxew107sIc1-lSskUEpGYei7QpPBz7cVeStKE8QoipchEXOCKm_EWPVEWkL0IK2dh5CxyOVfQyddHgxxWYz55WOpC_FgdAjb--R8elZoTYDfmMERm-nUyEgScMvH90Aca50ulf2Fm77_M7KNV85SXSx6gxfFwog8hpBmrql2zVbRUu75tNOHaat7XHj8BY2L0Dw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEX0RP3F-RvDRapumTePbGM6pm_iwgfgSkjadk60b-0Dmg3-7l37oBBniW2kvJdzlvsjd7xA6o1xBVO96IIGYWObqzApcGkKW4smY-TwMPNPg3Hzw62169-Q9lVC16IUxZZW57c9semqt8zeXOTcvh92u6fHlgZtiWKWoLZACLVOPMJOBXXx813kQEngFcKYhL6CH0iKvEJTWtAASYgbe2sZJ_e6e5sLP1WkylLM32evNeaLaBlrPQ0hcyXa5iUo62UIrN-mI3tk2aqU4I8-jK1zBjzMDDYDnbqkxBKn4vTuCNBh3zHgI3O3D7vBYd_p5GxLQJxEev8ihhqcMs2QHtWvXrWrdymcnWJLadGKpEJwvkwFTjgSt9mOuI8YU4ZAeMN_ziKTUVhBOsMDobBQEWnIn5CySdgQps7uLlpJBovcQ5q6KlZIxZCIhdWygieHn2gmdmMQR42VECpaJMAcWN_MteqKoIHsVKZ-F4bPI-FxG51-LhhmuxmJyv5CF-HE8BFj-xQtPC8kJUBxzGyITPZiOBQGvTFzXd4HG-hLpXzaz_9_NnKDVeqvZEI3bh_sDtGa-ZLWTh2hpMprqI4hvJuo4Pb-fauDz9A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IT75LU5UIvhoR5u0TevbEKcIjj1soL6EJE392rqxdcj213vpx5iiY7714ZK0uUvvd1zudwhduKEEVE890EBMLJM6swLqKohSPBEzP1SBZwqcH1r-Xde9f_QeC55tUwvzLX-f3cNScK5MlR4hpictwIt1VPU9AN4VVO222o2nkhXTcEeZ8Cpg1GKBTUuOod9n-csPLeDMzUkyFNNP0estuJzmdl7LPc6YCs1Nk4_6JJV1NfvB47ji1-ygrQJ64kZuK7toTSd7aOM2a-073UedjJ_keXSFG7g9NZQCeCG7jQHc4tnbCMJn_GLaSuC3PiyCx_qlX5QvgXwS4fGrGGp4yrlODlC3edO5vrOKnguWcG03taQCp81EwKQj4G_gx6GOGJMkhLCC-Z5HhOvaEmAIC8xZj4JAi9BRIYuEHUGoTQ9RJRkk-gjhkMpYShFDBKNcxwaZGCbXjnJiEkcsrCFSaoCrgpDc9MXo8fLm2TvPtoub7eL5dtXQ5XzQMOfjWC7ul6rlBaTIoQIH1SwfeF4aAocDZ7IoItGDyZgT8OaEUp-CjDW3kFVe5vif8ieoko4m-hRQTyrPCmv_AkoY-nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AnalyZr%3A+A+Python+application+for+zircon+grain+image+segmentation+and+shape+analysis&rft.jtitle=Computers+%26+geosciences&rft.au=Scharf%2C+T.&rft.au=Kirkland%2C+C.L.&rft.au=Daggitt%2C+M.L.&rft.au=Barham%2C+M.&rft.date=2022-05-01&rft.issn=0098-3004&rft.volume=162&rft.spage=105057&rft_id=info:doi/10.1016%2Fj.cageo.2022.105057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2022_105057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |