Ligand-Dependent Optical Properties of Colloidal Ternary Spinel Oxide Nanocrystals Containing Transition Metals

Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocataly...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 64; no. 29; pp. 15152 - 15164
Main Authors Rajan, Revathy, Scalia, Jordan C., De Jesús Báez, Luis R., Knowles, Kathryn E.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.07.2025
Online AccessGet full text
ISSN0020-1669
1520-510X
1520-510X
DOI10.1021/acs.inorgchem.5c02179

Cover

Abstract Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocatalysis, solar energy conversion, gas sensing, and photoelectrochemistry. Nanocrystals of these materials offer the additional advantages of high surface area-to-volume ratios and the ability to use surface functionalization as a plausible strategy for tailoring their optoelectronic properties to improve their function in a specific application. Here, we demonstrate that surface-bound species can dominate the absorption spectra of colloidal ternary spinel oxide nanocrystals. We show that the surface functionalization of cobalt-containing systems with thiol ligands leads to the growth of an intense peak centered at 2.4 eV (518 nm) in their absorption spectra, which arises due to the formation of cobalt-thiolate linkages on the nanocrystal surface. We demonstrate that the observed optical change can be used to track ligand exchange reactions and assess the relative binding affinity of thiol, amine, and carboxylate ligands to the nanocrystal surface. This work highlights the significant role that surface chemistry can play in determining the optical properties of ternary spinel oxide nanocrystals.
AbstractList Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocatalysis, solar energy conversion, gas sensing, and photoelectrochemistry. Nanocrystals of these materials offer the additional advantages of high surface area-to-volume ratios and the ability to use surface functionalization as a plausible strategy for tailoring their optoelectronic properties to improve their function in a specific application. Here, we demonstrate that surface-bound species can dominate the absorption spectra of colloidal ternary spinel oxide nanocrystals. We show that the surface functionalization of cobalt-containing systems with thiol ligands leads to the growth of an intense peak centered at 2.4 eV (518 nm) in their absorption spectra, which arises due to the formation of cobalt-thiolate linkages on the nanocrystal surface. We demonstrate that the observed optical change can be used to track ligand exchange reactions and assess the relative binding affinity of thiol, amine, and carboxylate ligands to the nanocrystal surface. This work highlights the significant role that surface chemistry can play in determining the optical properties of ternary spinel oxide nanocrystals.Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocatalysis, solar energy conversion, gas sensing, and photoelectrochemistry. Nanocrystals of these materials offer the additional advantages of high surface area-to-volume ratios and the ability to use surface functionalization as a plausible strategy for tailoring their optoelectronic properties to improve their function in a specific application. Here, we demonstrate that surface-bound species can dominate the absorption spectra of colloidal ternary spinel oxide nanocrystals. We show that the surface functionalization of cobalt-containing systems with thiol ligands leads to the growth of an intense peak centered at 2.4 eV (518 nm) in their absorption spectra, which arises due to the formation of cobalt-thiolate linkages on the nanocrystal surface. We demonstrate that the observed optical change can be used to track ligand exchange reactions and assess the relative binding affinity of thiol, amine, and carboxylate ligands to the nanocrystal surface. This work highlights the significant role that surface chemistry can play in determining the optical properties of ternary spinel oxide nanocrystals.
Ternary spinel oxides of formula AB O are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocatalysis, solar energy conversion, gas sensing, and photoelectrochemistry. Nanocrystals of these materials offer the additional advantages of high surface area-to-volume ratios and the ability to use surface functionalization as a plausible strategy for tailoring their optoelectronic properties to improve their function in a specific application. Here, we demonstrate that surface-bound species can dominate the absorption spectra of colloidal ternary spinel oxide nanocrystals. We show that the surface functionalization of cobalt-containing systems with thiol ligands leads to the growth of an intense peak centered at 2.4 eV (518 nm) in their absorption spectra, which arises due to the formation of cobalt-thiolate linkages on the nanocrystal surface. We demonstrate that the observed optical change can be used to track ligand exchange reactions and assess the relative binding affinity of thiol, amine, and carboxylate ligands to the nanocrystal surface. This work highlights the significant role that surface chemistry can play in determining the optical properties of ternary spinel oxide nanocrystals.
Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocatalysis, solar energy conversion, gas sensing, and photoelectrochemistry. Nanocrystals of these materials offer the additional advantages of high surface area-to-volume ratios and the ability to use surface functionalization as a plausible strategy for tailoring their optoelectronic properties to improve their function in a specific application. Here, we demonstrate that surface-bound species can dominate the absorption spectra of colloidal ternary spinel oxide nanocrystals. We show that the surface functionalization of cobalt-containing systems with thiol ligands leads to the growth of an intense peak centered at 2.4 eV (518 nm) in their absorption spectra, which arises due to the formation of cobalt-thiolate linkages on the nanocrystal surface. We demonstrate that the observed optical change can be used to track ligand exchange reactions and assess the relative binding affinity of thiol, amine, and carboxylate ligands to the nanocrystal surface. This work highlights the significant role that surface chemistry can play in determining the optical properties of ternary spinel oxide nanocrystals.
Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that, when coupled with their extraordinary chemical and thermal stability, offer functional materials with applications in the fields of photocatalysis, solar energy conversion, gas sensing, and photoelectrochemistry. Nanocrystals of these materials offer the additional advantages of high surface area-to-volume ratios and the ability to use surface functionalization as a plausible strategy for tailoring their optoelectronic properties to improve their function in a specific application. Here, we demonstrate that surface-bound species can dominate the absorption spectra of colloidal ternary spinel oxide nanocrystals. We show that the surface functionalization of cobalt-containing systems with thiol ligands leads to the growth of an intense peak centered at 2.4 eV (518 nm) in their absorption spectra, which arises due to the formation of cobalt-thiolate linkages on the nanocrystal surface. We demonstrate that the observed optical change can be used to track ligand exchange reactions and assess the relative binding affinity of thiol, amine, and carboxylate ligands to the nanocrystal surface. This work highlights the significant role that surface chemistry can play in determining the optical properties of ternary spinel oxide nanocrystals.
Author Rajan, Revathy
Scalia, Jordan C.
De Jesús Báez, Luis R.
Knowles, Kathryn E.
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Revathy
  surname: Rajan
  fullname: Rajan, Revathy
  organization: Department of Chemistry
– sequence: 2
  givenname: Jordan C.
  surname: Scalia
  fullname: Scalia, Jordan C.
  organization: Department of Chemistry
– sequence: 3
  givenname: Luis R.
  surname: De Jesús Báez
  fullname: De Jesús Báez, Luis R.
  organization: Department of Chemistry
– sequence: 4
  givenname: Kathryn E.
  orcidid: 0000-0001-6315-6473
  surname: Knowles
  fullname: Knowles, Kathryn E.
  email: kknowles@ur.rochester.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40667839$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1vEzEQtapWbVr4CSAfuWyw1_bu-lRVAQpS2iARJG6W451NXTn2Yu8C-fd1lNDCqT2NNe9jxm_O0bEPHhB6Q8mUkpK-1yZNrQ9xbe5gMxUm92p5hCZUlKQQlPw4RhNC8ptWlTxD5yndE0Ik49UpOuOkquqGyQkKc7vWvi0-QA--BT_gRT9Yox3-GkMPcbCQcOjwLDgXbJv7S4hexy3-1lsPDi_-2BbwrfbBxG0atEuZ6wdtvfVrvIzaJzvY4PEN7MBX6KTLBV4f6gX6_unjcva5mC-uv8yu5oXmhA-FLKkgphF50RIYCCqAdU3FgPOWU6CSlzW0KxCN1B2VkrK64xXrOlquypZLdoGqve_oe739rZ1TfbSbvLiiRO0SVDlB9ZigOiSYhZd7YT-uNtCaHEnUT-Kgrfof8fZOrcMvRUtGmlrW2eHdwSGGnyOkQW1sMuCc9hDGpFgmCkYIE5n69t9hj1P-3icTxJ5gYkgpQvfiX9C9bgffhzGfzKVnNA97mrxp
Cites_doi 10.1002/anie.202214600
10.1021/ja00255a032
10.1002/chem.202304148
10.1103/PhysRevB.80.104420
10.1039/D0DT01369B
10.1021/ic4013069
10.1021/jacs.6b13234
10.1038/s43246-020-00082-2
10.1021/acs.accounts.3c00116
10.1103/PhysRevB.103.224408
10.1039/C6TC01261B
10.1021/nl203222m
10.1038/ncomms4949
10.1021/acsaem.0c00440
10.1021/ja0120577
10.1021/acs.chemmater.2c01568
10.1021/acs.chemmater.8b04614
10.1021/ja1024832
10.1021/acs.chemmater.6b01827
10.1021/acs.jpca.1c03073
10.1134/S1063782624601808
10.1039/C8DT02059K
10.1002/pat.4993
10.1116/1.3622481
10.1021/acs.chemmater.1c03888
10.1002/anie.202415383
10.1038/s41467-023-44652-7
10.1021/acs.jpcc.9b11572
10.1021/jacs.8b08035
10.1016/j.fuel.2024.132448
10.1039/D2NH00111J
10.1021/la800641s
10.1021/acs.inorgchem.8b00672
10.1021/ja0692478
10.1016/j.apsadv.2023.100534
10.1038/s41467-019-12459-0
10.1016/j.ceramint.2020.02.072
10.1021/jacsau.1c00565
10.1021/ja5032979
10.1016/S0955-2219(00)00295-8
10.1002/anie.201500965
10.35840/2631-505X/8519
10.1021/acs.cgd.2c01435
10.1016/j.jinorgbio.2006.02.015
10.1039/D3DT03086E
10.1002/cphc.201900480
10.1021/ja208555h
10.1021/acscatal.1c00903
10.1002/anie.200901206
10.1021/acs.chemmater.3c00638
10.1107/S1600536806011044
10.1021/nn1007435
10.1021/acs.inorgchem.1c00040
10.1002/adfm.202413761
10.1155/2016/8564648
10.1007/s12274-016-0982-4
10.1021/la702876h
10.1038/nmeth.2089
10.1021/acs.jpcc.5b07195
10.1039/D0CC00567C
10.1021/acs.accounts.6b00377
10.1140/epjb/e2003-00064-0
10.1039/C3DT53179A
10.1038/s41598-024-83427-y
10.1021/acs.langmuir.7b03079
10.1103/RevModPhys.72.621
10.1021/acs.chemmater.3c01986
10.1039/B005906O
10.1021/acs.langmuir.5b04611
10.1021/acsami.9b00481
10.1515/ijmr-2004-0143
10.1021/acssuschemeng.0c06549
10.1039/C9CC08229H
10.1016/j.apsusc.2010.10.051
10.1021/acs.chemmater.1c03255
10.1021/acs.chemrev.7b00051
10.1039/C4TA06690A
10.1038/srep16863
10.1021/cm4012734
10.1021/ja408652h
10.1021/ic00172a009
10.1021/nn503603e
10.1016/S0921-4526(02)02595-4
10.1038/s41598-024-58822-0
10.1016/j.xinn.2022.100362
10.1021/la960465w
10.1021/ja00515a018
10.1021/jacs.4c09113
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acs.inorgchem.5c02179
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 15164
ExternalDocumentID 10.1021/acs.inorgchem.5c02179
PMC12308797
40667839
10_1021_acs_inorgchem_5c02179
a957177743
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: MRI-2215973
– fundername: ;
  grantid: CHE-2044462
GroupedDBID ---
-DZ
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
~02
AAYXX
CITATION
NPM
7X8
5PM
.GJ
186
1WB
3EH
3O-
53G
6TJ
AAYJJ
ABHMW
ABUFD
ACRPL
ADNMO
ADTOC
ADXHL
AETEA
AEYZD
AFFNX
AGQPQ
AI.
AIDAL
ANPPW
ANTXH
EJD
H~9
MVM
NHB
OHT
RNS
UBC
UHB
UNPAY
UQL
VH1
VQP
YQJ
YXE
YYP
ZCG
ZY4
ID FETCH-LOGICAL-a404t-92150c854062e3e515e3f863e44d41e19427edbe589af199137f463ff12b2d493
IEDL.DBID UNPAY
ISSN 0020-1669
1520-510X
IngestDate Sun Oct 26 04:16:55 EDT 2025
Tue Sep 30 17:01:37 EDT 2025
Thu Jul 17 01:56:50 EDT 2025
Sat Aug 02 01:40:58 EDT 2025
Wed Oct 01 05:44:05 EDT 2025
Tue Jul 29 03:10:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License https://creativecommons.org/licenses/by/4.0
This article is licensed under CC-BY 4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a404t-92150c854062e3e515e3f863e44d41e19427edbe589af199137f463ff12b2d493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6315-6473
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acs.inorgchem.5c02179
PMID 40667839
PQID 3230530035
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1021_acs_inorgchem_5c02179
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12308797
proquest_miscellaneous_3230530035
pubmed_primary_40667839
crossref_primary_10_1021_acs_inorgchem_5c02179
acs_journals_10_1021_acs_inorgchem_5c02179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-28
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
Dean J. A. (ref76/cit76) 1999
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1002/anie.202214600
– ident: ref78/cit78
  doi: 10.1021/ja00255a032
– ident: ref48/cit48
  doi: 10.1002/chem.202304148
– ident: ref81/cit81
  doi: 10.1103/PhysRevB.80.104420
– ident: ref52/cit52
  doi: 10.1039/D0DT01369B
– volume-title: Lange’s Handbook of Chemistry
  year: 1999
  ident: ref76/cit76
– ident: ref88/cit88
  doi: 10.1021/ic4013069
– ident: ref65/cit65
  doi: 10.1021/jacs.6b13234
– ident: ref1/cit1
  doi: 10.1038/s43246-020-00082-2
– ident: ref7/cit7
  doi: 10.1021/acs.accounts.3c00116
– ident: ref82/cit82
  doi: 10.1103/PhysRevB.103.224408
– ident: ref19/cit19
  doi: 10.1039/C6TC01261B
– ident: ref23/cit23
  doi: 10.1021/nl203222m
– ident: ref34/cit34
  doi: 10.1038/ncomms4949
– ident: ref71/cit71
  doi: 10.1021/acsaem.0c00440
– ident: ref68/cit68
  doi: 10.1021/ja0120577
– ident: ref44/cit44
  doi: 10.1021/acs.chemmater.2c01568
– ident: ref57/cit57
  doi: 10.1021/acs.chemmater.8b04614
– ident: ref24/cit24
  doi: 10.1021/ja1024832
– ident: ref70/cit70
  doi: 10.1021/acs.chemmater.6b01827
– ident: ref25/cit25
  doi: 10.1021/acs.jpca.1c03073
– ident: ref36/cit36
  doi: 10.1134/S1063782624601808
– ident: ref89/cit89
  doi: 10.1039/C8DT02059K
– ident: ref20/cit20
  doi: 10.1002/pat.4993
– ident: ref72/cit72
  doi: 10.1116/1.3622481
– ident: ref69/cit69
  doi: 10.1021/acs.chemmater.1c03888
– ident: ref64/cit64
  doi: 10.1002/anie.202415383
– ident: ref10/cit10
  doi: 10.1038/s41467-023-44652-7
– ident: ref18/cit18
  doi: 10.1021/acs.jpcc.9b11572
– ident: ref28/cit28
  doi: 10.1021/jacs.8b08035
– ident: ref49/cit49
  doi: 10.1016/j.fuel.2024.132448
– ident: ref58/cit58
  doi: 10.1039/D2NH00111J
– ident: ref39/cit39
  doi: 10.1021/la800641s
– ident: ref40/cit40
  doi: 10.1021/acs.inorgchem.8b00672
– ident: ref54/cit54
  doi: 10.1021/ja0692478
– ident: ref45/cit45
  doi: 10.1016/j.apsadv.2023.100534
– ident: ref9/cit9
  doi: 10.1038/s41467-019-12459-0
– ident: ref51/cit51
  doi: 10.1016/j.ceramint.2020.02.072
– ident: ref15/cit15
  doi: 10.1021/jacsau.1c00565
– ident: ref17/cit17
  doi: 10.1021/ja5032979
– ident: ref30/cit30
  doi: 10.1016/S0955-2219(00)00295-8
– ident: ref16/cit16
  doi: 10.1002/anie.201500965
– ident: ref60/cit60
  doi: 10.35840/2631-505X/8519
– ident: ref50/cit50
  doi: 10.1021/acs.cgd.2c01435
– ident: ref74/cit74
  doi: 10.1016/j.jinorgbio.2006.02.015
– ident: ref31/cit31
  doi: 10.1039/D3DT03086E
– ident: ref61/cit61
  doi: 10.1002/cphc.201900480
– ident: ref87/cit87
  doi: 10.1021/ja208555h
– ident: ref8/cit8
  doi: 10.1021/acscatal.1c00903
– ident: ref62/cit62
  doi: 10.1002/anie.200901206
– ident: ref59/cit59
  doi: 10.1021/acs.chemmater.3c00638
– ident: ref80/cit80
  doi: 10.1107/S1600536806011044
– ident: ref22/cit22
  doi: 10.1021/nn1007435
– ident: ref2/cit2
  doi: 10.1021/acs.inorgchem.1c00040
– ident: ref27/cit27
  doi: 10.1002/adfm.202413761
– ident: ref42/cit42
  doi: 10.1155/2016/8564648
– ident: ref35/cit35
  doi: 10.1007/s12274-016-0982-4
– ident: ref86/cit86
  doi: 10.1021/la702876h
– ident: ref47/cit47
  doi: 10.1038/nmeth.2089
– ident: ref67/cit67
  doi: 10.1021/acs.jpcc.5b07195
– ident: ref26/cit26
  doi: 10.1039/D0CC00567C
– ident: ref29/cit29
  doi: 10.1021/acs.accounts.6b00377
– ident: ref38/cit38
  doi: 10.1140/epjb/e2003-00064-0
– ident: ref55/cit55
  doi: 10.1039/C3DT53179A
– ident: ref4/cit4
  doi: 10.1038/s41598-024-83427-y
– ident: ref13/cit13
  doi: 10.1021/acs.langmuir.7b03079
– ident: ref77/cit77
  doi: 10.1103/RevModPhys.72.621
– ident: ref43/cit43
  doi: 10.1021/acs.chemmater.3c01986
– ident: ref85/cit85
  doi: 10.1039/B005906O
– ident: ref66/cit66
  doi: 10.1021/acs.langmuir.5b04611
– ident: ref33/cit33
  doi: 10.1021/acsami.9b00481
– ident: ref56/cit56
  doi: 10.1515/ijmr-2004-0143
– ident: ref53/cit53
  doi: 10.1021/acssuschemeng.0c06549
– ident: ref21/cit21
  doi: 10.1039/C9CC08229H
– ident: ref46/cit46
  doi: 10.1016/j.apsusc.2010.10.051
– ident: ref11/cit11
  doi: 10.1021/acs.chemmater.1c03255
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.7b00051
– ident: ref5/cit5
  doi: 10.1039/C4TA06690A
– ident: ref75/cit75
  doi: 10.1038/srep16863
– ident: ref41/cit41
  doi: 10.1021/cm4012734
– ident: ref63/cit63
  doi: 10.1021/ja408652h
– ident: ref84/cit84
  doi: 10.1021/ic00172a009
– ident: ref14/cit14
  doi: 10.1021/nn503603e
– ident: ref79/cit79
  doi: 10.1016/S0921-4526(02)02595-4
– ident: ref3/cit3
  doi: 10.1038/s41598-024-58822-0
– ident: ref37/cit37
  doi: 10.1016/j.xinn.2022.100362
– ident: ref73/cit73
  doi: 10.1021/la960465w
– ident: ref83/cit83
  doi: 10.1021/ja00515a018
– ident: ref12/cit12
  doi: 10.1021/jacs.4c09113
SSID ssj0009346
Score 2.483763
Snippet Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that,...
Ternary spinel oxides of formula AB O are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that,...
Ternary spinel oxides of formula AB2O4 are semiconductors that possess compositionally and structurally tunable magnetic and optoelectronic properties that,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15152
SummonAdditionalLinks – databaseName: American Chemical Society Journals
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6V8lBeuI9wyUg8IWV3Yzux_VgtVBWitFJbqW-R4wNWLMlqkxUsvx5PjoXVqqK82omVTMaZz3N8A_A2VdwEK-ljmloec6VVjDRjsVHSWJsmGbVY4HzyOTu-5B-v0qs9GF8TwafJWJs6YNAwEl7i-yg1CKLVLbhNMyEwh-9wev6HZZd1lTl4JkqyTA0lO9ctgybJ1NsmaQdn7qZLHqzKhV7_0PP5X7bo6B6cDRU9XQrKt9GqKUbm1y7B401f8z7c7XEpOewU6QHsufIhHEyHdnCPoPo0-6JLG7_vu-Y25HTR-sHJGfrzl0jMSipP0BNRzWwYv0BX43JNzhcByc7J6c-ZdST8zSuzXAdMOq8JUmN1HSpIazPb9DFy4nDyMVwefbiYHsd9t4ZY8wlvYhXAw8TIgAAz6pgLOMkxLzPmOLc8cYniVDhbuFQq7THhignPM-Z9QgtquWJPYL-sSvcMCLfSCSG9Zz7hhbPasNQJWgSsJaRLTQTvgrjyfrfVeRtIp0mOgxsZ5r0MIxgNXzdfdAwe_7rhzaADeZAxBlB06apVnbNwXksZBl8jeNrpxGZJjtnCAW1GILe0ZXMB8nhvz5Szry2fdwAPEymUiGC8UaybPerz_xHEC7hDsXlxm3L-Evab5cq9CoiqKV63u-g3Yd8gyQ
  priority: 102
  providerName: American Chemical Society
Title Ligand-Dependent Optical Properties of Colloidal Ternary Spinel Oxide Nanocrystals Containing Transition Metals
URI http://dx.doi.org/10.1021/acs.inorgchem.5c02179
https://www.ncbi.nlm.nih.gov/pubmed/40667839
https://www.proquest.com/docview/3230530035
https://pubmed.ncbi.nlm.nih.gov/PMC12308797
https://doi.org/10.1021/acs.inorgchem.5c02179
UnpaywallVersion publishedVersion
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-510X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009346
  issn: 1520-510X
  databaseCode: ACS
  dateStart: 19620201
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagexgvY9xGuExG4gnJXeJLYj9OZdOEWDdpq1SeosQXqFaSqkk1yq_nOJeKMiHG63FsxSfHOZ_PFaH3QnENWtIRKgwnXGWK-DJjRCupjRFRTI1PcD4fx2cT_mkqpl2yus-F2fLf0-go0xUgUKDAFr4PhfYQWj1EO7EA6D1AO5Px5fGXNowjJFHctLADlRQSkLVpn7Hzt3W8RtLVtka6AzPvRkvuropFtr7N5vPfVNHpYzTuN9FGoNwMV3U-1D__qO94713uo70OlOLjVoqeoAe2eIp2R30vuGeo_Dz7mhWGfOxa5tb4YtEYwfGlN-YvfVVWXDrszRDlzAD92tsZl2t8tQAYO8cXP2bGYviVl3q5BkA6r7Cvi9W2p8CNwmxix_C59YPP0eT05Hp0RrpWDSTjIa-JAuQQagnwL6aWWQBJljkZM8u54ZGNFKeJNbkVUmXOR1uxxPGYORfRnBqu2As0KMrCvkSYG2mTRDrHXMRzazLNhE1oDkArkVboAH0AdqXdUavSxotOo9QTNzxMOx4GaNh_23TRlu_414R3vQSkwGPvPckKW66qlMFlTTDveQ3QQSsRmyW5DxUGqBkguSUrmwd8Ee_tkWL2rSnmDcghlIlKAnS0Eav7veqr_57xGj2ivn1xmBAq36BBvVzZt4Cp6vwQ7hSjq8PuPP0Cw-wjeg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4ty6FceD_C00ickNJtYjuxj6vCqkC7i7Rdsbco8QMiSlI1qaD8ejx5dCkrBHsdJ5Y9GWc-j8ffALzikinnJa0fcs18JlPpI82Yr6RQWvMgCjVecJ4dR5Mz9v6cn-9B1N-FcYOoXE9Vc4h_wS4QHKAsL5zUzeXbkCvE0vIaXOcRC3DTdTg-vSDbpe0FHdwaBVEk-5s7f-sGPZOqdj3TJbh5OWtysC6W6eZ7ulj85pKObsGn7WSaTJSvw3WdDdXPP3gerz7b23CzQ6nksDWrO7BnirswGPfF4e5BOc0_p4X233Q1dGtysmyi4uQjRvdXSNNKSkswLlHm2snnGHhcbcjp0uHaBTn5kWtD3L-9VKuNQ6iLiiBRVluvgjQetEkmIzODjffh7OjtfDzxu9oNfspGrPalgxIjJRwejEJDjUNNhloRUcOYZoEJJAtjozPDhUwtpl_R2LKIWhuEWaiZpA9gvygL8wgI08LEsbCW2oBlRqeKchOHmUNesTBcefDaqSvp1l6VNMfqYZCgcKvDpNOhB8P-IyfLls_jXy-87E0hcTrG45S0MOW6SqjbvXGKR7EePGxNY9slw9xhhz09EDtGs30AWb13W4r8S8Pu7aDESMQy9uBga1__N9THV1HECxhM5rNpMn13_OEJ3AixrPEo9kPxFPbr1do8c1irzp43C-sXnqopOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZgkVheuI9wGoknpHQbH4n9iLpUC-wl7a60Eg9R4gMiShI1qaD8emaStFBWiOPVTix7MpP5PB5_Q8gLqYUBL-lDJq0Ihc50iDRjodHKWCujmFm84HxwGO-dibfn8nzIqsS7MDCJBkZqukN8tOra-oFhINrB9qKEHljP55E0iKf1ZXJFxmDuCIsmJz8Id3l_SQe3R1Ec69Xtnd8Ng97JNJve6QLkvJg5ub0o62z5JZvNfnJL0xvk_XpBXTbKp9GizUfm2y9cj_-34pvk-oBW6atevW6RS668TbYnqyJxd0i1X3zIShvuDrV0W3pUd9FxeoxR_jnStdLKU4xPVIWF9lMMQM6X9KQGfDujR18L6yj84yszXwJSnTUUCbP6uhW086RdUhk9cNh5l5xNX59O9sKhhkOYibFoQw2QYmwU4MKYOe4APTnuVcydEFZELtKCJc7mTiqdeUzD4okXMfc-YjmzQvN7ZKusSveAUGGVSxLlPfeRyJ3NDJcuYTkgsEQ5aQLyEsSVDjbYpN3xOotSbFzLMB1kGJDR6kOndc_r8acXnq_UIQUZ47FKVrpq0aQcdnGS45FsQO736rEeUmAOMWDQgKgNxVk_gOzemz1l8bFj-QZIMVaJTgKys9axv5vqw38RxDNy9Xh3mu6_OXz3iFxjWN14nIRMPSZb7XzhngDkavOnnW19B_SzK7w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagexgv4w7hJiPxhOQu8SW2H6fBNCHWTWKVylOU-AIVJamaVKP8eo5zqSgTYrzacRSfHOd8OZfvIPRGaG7ASnpCheWE61yTQDNGjFbGWpGk1IYC57NJejrlH2Zi1herh1qYnfg9TQ5zUwMChRHYwvexMAFC69toLxUAvUdobzq5OPrcpXHEJEnbFnZgkmICujYbKnb-dp9gkUy9a5Guwczr2ZL763KZb67yxeI3U3RyF02GTXQZKN_G66YYm59_8DveeJf30EEPSvFRp0X30S1XPkD7x0MvuIeo-jj_kpeWvOtb5jb4fNk6wfFFcOavAisrrjwObohqbmH8MvgZVxv8aQkwdoHPf8ytw_Apr8xqA4B0UePAi9W1p8CtwWxzx_CZC5OP0PTk_eXxKelbNZCcx7whGpBDbBTAv5Q65gAkOeZVyhznlicu0ZxKZwsnlM59yLZi0vOUeZ_Qglqu2WM0KqvSPUWYW-WkVN4zn_DC2dww4SQtAGhJ5YSJ0FsQV9YftTpro-g0ycLgVoZZL8MIjYd3my07-o5_LXg9aEAGMg7Rk7x01brOGPysCRYirxF60mnE9pY8pAoD1IyQ2tGV7QWBxHt3ppx_bcm8ATnESmoZocOtWt3sUZ_994rn6A4N7YtjSah6gUbNau1eAqZqilf9SfoF9NUigg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand-Dependent+Optical+Properties+of+Colloidal+Ternary+Spinel+Oxide+Nanocrystals+Containing+Transition+Metals&rft.jtitle=Inorganic+chemistry&rft.au=Rajan%2C+Revathy&rft.au=Scalia%2C+Jordan+C.&rft.au=De+Jes%C3%BAs+B%C3%A1ez%2C+Luis+R.&rft.au=Knowles%2C+Kathryn+E.&rft.date=2025-07-28&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=64&rft.issue=29&rft.spage=15152&rft.epage=15164&rft_id=info:doi/10.1021%2Facs.inorgchem.5c02179&rft_id=info%3Apmid%2F40667839&rft.externalDocID=PMC12308797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon