TAMOF‑1 as a Versatile and Predictable Chiral Stationary Phase for the Resolution of Racemic Mixtures

Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 33; pp. 39594 - 39605
Main Authors Núñez-Rico, José Luis, Cabezas-Giménez, Juanjo, Lillo, Vanesa, Balestra, Salvador R. G., Galán-Mascarós, José Ramón, Calero, Sofía, Vidal-Ferran, Anton
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.08.2023
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.3c08843

Cover

Abstract Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography.
AbstractList Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography.
Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography.Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography.
Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or -stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of columns. The added value of screening is an unprecedented achievement in chiral chromatography.
Author Calero, Sofía
Núñez-Rico, José Luis
Balestra, Salvador R. G.
Lillo, Vanesa
Vidal-Ferran, Anton
Cabezas-Giménez, Juanjo
Galán-Mascarós, José Ramón
AuthorAffiliation Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST)
Universitat Rovira i Virgili (URV)
Materials Simulation and Modelling, Department of Applied Physics
Departamento de Sistemas Físicos, Químicos y Naturales
Universitat de Barcelona (UB)
Department of Inorganic and Organic Chemistry and the Institute of Nanoscience and Nanotechnology (IN
Materials Science Institute of Madrid
Spanish National Research Council (ICMM-CSIC)
Department of Physical and Inorganic Chemistry
UB
Eindhoven University of Technology
AuthorAffiliation_xml – name: Department of Inorganic and Organic Chemistry and the Institute of Nanoscience and Nanotechnology (IN
– name: Universitat de Barcelona (UB)
– name: Materials Science Institute of Madrid
– name: Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST)
– name: Department of Physical and Inorganic Chemistry
– name: Spanish National Research Council (ICMM-CSIC)
– name: Universitat Rovira i Virgili (URV)
– name: UB
– name: Departamento de Sistemas Físicos, Químicos y Naturales
– name: Materials Simulation and Modelling, Department of Applied Physics
– name: Eindhoven University of Technology
Author_xml – sequence: 1
  givenname: José Luis
  orcidid: 0000-0001-8629-4908
  surname: Núñez-Rico
  fullname: Núñez-Rico, José Luis
  organization: Universitat de Barcelona (UB)
– sequence: 2
  givenname: Juanjo
  orcidid: 0000-0002-8424-7101
  surname: Cabezas-Giménez
  fullname: Cabezas-Giménez, Juanjo
  organization: Universitat Rovira i Virgili (URV)
– sequence: 3
  givenname: Vanesa
  surname: Lillo
  fullname: Lillo, Vanesa
  organization: Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST)
– sequence: 4
  givenname: Salvador R. G.
  orcidid: 0000-0002-2163-2782
  surname: Balestra
  fullname: Balestra, Salvador R. G.
  organization: Departamento de Sistemas Físicos, Químicos y Naturales
– sequence: 5
  givenname: José Ramón
  orcidid: 0000-0001-7983-9762
  surname: Galán-Mascarós
  fullname: Galán-Mascarós, José Ramón
  email: jrgalan@iciq.es
  organization: Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST)
– sequence: 6
  givenname: Sofía
  orcidid: 0000-0001-9535-057X
  surname: Calero
  fullname: Calero, Sofía
  email: S.Calero@tue.nl
  organization: Eindhoven University of Technology
– sequence: 7
  givenname: Anton
  orcidid: 0000-0001-7926-1876
  surname: Vidal-Ferran
  fullname: Vidal-Ferran, Anton
  email: anton.vidal@icrea.cat
  organization: Universitat de Barcelona (UB)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37579193$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi0EKh_tlWPlI0LarSe2s_ERrcqHBAJR2qvl2OOuURKDnUjlxl_oX-wvIassHCohTuPxPO-M9L77ZLuLHRJyCGwOrIBvxmbThjm3rKoE3yJ7oISYVYUstt_eQuyS_ZzvGSt5weQnsssXcqFA8T3y--7k6vr03_NfoCZTQ39hyqYPDVLTOXqT0AXbm3rsl6uQTEN_9OM4diY90ZuVyUh9TLRfIb3FHJthPaPR01tjsQ2WXoU__ZAwfyY73jQZv2zqAfl5-v1ueT67vD67WJ5czoxgvJ8pX9cClS-FVbaqACWXtfOFZ7UXjpdOgZBQOygcM6wCULhQChnU3CjhFD8gR9PehxQfB8y9bkO22DSmwzhkzdl4pyylkB-iRSUBRFHCGv26QYe6RacfUmhHB_SrjyMgJsCmmHNCr22YjOqTCY0Gptdx6SkuvYlrlM3_k71ufldwPAnGf30fh9SNZr4HvwAUvaZn
CitedBy_id crossref_primary_10_1039_D4DT03454F
crossref_primary_10_1021_acsanm_4c00624
crossref_primary_10_1016_j_chroma_2024_464799
crossref_primary_10_1007_s00604_024_06729_y
crossref_primary_10_1016_j_jpha_2024_101176
crossref_primary_10_1016_j_sampre_2025_100151
Cites_doi 10.1039/d1sc00621e
10.1063/5.0004608
10.1021/ar200198d
10.1002/anie.202100643
10.1038/s41467-020-17625-3
10.1002/adma.201504784
10.1002/anie.199115591
10.1002/anie.201804383
10.1016/j.solidstatesciences.2019.106032
10.1021/jacs.7b00280
10.1016/j.chroma.2014.08.059
10.3390/catal10091019
10.1021/acs.chemrev.5b00317
10.1002/chem.201304529
10.1021/la3044329
10.1039/c6ce00545d
10.1016/j.inoche.2015.02.023
10.1039/c9cp06869d
10.1021/ja101208s
10.1021/acs.chemrev.7b00091
10.1039/c3cy00350g
10.1002/cctc.201500907
10.1016/s0025-7125(16)30787-8
10.1016/j.ccr.2019.213113
10.3390/molecules24050865
10.1039/b807083k
10.1039/c5ce00776c
10.1002/chir.22390
10.1039/c4cs00094c
10.1038/nature01650
10.3389/fphar.2017.00286
10.1021/jacs.5b12860
10.1021/ja00106a053
10.1111/j.1365-313x.2011.04520.x
10.1016/j.biomaterials.2019.119619
10.1021/jacs.9b06500
10.1002/wcms.1606
10.3181/00379727-183-3-rc1
10.1080/08927022.2015.1010082
10.1097/md.0000000000013152
10.1021/ja00197a079
10.1038/nchembio.2007.5
10.1021/acs.jctc.1c00471
10.1039/c8cc01601a
10.1039/c3ay41068d
10.1128/cmr.12.4.564
10.1039/c5ce02593a
10.1002/jssc.201300419
10.1002/asia.201800330
10.1038/ncomms5406
10.1002/cplu.201402067
10.1039/c7cc05927b
10.1021/jp3111937
10.1039/c8ta02767f
10.1039/c2cc33939k
10.1006/jmcc.1998.0867
10.1021/ja3055639
10.1039/b916295j
10.1063/1.5143190
10.1016/0009-2509(56)80003-1
10.1016/B978-0-12-411492-0.00022-5
10.1002/adma.201200485
10.1002/anie.201810925
10.3390/catal8030120
10.1002/wcms.1493
10.1016/j.jchromb.2015.07.034
10.1002/anie.200806063
10.1016/j.jssc.2005.06.013
10.3136/fstr.8.367
10.1039/c6nj00090h
10.1002/chir.22588
10.1021/acs.accounts.8b00521
10.1039/b802426j
10.1039/c2cc32595k
10.1038/46248
10.1039/c4cs00032c
10.1002/anie.200906083
10.1021/ja00051a040
10.1039/c5ee00808e
10.1021/jacs.0c00637
10.1039/c6ra02741e
10.1021/jacs.8b04582
10.1016/j.toxlet.2016.10.005
10.1126/science.283.5405.1148
10.1016/j.micromeso.2004.03.034
10.1093/chromsci/33.1.22
10.1002/chem.201705627
10.1039/c4cs00003j
10.1126/science.aam7936
10.1016/B978-0-12-821179-3.00001-7
10.1021/ar400049h
10.1021/acsami.7b16522
10.1007/s10910-017-0788-y
10.1021/acscatal.8b04515
10.1080/10826070701853693
10.1016/0021-9673(95)01276-1
10.1016/s0021-9673(00)00532-x
10.1021/jp1079394
10.1002/anie.201910408
10.1002/anie.202014955
10.1039/c4cc03745f
10.1021/jm4015422
10.1080/02603594.2020.1805319
10.1080/08927022.2018.1426855
10.1063/5.0040021
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.3c08843
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 39605
ExternalDocumentID 37579193
10_1021_acsami_3c08843
b920599317
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a403t-9fbb4e9f64c9c881e535bdf2f0bf4d36d91451bd12d0a08119e799e01b3a94d93
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 00:29:52 EDT 2025
Fri Jul 11 03:13:22 EDT 2025
Mon Jul 21 05:55:12 EDT 2025
Tue Jul 01 03:31:39 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Fri Aug 25 03:12:35 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords computationally predictable
chiral stationary phase
molecular simulation
chiral separations
tight binding
HPLC
metal−organic framework
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a403t-9fbb4e9f64c9c881e535bdf2f0bf4d36d91451bd12d0a08119e799e01b3a94d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7983-9762
0000-0001-8629-4908
0000-0002-8424-7101
0000-0001-7926-1876
0000-0002-2163-2782
0000-0001-9535-057X
OpenAccessLink https://research.tue.nl/en/publications/e64d496a-5ae5-4602-b9ed-1f9ce1c2b31a
PMID 37579193
PQID 2851142615
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3040366545
proquest_miscellaneous_2851142615
pubmed_primary_37579193
crossref_citationtrail_10_1021_acsami_3c08843
crossref_primary_10_1021_acsami_3c08843
acs_journals_10_1021_acsami_3c08843
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-23
PublicationDateYYYYMMDD 2023-08-23
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Vardanyan R. (ref100/cit100) 2016
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref63/cit63
ref56/cit56
ref27/cit27a
ref92/cit92
ref27/cit27b
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref84/cit84
  doi: 10.1039/d1sc00621e
– ident: ref91/cit91
  doi: 10.1063/5.0004608
– ident: ref68/cit68
  doi: 10.1021/ar200198d
– ident: ref42/cit42
  doi: 10.1002/anie.202100643
– ident: ref18/cit18
  doi: 10.1038/s41467-020-17625-3
– ident: ref17/cit17
  doi: 10.1002/adma.201504784
– ident: ref104/cit104
  doi: 10.1002/anie.199115591
– ident: ref45/cit45
  doi: 10.1002/anie.201804383
– ident: ref48/cit48
  doi: 10.1016/j.solidstatesciences.2019.106032
– ident: ref57/cit57
  doi: 10.1021/jacs.7b00280
– ident: ref61/cit61
  doi: 10.1016/j.chroma.2014.08.059
– ident: ref103/cit103
  doi: 10.3390/catal10091019
– ident: ref53/cit53
  doi: 10.1021/acs.chemrev.5b00317
– ident: ref8/cit8
  doi: 10.1002/chem.201304529
– ident: ref16/cit16
  doi: 10.1021/la3044329
– ident: ref26/cit26
  doi: 10.1039/c6ce00545d
– ident: ref30/cit30
  doi: 10.1016/j.inoche.2015.02.023
– ident: ref83/cit83
  doi: 10.1039/c9cp06869d
– ident: ref38/cit38
  doi: 10.1021/ja101208s
– ident: ref23/cit23
  doi: 10.1021/acs.chemrev.7b00091
– ident: ref55/cit55
  doi: 10.1039/c6ce00545d
– ident: ref20/cit20
  doi: 10.1039/c3cy00350g
– ident: ref39/cit39
  doi: 10.1002/cctc.201500907
– ident: ref70/cit70
  doi: 10.1016/s0025-7125(16)30787-8
– ident: ref28/cit28
  doi: 10.1016/j.ccr.2019.213113
– ident: ref54/cit54
  doi: 10.3390/molecules24050865
– ident: ref37/cit37
  doi: 10.1039/b807083k
– ident: ref35/cit35
  doi: 10.1039/c5ce00776c
– ident: ref52/cit52
  doi: 10.1002/chir.22390
– ident: ref21/cit21
  doi: 10.1039/c4cs00094c
– ident: ref4/cit4
  doi: 10.1038/nature01650
– ident: ref101/cit101
  doi: 10.3389/fphar.2017.00286
– ident: ref78/cit78
  doi: 10.1021/jacs.5b12860
– ident: ref85/cit85
  doi: 10.1021/ja00106a053
– ident: ref67/cit67
  doi: 10.1111/j.1365-313x.2011.04520.x
– ident: ref33/cit33
  doi: 10.1016/j.biomaterials.2019.119619
– ident: ref63/cit63
  doi: 10.1016/j.solidstatesciences.2019.106032
– ident: ref64/cit64
  doi: 10.1021/jacs.9b06500
– ident: ref92/cit92
  doi: 10.1002/wcms.1606
– ident: ref69/cit69
  doi: 10.3181/00379727-183-3-rc1
– ident: ref89/cit89
  doi: 10.1080/08927022.2015.1010082
– ident: ref102/cit102
  doi: 10.1097/md.0000000000013152
– ident: ref1/cit1
  doi: 10.1021/ja00197a079
– ident: ref66/cit66
  doi: 10.1038/nchembio.2007.5
– ident: ref82/cit82
  doi: 10.1021/acs.jctc.1c00471
– ident: ref32/cit32
  doi: 10.1039/c8cc01601a
– ident: ref43/cit43
  doi: 10.1039/c3ay41068d
– ident: ref65/cit65
  doi: 10.1128/cmr.12.4.564
– ident: ref36/cit36
  doi: 10.1039/c5ce02593a
– ident: ref51/cit51
  doi: 10.1002/jssc.201300419
– ident: ref46/cit46
  doi: 10.1002/asia.201800330
– ident: ref56/cit56
  doi: 10.1038/ncomms5406
– ident: ref73/cit73
  doi: 10.1002/cplu.201402067
– ident: ref22/cit22
  doi: 10.1039/c7cc05927b
– ident: ref99/cit99
  doi: 10.1021/jp3111937
– ident: ref27/cit27b
  doi: 10.1039/c8ta02767f
– ident: ref58/cit58
  doi: 10.1039/c2cc33939k
– ident: ref71/cit71
  doi: 10.1006/jmcc.1998.0867
– ident: ref7/cit7
  doi: 10.1021/ja3055639
– ident: ref10/cit10
  doi: 10.1039/b916295j
– ident: ref87/cit87
  doi: 10.1063/1.5143190
– ident: ref95/cit95
  doi: 10.1016/0009-2509(56)80003-1
– start-page: 329
  volume-title: Synthesis of Best-Seller Drugs
  year: 2016
  ident: ref100/cit100
  doi: 10.1016/B978-0-12-411492-0.00022-5
– ident: ref6/cit6
  doi: 10.1002/adma.201200485
– ident: ref75/cit75
  doi: 10.1002/anie.201810925
– ident: ref40/cit40
  doi: 10.3390/catal8030120
– ident: ref81/cit81
  doi: 10.1002/wcms.1493
– ident: ref74/cit74
  doi: 10.1016/j.jchromb.2015.07.034
– ident: ref19/cit19
  doi: 10.1002/anie.200806063
– ident: ref34/cit34
  doi: 10.1016/j.jssc.2005.06.013
– ident: ref77/cit77
  doi: 10.3136/fstr.8.367
– ident: ref60/cit60
  doi: 10.1039/c6nj00090h
– ident: ref44/cit44
  doi: 10.1002/chir.22588
– ident: ref24/cit24
  doi: 10.1021/acs.accounts.8b00521
– ident: ref90/cit90
– ident: ref15/cit15
  doi: 10.1039/b802426j
– ident: ref59/cit59
  doi: 10.1039/c2cc32595k
– ident: ref3/cit3
  doi: 10.1038/46248
– ident: ref11/cit11
  doi: 10.1039/c4cs00032c
– ident: ref97/cit97
  doi: 10.1002/anie.200906083
– ident: ref88/cit88
  doi: 10.1021/ja00051a040
– ident: ref13/cit13
  doi: 10.1039/c5ee00808e
– ident: ref41/cit41
  doi: 10.1021/jacs.0c00637
– ident: ref62/cit62
  doi: 10.1039/c6ra02741e
– ident: ref27/cit27a
  doi: 10.1039/c6ce00545d
– ident: ref14/cit14
  doi: 10.1021/jacs.8b04582
– ident: ref105/cit105
  doi: 10.1016/j.toxlet.2016.10.005
– ident: ref2/cit2
  doi: 10.1126/science.283.5405.1148
– ident: ref5/cit5
  doi: 10.1016/j.micromeso.2004.03.034
– ident: ref72/cit72
  doi: 10.1093/chromsci/33.1.22
– ident: ref96/cit96
  doi: 10.1002/chem.201705627
– ident: ref9/cit9
  doi: 10.1039/c4cs00003j
– ident: ref107/cit107
  doi: 10.1126/science.aam7936
– ident: ref94/cit94
  doi: 10.1016/B978-0-12-821179-3.00001-7
– ident: ref12/cit12
  doi: 10.1021/ar400049h
– ident: ref31/cit31
  doi: 10.1021/acsami.7b16522
– ident: ref86/cit86
  doi: 10.1007/s10910-017-0788-y
– ident: ref25/cit25
  doi: 10.1021/acscatal.8b04515
– ident: ref50/cit50
  doi: 10.1080/10826070701853693
– ident: ref76/cit76
  doi: 10.1016/0021-9673(95)01276-1
– ident: ref49/cit49
  doi: 10.1016/s0021-9673(00)00532-x
– ident: ref98/cit98
  doi: 10.1021/jp1079394
– ident: ref47/cit47
  doi: 10.1002/anie.201910408
– ident: ref108/cit108
  doi: 10.1002/anie.202014955
– ident: ref79/cit79
  doi: 10.1039/c4cc03745f
– ident: ref106/cit106
  doi: 10.1021/jm4015422
– ident: ref29/cit29
  doi: 10.1080/02603594.2020.1805319
– ident: ref80/cit80
  doi: 10.1080/08927022.2018.1426855
– ident: ref93/cit93
  doi: 10.1063/5.0040021
SSID ssj0063205
Score 2.4651775
Snippet Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The...
Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39594
SubjectTerms calcium channels
computer simulation
drugs
enantiomers
Functional Inorganic Materials and Devices
high performance liquid chromatography
optical isomerism
pharmaceutical industry
terpenoids
Title TAMOF‑1 as a Versatile and Predictable Chiral Stationary Phase for the Resolution of Racemic Mixtures
URI http://dx.doi.org/10.1021/acsami.3c08843
https://www.ncbi.nlm.nih.gov/pubmed/37579193
https://www.proquest.com/docview/2851142615
https://www.proquest.com/docview/3040366545
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADB6V9gIHSsurBapBIHFKyYxnksyxWrGqKi1UfUi9RfMKraiyaJOVgBN_oX-xvwQ7yZZHtaJ35zW2x9_4c2zG3oKLoojSoIuDS5TXNrGZFkkB3hkXAEMCJfQnH7P9U3Vwps9-5zv-ZfCleG99Q6NwwKM_KLjH1mSGQYZA0Oh4sedmILtiRTyRq6TAiLVoz3jregpCvvk7CC1Bll2EGa_37Y6arjEhFZZ82Z23btf_uN228b8v_4g9HGAm3-vtYoOtxHqTPfij-eBj9vlkb_JpfP3zSnDbcMspc4Zquozc1oEfzojBaenHKj46v5jhzY571t7OvvPDcwx-HPEuR_zIiQLoDZhPK35kPRXc88nFN2InmifsdPzhZLSfDGMXEqtSaBNTOaeiqTLljS8KETVoFypZpVTUB1kwNN3XBSFDahFRCBNzY2IqHFijgoGnbLWe1vE540ZHoUPq05BXSuS-iMEWDvJo8rTyldhib3CFysFtmrJjxKUo-2Urh2XbYslCW6UfOpfTAI3LpfLvbuS_9j07lkq-Xii_RLcirsTWcTpvSklIlI6XerkM4AYINL0ZZZ71lnPzPMh1bhAcb9_pC1-w-zTGnnLVEl6y1XY2j68Q7LRup7PzXwBO-cA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAPlPLoi4IRSJzSxrGdxMfVitUC3XZFt1JvkV-hVass2mQl6Im_wF_sL-lMHlseWgmu0cRx7BnPZ3_jGULecuNZ6iMFJs5NIKzUgY4lC1JujTKOg0vAA_3RUTw8FR_P5NkKOejuwkAnSmiprEn8u-wC7ACeYUUcbsEsBL9H7stYxFirodc_6ZbemEd1zCJszEWQguPqsjT-9T76Ilv-7ouWAMza0QzWyXjRxTq-5HJ_Xpl9e_1H9sb_-IfH5FELOmmv0ZINsuKLJ2Ttl1SET8mXSW90PLj58ZNRXVJN8RwNJu3KU104Op4hn1PhNSvaP7-YQWMnDYevZ9_p-BxcIQX0SwFNUiQEGnWm05x-1hbD7-no4htyFeUzcjp4P-kPg7YIQ6BFyKtA5cYIr_JYWGXTlHnJpXF5lIcY4sdjp7DWr3EscqEGfMGUT5TyITNcK-EUf05Wi2nhtwhV0jPpQhu6JBcssal3OjU88SoJc5uzbfIGRihrjajMan48YlkzbFk7bNsk6CYts20ecyyncbVU_t1C_muTwWOp5OtOBzIwMmROdOGn8zKLEJfiZlMul-GwHHKs5Qwym40CLb7HE5kogMo7__SHr8iD4WR0mB1-OPq0Sx5igXs8xY74C7JazeZ-D2BQZV7Wqn8LSt4CMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRA9UJ6llIIRSJxS4thO4uNq6ao8tqzoVuot8rOtWmWrTVYCTv0L_Yv9JZ1JsisKWgmu0cRx7BnPZ3_jGULeceNZ7hMFJs5NJKzUkU4li3JujTKOg0vAA_3hfrp3KD4fyaPuHjfehYFOVNBS1ZD4aNUXLnQZBtgHeI5VcbgF0xD8DrkLaIRhvYZe_2C-_KY8aeIWYXMuohyc1zxT41_voz-y1W1_tARkNs5msE7Gi242MSZnO7Pa7Nhff2Rw_M__eEgedOCT9lpteURWfPmYrP2WkvAJOR73ht8G15dXjOqKaornaTB5557q0tHRFHmdGq9b0f7J6RQaO2i5fD39SUcn4BIpoGAKqJIiMdCqNZ0E-l1bDMOnw9MfyFlUT8nhYHfc34u6YgyRFjGvIxWMEV6FVFhl85x5yaVxIQkxhvrx1Cms-WscS1ysAWcw5TOlfMwM10o4xZ-R1XJS-ueEKumZdLGNXRYEy2zunc4Nz7zK4mAD2yRvYYSKzpiqouHJE1a0w1Z0w7ZJovnEFbbLZ45lNc6Xyr9fyF-0mTyWSr6Z60EBxoYMii79ZFYVCeJT3HTK5TIclkWONZ1BZqNVosX3eCYzBZD5xT_94Wtyb_RxUHz9tP9li9zHOvd4mJ3wl2S1ns78NqCh2rxqtP8Gi4sEqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAMOF-1+as+a+Versatile+and+Predictable+Chiral+Stationary+Phase+for+the+Resolution+of+Racemic+Mixtures&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=N%C3%BA%C3%B1ez-Rico%2C+Jos%C3%A9+Luis&rft.au=Cabezas-Gim%C3%A9nez%2C+Juanjo&rft.au=Lillo%2C+Vanesa&rft.au=Balestra%2C+Salvador+R+G&rft.date=2023-08-23&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.3c08843&rft_id=info%3Apmid%2F37579193&rft.externalDocID=37579193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon