TAMOF‑1 as a Versatile and Predictable Chiral Stationary Phase for the Resolution of Racemic Mixtures
Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 33; pp. 39594 - 39605 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.3c08843 |
Cover
Abstract | Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography. Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography.Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with TAMOF-1 as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with TAMOF-1 HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial in silico studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or P-stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of TAMOF-1 columns. The added value of in silico screening is an unprecedented achievement in chiral chromatography. Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The incorporation of chirality into their frameworks opens new strategies for chiral separation, a key technology in the pharmaceutical industry as each enantiomer of a racemic drug must be isolated. Here, we describe the use of a combination of computational modeling and experiments to demonstrate that high-performance liquid chromatography (HPLC) columns packed with as the chiral stationary phase are efficient, versatile, robust, and reusable with a wide array of mobile phases (polar and non-polar). As proof of concept, in this article, we report the resolution with HPLC columns of nine racemic mixtures with different molecular sizes, geometries, and functional groups. Initial studies allowed us to predict plausible separations in chiral compounds from different families, including terpenes, calcium channel blockers, or -stereogenic compounds. The experimental data confirmed the validity of the models and the robust performance of columns. The added value of screening is an unprecedented achievement in chiral chromatography. |
Author | Calero, Sofía Núñez-Rico, José Luis Balestra, Salvador R. G. Lillo, Vanesa Vidal-Ferran, Anton Cabezas-Giménez, Juanjo Galán-Mascarós, José Ramón |
AuthorAffiliation | Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST) Universitat Rovira i Virgili (URV) Materials Simulation and Modelling, Department of Applied Physics Departamento de Sistemas Físicos, Químicos y Naturales Universitat de Barcelona (UB) Department of Inorganic and Organic Chemistry and the Institute of Nanoscience and Nanotechnology (IN Materials Science Institute of Madrid Spanish National Research Council (ICMM-CSIC) Department of Physical and Inorganic Chemistry UB Eindhoven University of Technology |
AuthorAffiliation_xml | – name: Department of Inorganic and Organic Chemistry and the Institute of Nanoscience and Nanotechnology (IN – name: Universitat de Barcelona (UB) – name: Materials Science Institute of Madrid – name: Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST) – name: Department of Physical and Inorganic Chemistry – name: Spanish National Research Council (ICMM-CSIC) – name: Universitat Rovira i Virgili (URV) – name: UB – name: Departamento de Sistemas Físicos, Químicos y Naturales – name: Materials Simulation and Modelling, Department of Applied Physics – name: Eindhoven University of Technology |
Author_xml | – sequence: 1 givenname: José Luis orcidid: 0000-0001-8629-4908 surname: Núñez-Rico fullname: Núñez-Rico, José Luis organization: Universitat de Barcelona (UB) – sequence: 2 givenname: Juanjo orcidid: 0000-0002-8424-7101 surname: Cabezas-Giménez fullname: Cabezas-Giménez, Juanjo organization: Universitat Rovira i Virgili (URV) – sequence: 3 givenname: Vanesa surname: Lillo fullname: Lillo, Vanesa organization: Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST) – sequence: 4 givenname: Salvador R. G. orcidid: 0000-0002-2163-2782 surname: Balestra fullname: Balestra, Salvador R. G. organization: Departamento de Sistemas Físicos, Químicos y Naturales – sequence: 5 givenname: José Ramón orcidid: 0000-0001-7983-9762 surname: Galán-Mascarós fullname: Galán-Mascarós, José Ramón email: jrgalan@iciq.es organization: Institute of Chemical Research of Catalonia (ICIQ-CERCA) and the Barcelona Institute of Science and Technology (BIST) – sequence: 6 givenname: Sofía orcidid: 0000-0001-9535-057X surname: Calero fullname: Calero, Sofía email: S.Calero@tue.nl organization: Eindhoven University of Technology – sequence: 7 givenname: Anton orcidid: 0000-0001-7926-1876 surname: Vidal-Ferran fullname: Vidal-Ferran, Anton email: anton.vidal@icrea.cat organization: Universitat de Barcelona (UB) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37579193$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi0EKh_tlWPlI0LarSe2s_ERrcqHBAJR2qvl2OOuURKDnUjlxl_oX-wvIassHCohTuPxPO-M9L77ZLuLHRJyCGwOrIBvxmbThjm3rKoE3yJ7oISYVYUstt_eQuyS_ZzvGSt5weQnsssXcqFA8T3y--7k6vr03_NfoCZTQ39hyqYPDVLTOXqT0AXbm3rsl6uQTEN_9OM4diY90ZuVyUh9TLRfIb3FHJthPaPR01tjsQ2WXoU__ZAwfyY73jQZv2zqAfl5-v1ueT67vD67WJ5czoxgvJ8pX9cClS-FVbaqACWXtfOFZ7UXjpdOgZBQOygcM6wCULhQChnU3CjhFD8gR9PehxQfB8y9bkO22DSmwzhkzdl4pyylkB-iRSUBRFHCGv26QYe6RacfUmhHB_SrjyMgJsCmmHNCr22YjOqTCY0Gptdx6SkuvYlrlM3_k71ufldwPAnGf30fh9SNZr4HvwAUvaZn |
CitedBy_id | crossref_primary_10_1039_D4DT03454F crossref_primary_10_1021_acsanm_4c00624 crossref_primary_10_1016_j_chroma_2024_464799 crossref_primary_10_1007_s00604_024_06729_y crossref_primary_10_1016_j_jpha_2024_101176 crossref_primary_10_1016_j_sampre_2025_100151 |
Cites_doi | 10.1039/d1sc00621e 10.1063/5.0004608 10.1021/ar200198d 10.1002/anie.202100643 10.1038/s41467-020-17625-3 10.1002/adma.201504784 10.1002/anie.199115591 10.1002/anie.201804383 10.1016/j.solidstatesciences.2019.106032 10.1021/jacs.7b00280 10.1016/j.chroma.2014.08.059 10.3390/catal10091019 10.1021/acs.chemrev.5b00317 10.1002/chem.201304529 10.1021/la3044329 10.1039/c6ce00545d 10.1016/j.inoche.2015.02.023 10.1039/c9cp06869d 10.1021/ja101208s 10.1021/acs.chemrev.7b00091 10.1039/c3cy00350g 10.1002/cctc.201500907 10.1016/s0025-7125(16)30787-8 10.1016/j.ccr.2019.213113 10.3390/molecules24050865 10.1039/b807083k 10.1039/c5ce00776c 10.1002/chir.22390 10.1039/c4cs00094c 10.1038/nature01650 10.3389/fphar.2017.00286 10.1021/jacs.5b12860 10.1021/ja00106a053 10.1111/j.1365-313x.2011.04520.x 10.1016/j.biomaterials.2019.119619 10.1021/jacs.9b06500 10.1002/wcms.1606 10.3181/00379727-183-3-rc1 10.1080/08927022.2015.1010082 10.1097/md.0000000000013152 10.1021/ja00197a079 10.1038/nchembio.2007.5 10.1021/acs.jctc.1c00471 10.1039/c8cc01601a 10.1039/c3ay41068d 10.1128/cmr.12.4.564 10.1039/c5ce02593a 10.1002/jssc.201300419 10.1002/asia.201800330 10.1038/ncomms5406 10.1002/cplu.201402067 10.1039/c7cc05927b 10.1021/jp3111937 10.1039/c8ta02767f 10.1039/c2cc33939k 10.1006/jmcc.1998.0867 10.1021/ja3055639 10.1039/b916295j 10.1063/1.5143190 10.1016/0009-2509(56)80003-1 10.1016/B978-0-12-411492-0.00022-5 10.1002/adma.201200485 10.1002/anie.201810925 10.3390/catal8030120 10.1002/wcms.1493 10.1016/j.jchromb.2015.07.034 10.1002/anie.200806063 10.1016/j.jssc.2005.06.013 10.3136/fstr.8.367 10.1039/c6nj00090h 10.1002/chir.22588 10.1021/acs.accounts.8b00521 10.1039/b802426j 10.1039/c2cc32595k 10.1038/46248 10.1039/c4cs00032c 10.1002/anie.200906083 10.1021/ja00051a040 10.1039/c5ee00808e 10.1021/jacs.0c00637 10.1039/c6ra02741e 10.1021/jacs.8b04582 10.1016/j.toxlet.2016.10.005 10.1126/science.283.5405.1148 10.1016/j.micromeso.2004.03.034 10.1093/chromsci/33.1.22 10.1002/chem.201705627 10.1039/c4cs00003j 10.1126/science.aam7936 10.1016/B978-0-12-821179-3.00001-7 10.1021/ar400049h 10.1021/acsami.7b16522 10.1007/s10910-017-0788-y 10.1021/acscatal.8b04515 10.1080/10826070701853693 10.1016/0021-9673(95)01276-1 10.1016/s0021-9673(00)00532-x 10.1021/jp1079394 10.1002/anie.201910408 10.1002/anie.202014955 10.1039/c4cc03745f 10.1021/jm4015422 10.1080/02603594.2020.1805319 10.1080/08927022.2018.1426855 10.1063/5.0040021 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.3c08843 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 39605 |
ExternalDocumentID | 37579193 10_1021_acsami_3c08843 b920599317 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a403t-9fbb4e9f64c9c881e535bdf2f0bf4d36d91451bd12d0a08119e799e01b3a94d93 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 00:29:52 EDT 2025 Fri Jul 11 03:13:22 EDT 2025 Mon Jul 21 05:55:12 EDT 2025 Tue Jul 01 03:31:39 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Fri Aug 25 03:12:35 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | computationally predictable chiral stationary phase molecular simulation chiral separations tight binding HPLC metal−organic framework |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a403t-9fbb4e9f64c9c881e535bdf2f0bf4d36d91451bd12d0a08119e799e01b3a94d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7983-9762 0000-0001-8629-4908 0000-0002-8424-7101 0000-0001-7926-1876 0000-0002-2163-2782 0000-0001-9535-057X |
OpenAccessLink | https://research.tue.nl/en/publications/e64d496a-5ae5-4602-b9ed-1f9ce1c2b31a |
PMID | 37579193 |
PQID | 2851142615 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040366545 proquest_miscellaneous_2851142615 pubmed_primary_37579193 crossref_citationtrail_10_1021_acsami_3c08843 crossref_primary_10_1021_acsami_3c08843 acs_journals_10_1021_acsami_3c08843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-23 |
PublicationDateYYYYMMDD | 2023-08-23 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 Vardanyan R. (ref100/cit100) 2016 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref63/cit63 ref56/cit56 ref27/cit27a ref92/cit92 ref27/cit27b ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref84/cit84 doi: 10.1039/d1sc00621e – ident: ref91/cit91 doi: 10.1063/5.0004608 – ident: ref68/cit68 doi: 10.1021/ar200198d – ident: ref42/cit42 doi: 10.1002/anie.202100643 – ident: ref18/cit18 doi: 10.1038/s41467-020-17625-3 – ident: ref17/cit17 doi: 10.1002/adma.201504784 – ident: ref104/cit104 doi: 10.1002/anie.199115591 – ident: ref45/cit45 doi: 10.1002/anie.201804383 – ident: ref48/cit48 doi: 10.1016/j.solidstatesciences.2019.106032 – ident: ref57/cit57 doi: 10.1021/jacs.7b00280 – ident: ref61/cit61 doi: 10.1016/j.chroma.2014.08.059 – ident: ref103/cit103 doi: 10.3390/catal10091019 – ident: ref53/cit53 doi: 10.1021/acs.chemrev.5b00317 – ident: ref8/cit8 doi: 10.1002/chem.201304529 – ident: ref16/cit16 doi: 10.1021/la3044329 – ident: ref26/cit26 doi: 10.1039/c6ce00545d – ident: ref30/cit30 doi: 10.1016/j.inoche.2015.02.023 – ident: ref83/cit83 doi: 10.1039/c9cp06869d – ident: ref38/cit38 doi: 10.1021/ja101208s – ident: ref23/cit23 doi: 10.1021/acs.chemrev.7b00091 – ident: ref55/cit55 doi: 10.1039/c6ce00545d – ident: ref20/cit20 doi: 10.1039/c3cy00350g – ident: ref39/cit39 doi: 10.1002/cctc.201500907 – ident: ref70/cit70 doi: 10.1016/s0025-7125(16)30787-8 – ident: ref28/cit28 doi: 10.1016/j.ccr.2019.213113 – ident: ref54/cit54 doi: 10.3390/molecules24050865 – ident: ref37/cit37 doi: 10.1039/b807083k – ident: ref35/cit35 doi: 10.1039/c5ce00776c – ident: ref52/cit52 doi: 10.1002/chir.22390 – ident: ref21/cit21 doi: 10.1039/c4cs00094c – ident: ref4/cit4 doi: 10.1038/nature01650 – ident: ref101/cit101 doi: 10.3389/fphar.2017.00286 – ident: ref78/cit78 doi: 10.1021/jacs.5b12860 – ident: ref85/cit85 doi: 10.1021/ja00106a053 – ident: ref67/cit67 doi: 10.1111/j.1365-313x.2011.04520.x – ident: ref33/cit33 doi: 10.1016/j.biomaterials.2019.119619 – ident: ref63/cit63 doi: 10.1016/j.solidstatesciences.2019.106032 – ident: ref64/cit64 doi: 10.1021/jacs.9b06500 – ident: ref92/cit92 doi: 10.1002/wcms.1606 – ident: ref69/cit69 doi: 10.3181/00379727-183-3-rc1 – ident: ref89/cit89 doi: 10.1080/08927022.2015.1010082 – ident: ref102/cit102 doi: 10.1097/md.0000000000013152 – ident: ref1/cit1 doi: 10.1021/ja00197a079 – ident: ref66/cit66 doi: 10.1038/nchembio.2007.5 – ident: ref82/cit82 doi: 10.1021/acs.jctc.1c00471 – ident: ref32/cit32 doi: 10.1039/c8cc01601a – ident: ref43/cit43 doi: 10.1039/c3ay41068d – ident: ref65/cit65 doi: 10.1128/cmr.12.4.564 – ident: ref36/cit36 doi: 10.1039/c5ce02593a – ident: ref51/cit51 doi: 10.1002/jssc.201300419 – ident: ref46/cit46 doi: 10.1002/asia.201800330 – ident: ref56/cit56 doi: 10.1038/ncomms5406 – ident: ref73/cit73 doi: 10.1002/cplu.201402067 – ident: ref22/cit22 doi: 10.1039/c7cc05927b – ident: ref99/cit99 doi: 10.1021/jp3111937 – ident: ref27/cit27b doi: 10.1039/c8ta02767f – ident: ref58/cit58 doi: 10.1039/c2cc33939k – ident: ref71/cit71 doi: 10.1006/jmcc.1998.0867 – ident: ref7/cit7 doi: 10.1021/ja3055639 – ident: ref10/cit10 doi: 10.1039/b916295j – ident: ref87/cit87 doi: 10.1063/1.5143190 – ident: ref95/cit95 doi: 10.1016/0009-2509(56)80003-1 – start-page: 329 volume-title: Synthesis of Best-Seller Drugs year: 2016 ident: ref100/cit100 doi: 10.1016/B978-0-12-411492-0.00022-5 – ident: ref6/cit6 doi: 10.1002/adma.201200485 – ident: ref75/cit75 doi: 10.1002/anie.201810925 – ident: ref40/cit40 doi: 10.3390/catal8030120 – ident: ref81/cit81 doi: 10.1002/wcms.1493 – ident: ref74/cit74 doi: 10.1016/j.jchromb.2015.07.034 – ident: ref19/cit19 doi: 10.1002/anie.200806063 – ident: ref34/cit34 doi: 10.1016/j.jssc.2005.06.013 – ident: ref77/cit77 doi: 10.3136/fstr.8.367 – ident: ref60/cit60 doi: 10.1039/c6nj00090h – ident: ref44/cit44 doi: 10.1002/chir.22588 – ident: ref24/cit24 doi: 10.1021/acs.accounts.8b00521 – ident: ref90/cit90 – ident: ref15/cit15 doi: 10.1039/b802426j – ident: ref59/cit59 doi: 10.1039/c2cc32595k – ident: ref3/cit3 doi: 10.1038/46248 – ident: ref11/cit11 doi: 10.1039/c4cs00032c – ident: ref97/cit97 doi: 10.1002/anie.200906083 – ident: ref88/cit88 doi: 10.1021/ja00051a040 – ident: ref13/cit13 doi: 10.1039/c5ee00808e – ident: ref41/cit41 doi: 10.1021/jacs.0c00637 – ident: ref62/cit62 doi: 10.1039/c6ra02741e – ident: ref27/cit27a doi: 10.1039/c6ce00545d – ident: ref14/cit14 doi: 10.1021/jacs.8b04582 – ident: ref105/cit105 doi: 10.1016/j.toxlet.2016.10.005 – ident: ref2/cit2 doi: 10.1126/science.283.5405.1148 – ident: ref5/cit5 doi: 10.1016/j.micromeso.2004.03.034 – ident: ref72/cit72 doi: 10.1093/chromsci/33.1.22 – ident: ref96/cit96 doi: 10.1002/chem.201705627 – ident: ref9/cit9 doi: 10.1039/c4cs00003j – ident: ref107/cit107 doi: 10.1126/science.aam7936 – ident: ref94/cit94 doi: 10.1016/B978-0-12-821179-3.00001-7 – ident: ref12/cit12 doi: 10.1021/ar400049h – ident: ref31/cit31 doi: 10.1021/acsami.7b16522 – ident: ref86/cit86 doi: 10.1007/s10910-017-0788-y – ident: ref25/cit25 doi: 10.1021/acscatal.8b04515 – ident: ref50/cit50 doi: 10.1080/10826070701853693 – ident: ref76/cit76 doi: 10.1016/0021-9673(95)01276-1 – ident: ref49/cit49 doi: 10.1016/s0021-9673(00)00532-x – ident: ref98/cit98 doi: 10.1021/jp1079394 – ident: ref47/cit47 doi: 10.1002/anie.201910408 – ident: ref108/cit108 doi: 10.1002/anie.202014955 – ident: ref79/cit79 doi: 10.1039/c4cc03745f – ident: ref106/cit106 doi: 10.1021/jm4015422 – ident: ref29/cit29 doi: 10.1080/02603594.2020.1805319 – ident: ref80/cit80 doi: 10.1080/08927022.2018.1426855 – ident: ref93/cit93 doi: 10.1063/5.0040021 |
SSID | ssj0063205 |
Score | 2.4651775 |
Snippet | Metal–organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The... Metal-organic frameworks (MOFs) have become promising materials for multiple applications due to their controlled dimensionality and tunable properties. The... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 39594 |
SubjectTerms | calcium channels computer simulation drugs enantiomers Functional Inorganic Materials and Devices high performance liquid chromatography optical isomerism pharmaceutical industry terpenoids |
Title | TAMOF‑1 as a Versatile and Predictable Chiral Stationary Phase for the Resolution of Racemic Mixtures |
URI | http://dx.doi.org/10.1021/acsami.3c08843 https://www.ncbi.nlm.nih.gov/pubmed/37579193 https://www.proquest.com/docview/2851142615 https://www.proquest.com/docview/3040366545 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADB6V9gIHSsurBapBIHFKyYxnksyxWrGqKi1UfUi9RfMKraiyaJOVgBN_oX-xvwQ7yZZHtaJ35zW2x9_4c2zG3oKLoojSoIuDS5TXNrGZFkkB3hkXAEMCJfQnH7P9U3Vwps9-5zv-ZfCleG99Q6NwwKM_KLjH1mSGQYZA0Oh4sedmILtiRTyRq6TAiLVoz3jregpCvvk7CC1Bll2EGa_37Y6arjEhFZZ82Z23btf_uN228b8v_4g9HGAm3-vtYoOtxHqTPfij-eBj9vlkb_JpfP3zSnDbcMspc4Zquozc1oEfzojBaenHKj46v5jhzY571t7OvvPDcwx-HPEuR_zIiQLoDZhPK35kPRXc88nFN2InmifsdPzhZLSfDGMXEqtSaBNTOaeiqTLljS8KETVoFypZpVTUB1kwNN3XBSFDahFRCBNzY2IqHFijgoGnbLWe1vE540ZHoUPq05BXSuS-iMEWDvJo8rTyldhib3CFysFtmrJjxKUo-2Urh2XbYslCW6UfOpfTAI3LpfLvbuS_9j07lkq-Xii_RLcirsTWcTpvSklIlI6XerkM4AYINL0ZZZ71lnPzPMh1bhAcb9_pC1-w-zTGnnLVEl6y1XY2j68Q7LRup7PzXwBO-cA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAPlPLoi4IRSJzSxrGdxMfVitUC3XZFt1JvkV-hVass2mQl6Im_wF_sL-lMHlseWgmu0cRx7BnPZ3_jGULecuNZ6iMFJs5NIKzUgY4lC1JujTKOg0vAA_3RUTw8FR_P5NkKOejuwkAnSmiprEn8u-wC7ACeYUUcbsEsBL9H7stYxFirodc_6ZbemEd1zCJszEWQguPqsjT-9T76Ilv-7ouWAMza0QzWyXjRxTq-5HJ_Xpl9e_1H9sb_-IfH5FELOmmv0ZINsuKLJ2Ttl1SET8mXSW90PLj58ZNRXVJN8RwNJu3KU104Op4hn1PhNSvaP7-YQWMnDYevZ9_p-BxcIQX0SwFNUiQEGnWm05x-1hbD7-no4htyFeUzcjp4P-kPg7YIQ6BFyKtA5cYIr_JYWGXTlHnJpXF5lIcY4sdjp7DWr3EscqEGfMGUT5TyITNcK-EUf05Wi2nhtwhV0jPpQhu6JBcssal3OjU88SoJc5uzbfIGRihrjajMan48YlkzbFk7bNsk6CYts20ecyyncbVU_t1C_muTwWOp5OtOBzIwMmROdOGn8zKLEJfiZlMul-GwHHKs5Qwym40CLb7HE5kogMo7__SHr8iD4WR0mB1-OPq0Sx5igXs8xY74C7JazeZ-D2BQZV7Wqn8LSt4CMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRA9UJ6llIIRSJxS4thO4uNq6ao8tqzoVuot8rOtWmWrTVYCTv0L_Yv9JZ1JsisKWgmu0cRx7BnPZ3_jGULeceNZ7hMFJs5NJKzUkU4li3JujTKOg0vAA_3hfrp3KD4fyaPuHjfehYFOVNBS1ZD4aNUXLnQZBtgHeI5VcbgF0xD8DrkLaIRhvYZe_2C-_KY8aeIWYXMuohyc1zxT41_voz-y1W1_tARkNs5msE7Gi242MSZnO7Pa7Nhff2Rw_M__eEgedOCT9lpteURWfPmYrP2WkvAJOR73ht8G15dXjOqKaornaTB5557q0tHRFHmdGq9b0f7J6RQaO2i5fD39SUcn4BIpoGAKqJIiMdCqNZ0E-l1bDMOnw9MfyFlUT8nhYHfc34u6YgyRFjGvIxWMEV6FVFhl85x5yaVxIQkxhvrx1Cms-WscS1ysAWcw5TOlfMwM10o4xZ-R1XJS-ueEKumZdLGNXRYEy2zunc4Nz7zK4mAD2yRvYYSKzpiqouHJE1a0w1Z0w7ZJovnEFbbLZ45lNc6Xyr9fyF-0mTyWSr6Z60EBxoYMii79ZFYVCeJT3HTK5TIclkWONZ1BZqNVosX3eCYzBZD5xT_94Wtyb_RxUHz9tP9li9zHOvd4mJ3wl2S1ns78NqCh2rxqtP8Gi4sEqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAMOF-1+as+a+Versatile+and+Predictable+Chiral+Stationary+Phase+for+the+Resolution+of+Racemic+Mixtures&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=N%C3%BA%C3%B1ez-Rico%2C+Jos%C3%A9+Luis&rft.au=Cabezas-Gim%C3%A9nez%2C+Juanjo&rft.au=Lillo%2C+Vanesa&rft.au=Balestra%2C+Salvador+R+G&rft.date=2023-08-23&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.3c08843&rft_id=info%3Apmid%2F37579193&rft.externalDocID=37579193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |