Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively i...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 19; no. 8; pp. 7826 - 7855
Main Authors Yang, Yingjian, Li, Wei, Guo, Yingwei, Zeng, Nanrong, Wang, Shicong, Chen, Ziran, Liu, Yang, Chen, Huai, Duan, Wenxin, Li, Xian, Zhao, Wei, Chen, Rongchang, Kang, Yan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN1551-0018
1547-1063
1551-0018
DOI10.3934/mbe.2022366

Cover

Abstract Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).
AbstractList Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).
Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).
Author Zhao, Wei
Wang, Shicong
Li, Xian
Li, Wei
Kang, Yan
Zeng, Nanrong
Chen, Ziran
Liu, Yang
Duan, Wenxin
Chen, Rongchang
Chen, Huai
Yang, Yingjian
Guo, Yingwei
Author_xml – sequence: 1
  givenname: Yingjian
  surname: Yang
  fullname: Yang, Yingjian
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China, College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 2
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 3
  givenname: Yingwei
  surname: Guo
  fullname: Guo, Yingwei
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China, College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 4
  givenname: Nanrong
  surname: Zeng
  fullname: Zeng, Nanrong
  organization: College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 5
  givenname: Shicong
  surname: Wang
  fullname: Wang, Shicong
  organization: College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 6
  givenname: Ziran
  surname: Chen
  fullname: Chen, Ziran
  organization: College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 7
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 8
  givenname: Huai
  surname: Chen
  fullname: Chen, Huai
  organization: Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
– sequence: 9
  givenname: Wenxin
  surname: Duan
  fullname: Duan, Wenxin
  organization: College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 10
  givenname: Xian
  surname: Li
  fullname: Li, Xian
  organization: Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
– sequence: 11
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: Medical Engineering, Liaoning Provincial Corps Hospital of the Chinese People's Armed Police Force, Shenyang 110141, China
– sequence: 12
  givenname: Rongchang
  surname: Chen
  fullname: Chen, Rongchang
  organization: Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen 518001, China, The Second Clinical Medical College, Jinan University, Shenzhen 518001, China, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518001, China
– sequence: 13
  givenname: Yan
  surname: Kang
  fullname: Kang, Yan
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China, College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China, Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
BookMark eNp9kc9u1DAQhyPUSvQPJ14gRyRIsR3HSY5ogbbSSuXQnq2xPVlcOXGwHaH0LXhj3N0FISQ4eTz65tNofufFyeQnLIrXlFzVfc3fjwqvGGGsFuJFcUabhlaE0O7kj_plcR7jIyE1r2t-VvzYLtOuDGCsH62O5YCQloC58KHUXyGAThjsk80UTKbUDmK0w_r839x9-VjGBDssFUQ0pZ9-zZfaj8pOkGzuxRQg4W7dC8bFJVs5WDGUMwaNcwqZOXothsvidAAX8dXxvSgePn-639xU27vr282HbQWcsFQpIQaqBQUAojqFHRJOSENr4ANpVc_BCNV3LQWjOWOiBcYHbRpUggyko_VFcXvwGg-Pcg52hLBKD1buGz7sJIRktUNpeM3pQITgrOeIRmnR9q0xhDU9pZRn17uDa5lmWL-Dc7-FlMjnaGSORh6jyfibAz4H_23BmORoo0bnYEK_RMlE17aMsYZllB5QHXyMAQepbdqfNR_Vun_o3_41879lfgJYk7Lu
CitedBy_id crossref_primary_10_1155_2023_3715603
crossref_primary_10_1186_s12931_024_02913_z
crossref_primary_10_1016_j_ejro_2024_100580
crossref_primary_10_3390_diagnostics12102274
crossref_primary_10_1186_s12890_024_03109_3
crossref_primary_10_1186_s12931_024_02964_2
crossref_primary_10_2147_COPD_S483007
crossref_primary_10_1007_s11517_024_03016_z
crossref_primary_10_3233_THC_230619
crossref_primary_10_3389_frai_2025_1466643
crossref_primary_10_1186_s12931_024_02793_3
crossref_primary_10_1186_s40779_024_00516_9
crossref_primary_10_3389_fmed_2022_980950
Cites_doi 10.1164/rccm.202008-3122le
10.1109/uemcon47517.2019.8993023
10.1080/15412550701629663
10.3390/app9050940
10.1158/0008-5472.can-17-0339
10.3233/xst-200831
10.2139/ssrn.3349696
10.1109/access.2020.3048956
10.3934/mbe.2021210
10.1016/j.ejca.2011.11.036
10.18637/jss.v039.i05
10.1080/01431160600746456
10.1007/978-1-4419-9326-7_11
10.3389/fmed.2022.845286
10.1136/thoraxjnl-2013-203397
10.1007/978-3-642-31919-8_16
10.4018/978-1-60566-766-9.ch011
10.3390/s20185097
10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A2296
10.15701/kcgs.2018.24.5.41
10.1159/000505429
10.1038/s41598-021-94535-4
10.1016/j.jclepro.2017.11.107
10.1164/rccm.201301-0162oc
10.1186/s12957-021-02162-0
10.1164/rccm.201701-0050oc
10.1097/md.0000000000025307
10.1504/ijmei.2020.10029317
10.15326/jcopdf.1.1.2014.0125
10.1164/rccm.201305-0873oc
10.3389/fonc.2021.606677
10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6539
10.1186/s12931-019-1049-3
10.1145/3403782.3403805
10.3934/mbe.2022191
10.1007/978-1-4842-3564-5_6
10.1016/j.patcog.2017.10.009
10.1038/nm.2971
10.3390/jpm11070602
10.1136/thoraxjnl-2016-209544
10.1111/j.2517-6161.1996.tb02080.x
10.1109/tsmcb.2007.914695
10.1201/9780203913406-14
10.1016/j.acra.2016.10.011
10.1007/s12350-014-9908-2
10.1101/2020.10.01.20205146
10.3978/j.issn.2072-1439.2015.04.14
10.1186/1465-9921-15-52
10.1080/15412550801941265
10.1164/rccm.200907-1008oc
10.1136/bcr-2012-006240
10.1088/1361-6560/abf717
10.1186/s41747-020-00173-2
10.1164/rccm.201705-0855oc
10.1007/978-1-4899-7641-3_9
ContentType Journal Article
DBID AAYXX
CITATION
7X8
ADTOC
UNPAY
DOA
DOI 10.3934/mbe.2022366
DatabaseName CrossRef
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 7855
ExternalDocumentID oai_doaj_org_article_d4341f0664294eedbc6797dd02591114
10.3934/mbe.2022366
10_3934_mbe_2022366
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-a402t-b66f1c61aaa0b8be8e0400513a4f07b94ad6b9871adc42267a24fcd5eb60f0813
IEDL.DBID DOA
ISSN 1551-0018
1547-1063
IngestDate Fri Oct 03 12:53:50 EDT 2025
Mon Sep 15 08:21:59 EDT 2025
Fri Jul 11 16:15:00 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Tue Jul 01 02:58:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-b66f1c61aaa0b8be8e0400513a4f07b94ad6b9871adc42267a24fcd5eb60f0813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d4341f0664294eedbc6797dd02591114
PQID 2687722252
PQPubID 23479
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_d4341f0664294eedbc6797dd02591114
unpaywall_primary_10_3934_mbe_2022366
proquest_miscellaneous_2687722252
crossref_citationtrail_10_3934_mbe_2022366
crossref_primary_10_3934_mbe_2022366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2022366-13
key-10.3934/mbe.2022366-57
key-10.3934/mbe.2022366-12
key-10.3934/mbe.2022366-56
key-10.3934/mbe.2022366-11
key-10.3934/mbe.2022366-55
key-10.3934/mbe.2022366-10
key-10.3934/mbe.2022366-54
key-10.3934/mbe.2022366-53
key-10.3934/mbe.2022366-52
key-10.3934/mbe.2022366-51
key-10.3934/mbe.2022366-50
key-10.3934/mbe.2022366-49
key-10.3934/mbe.2022366-48
key-10.3934/mbe.2022366-47
key-10.3934/mbe.2022366-24
key-10.3934/mbe.2022366-23
key-10.3934/mbe.2022366-22
key-10.3934/mbe.2022366-21
key-10.3934/mbe.2022366-20
key-10.3934/mbe.2022366-19
key-10.3934/mbe.2022366-18
key-10.3934/mbe.2022366-17
key-10.3934/mbe.2022366-16
key-10.3934/mbe.2022366-15
key-10.3934/mbe.2022366-14
key-10.3934/mbe.2022366-58
key-10.3934/mbe.2022366-35
key-10.3934/mbe.2022366-34
key-10.3934/mbe.2022366-33
key-10.3934/mbe.2022366-32
key-10.3934/mbe.2022366-31
key-10.3934/mbe.2022366-30
key-10.3934/mbe.2022366-29
key-10.3934/mbe.2022366-28
key-10.3934/mbe.2022366-27
key-10.3934/mbe.2022366-26
key-10.3934/mbe.2022366-25
key-10.3934/mbe.2022366-5
key-10.3934/mbe.2022366-46
key-10.3934/mbe.2022366-6
key-10.3934/mbe.2022366-45
key-10.3934/mbe.2022366-7
key-10.3934/mbe.2022366-44
key-10.3934/mbe.2022366-8
key-10.3934/mbe.2022366-43
key-10.3934/mbe.2022366-9
key-10.3934/mbe.2022366-42
key-10.3934/mbe.2022366-41
key-10.3934/mbe.2022366-40
key-10.3934/mbe.2022366-1
key-10.3934/mbe.2022366-2
key-10.3934/mbe.2022366-3
key-10.3934/mbe.2022366-4
key-10.3934/mbe.2022366-39
key-10.3934/mbe.2022366-38
key-10.3934/mbe.2022366-37
key-10.3934/mbe.2022366-36
References_xml – ident: key-10.3934/mbe.2022366-10
  doi: 10.1164/rccm.202008-3122le
– ident: key-10.3934/mbe.2022366-54
  doi: 10.1109/uemcon47517.2019.8993023
– ident: key-10.3934/mbe.2022366-1
  doi: 10.1080/15412550701629663
– ident: key-10.3934/mbe.2022366-53
  doi: 10.3390/app9050940
– ident: key-10.3934/mbe.2022366-42
  doi: 10.1158/0008-5472.can-17-0339
– ident: key-10.3934/mbe.2022366-21
  doi: 10.3233/xst-200831
– ident: key-10.3934/mbe.2022366-32
  doi: 10.2139/ssrn.3349696
– ident: key-10.3934/mbe.2022366-51
  doi: 10.1109/access.2020.3048956
– ident: key-10.3934/mbe.2022366-40
  doi: 10.3934/mbe.2021210
– ident: key-10.3934/mbe.2022366-19
  doi: 10.1016/j.ejca.2011.11.036
– ident: key-10.3934/mbe.2022366-27
– ident: key-10.3934/mbe.2022366-44
  doi: 10.18637/jss.v039.i05
– ident: key-10.3934/mbe.2022366-31
  doi: 10.1080/01431160600746456
– ident: key-10.3934/mbe.2022366-45
  doi: 10.1007/978-1-4419-9326-7_11
– ident: key-10.3934/mbe.2022366-36
  doi: 10.3389/fmed.2022.845286
– ident: key-10.3934/mbe.2022366-17
  doi: 10.1136/thoraxjnl-2013-203397
– ident: key-10.3934/mbe.2022366-46
  doi: 10.1007/978-3-642-31919-8_16
– ident: key-10.3934/mbe.2022366-58
  doi: 10.4018/978-1-60566-766-9.ch011
– ident: key-10.3934/mbe.2022366-55
  doi: 10.3390/s20185097
– ident: key-10.3934/mbe.2022366-35
  doi: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A2296
– ident: key-10.3934/mbe.2022366-56
  doi: 10.15701/kcgs.2018.24.5.41
– ident: key-10.3934/mbe.2022366-29
  doi: 10.1159/000505429
– ident: key-10.3934/mbe.2022366-33
  doi: 10.1038/s41598-021-94535-4
– ident: key-10.3934/mbe.2022366-48
  doi: 10.1016/j.jclepro.2017.11.107
– ident: key-10.3934/mbe.2022366-18
  doi: 10.1164/rccm.201301-0162oc
– ident: key-10.3934/mbe.2022366-25
  doi: 10.1186/s12957-021-02162-0
– ident: key-10.3934/mbe.2022366-15
  doi: 10.1164/rccm.201701-0050oc
– ident: key-10.3934/mbe.2022366-23
  doi: 10.1097/md.0000000000025307
– ident: key-10.3934/mbe.2022366-30
  doi: 10.1504/ijmei.2020.10029317
– ident: key-10.3934/mbe.2022366-6
  doi: 10.15326/jcopdf.1.1.2014.0125
– ident: key-10.3934/mbe.2022366-7
  doi: 10.1164/rccm.201305-0873oc
– ident: key-10.3934/mbe.2022366-26
  doi: 10.3389/fonc.2021.606677
– ident: key-10.3934/mbe.2022366-11
  doi: 10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6539
– ident: key-10.3934/mbe.2022366-28
  doi: 10.1186/s12931-019-1049-3
– ident: key-10.3934/mbe.2022366-41
  doi: 10.1145/3403782.3403805
– ident: key-10.3934/mbe.2022366-37
  doi: 10.3934/mbe.2022191
– ident: key-10.3934/mbe.2022366-47
  doi: 10.1007/978-1-4842-3564-5_6
– ident: key-10.3934/mbe.2022366-52
  doi: 10.1016/j.patcog.2017.10.009
– ident: key-10.3934/mbe.2022366-13
  doi: 10.1038/nm.2971
– ident: key-10.3934/mbe.2022366-20
  doi: 10.3390/jpm11070602
– ident: key-10.3934/mbe.2022366-34
– ident: key-10.3934/mbe.2022366-14
  doi: 10.1136/thoraxjnl-2016-209544
– ident: key-10.3934/mbe.2022366-43
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: key-10.3934/mbe.2022366-49
  doi: 10.1109/tsmcb.2007.914695
– ident: key-10.3934/mbe.2022366-4
  doi: 10.1201/9780203913406-14
– ident: key-10.3934/mbe.2022366-16
  doi: 10.1016/j.acra.2016.10.011
– ident: key-10.3934/mbe.2022366-57
  doi: 10.1007/s12350-014-9908-2
– ident: key-10.3934/mbe.2022366-24
  doi: 10.1101/2020.10.01.20205146
– ident: key-10.3934/mbe.2022366-38
  doi: 10.3978/j.issn.2072-1439.2015.04.14
– ident: key-10.3934/mbe.2022366-9
  doi: 10.1186/1465-9921-15-52
– ident: key-10.3934/mbe.2022366-2
– ident: key-10.3934/mbe.2022366-5
  doi: 10.1080/15412550801941265
– ident: key-10.3934/mbe.2022366-8
  doi: 10.1164/rccm.200907-1008oc
– ident: key-10.3934/mbe.2022366-3
  doi: 10.1136/bcr-2012-006240
– ident: key-10.3934/mbe.2022366-22
  doi: 10.1088/1361-6560/abf717
– ident: key-10.3934/mbe.2022366-39
  doi: 10.1186/s41747-020-00173-2
– ident: key-10.3934/mbe.2022366-12
  doi: 10.1164/rccm.201705-0855oc
– ident: key-10.3934/mbe.2022366-50
  doi: 10.1007/978-1-4899-7641-3_9
SSID ssj0034334
Score 2.3467686
Snippet Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7826
SubjectTerms chest hrct images
classification
convolutional neural networks (cnn)
copd stage (gold)
feature combination
lasso
machine learning (ml)
radiomics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4Sh5BcmqYP6rYpG-pcCkokebWyjnk0mFLSHGpIT2L2oRDqysYPgvMv-o87s5KMY0LbmxAjsezM7veNtPMNQIcpusn4y72LdSC1CgMdGQxsZBRGhDha-1O-V6o_kF9ukpsN-NjUwqz8v-9mXXnyS7OWJWGYUpuwpRIi3C3YGlxdn_7wSqgypY3E90tj7A-4x1xVhbf-9CPc8fL8jzjlzrwc4-Ieh8MVeLncg4tmYNWpkp_H85k-Ng9rmo3_GPlzeFbTS3FaxcM-bLjyBWxXDScXL-H3V1rbYoL2jouRp6JwXteTLkYTYZbazQ-EZwJLKwxz6ztfCiXOv11fCOKSt04w9FkxKpvnBYUtZdjeyWJa6d0u_Av8ecVgiETsxbg6QzMhm_q9BMmvYHD5-ft5P6ibMgRIqeYs0EoV5McIEUPd067neBtIoi7KIkx1JtEqnVEahtZwlW6KsSyMTRyFQUH8o_saWuWodG9AOExSKZ20CWFkT9rMxigxi4wJXYhJ3IZPjctyUyuWc-OMYU6ZC89xTnOc13Pchs7SeFwJdTxtdsa-X5qwura_Qa7L68WaW0nYXhAZI7CWRCK0UWmWWkv8kLFBtuGwiZycViP_YsHSjebTPFY9Sldoj6TBHy1D6m8Devufdu9gl6-qrz_voTWbzN0B8aGZ_lCvhz8dDQcW
  priority: 102
  providerName: Unpaywall
Title Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier
URI https://www.proquest.com/docview/2687722252
https://doi.org/10.3934/mbe.2022366
https://doaj.org/article/d4341f0664294eedbc6797dd02591114
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034334
  issn: 1547-1063
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034334
  issn: 1547-1063
  databaseCode: AMVHM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SEb2IT6wvIuhFWLqP7OtYq1JEqgcLelomj5VC3ZZti9R_4T92kmxXBdGLt2XJhiEzmW8mO_mGkFMdootUn9wrnzuMR67DPQGO9EQEHiIO56bKtxd1--zmMXz80upL14RZemC7cC3J0M_mCIzoOBk6dC6iOI2lRKzW-9QwgbpJukimrA8OWBAwexsvSAPWeuGaEROR0JAhfuKPoen_FluuzooxzF9hOPwCM9cbZL2KD2nbyrVJllSxRVZsx8j5Nnm_xc1JS5ADfZt4QnNliDnxYVRSUZMvvyEgUSgkFTo4Hpi7TLRzd39JMRh8VlRjl6SjYvE9RbvDFNloiU4sYe3cTGAKDp0hYGROx7YIpsQx1byIqTukf3310Ok6VVcFBzBXnDo8inJUhAcALk-4SpTex6EXAMvdmKcMZMRTzKNACn3NNgaf5UKGCvWYYwAR7JJGMSrUHqEKwpgxxWSIIJcwmUofGKSeEK5yIfSb5Hyx1pmoKMd154thhqmHVkyGiskqxTTJaT14bJk2fh52oZVWD9H02OYFGk1WGU32l9E0yclC5RluJ_2PBAo1mk0yP0ow30Anh8Kf1bbwm0D7_yHQAVnT09mznUPSmJYzdYTRzpQfG8M-Jsv93n376QNU3QCl
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4Sh5BcmqYP6rYpG-pcCkokebWyjnk0mFLSHGpIT2L2oRDqysYPgvMv-o87s5KMY0LbmxAjsezM7veNtPMNQIcpusn4y72LdSC1CgMdGQxsZBRGhDha-1O-V6o_kF9ukpsN-NjUwqz8v-9mXXnyS7OWJWGYUpuwpRIi3C3YGlxdn_7wSqgypY3E90tj7A-4x1xVhbf-9CPc8fL8jzjlzrwc4-Ieh8MVeLncg4tmYNWpkp_H85k-Ng9rmo3_GPlzeFbTS3FaxcM-bLjyBWxXDScXL-H3V1rbYoL2jouRp6JwXteTLkYTYZbazQ-EZwJLKwxz6ztfCiXOv11fCOKSt04w9FkxKpvnBYUtZdjeyWJa6d0u_Av8ecVgiETsxbg6QzMhm_q9BMmvYHD5-ft5P6ibMgRIqeYs0EoV5McIEUPd067neBtIoi7KIkx1JtEqnVEahtZwlW6KsSyMTRyFQUH8o_saWuWodG9AOExSKZ20CWFkT9rMxigxi4wJXYhJ3IZPjctyUyuWc-OMYU6ZC89xTnOc13Pchs7SeFwJdTxtdsa-X5qwura_Qa7L68WaW0nYXhAZI7CWRCK0UWmWWkv8kLFBtuGwiZycViP_YsHSjebTPFY9Sldoj6TBHy1D6m8Devufdu9gl6-qrz_voTWbzN0B8aGZ_lCvhz8dDQcW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+radiomics+features+for+characterizing+and+classifying+COPD+stage+based+on+feature+combination+strategy+and+multi-layer+perceptron+classifier&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Yang%2C+Yingjian&rft.au=Li%2C+Wei&rft.au=Guo%2C+Yingwei&rft.au=Zeng%2C+Nanrong&rft.date=2022-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=19&rft.issue=8&rft.spage=7826&rft_id=info:doi/10.3934%2Fmbe.2022366&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon