Hybrid discrete dynamically dimensioned search (HD‐DDS) algorithm for water distribution system design optimization

The dynamically dimensioned search (DDS) continuous global optimization algorithm by Tolson and Shoemaker (2007) is modified to solve discrete, single‐objective, constrained water distribution system (WDS) design problems. The new global optimization algorithm for WDS optimization is called hybrid d...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 45; no. 12
Main Authors Tolson, Bryan A, Asadzadeh, Masoud, Maier, Holger R, Zecchin, Aaron
Format Journal Article
LanguageEnglish
Published 01.12.2009
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
1944-7973
DOI10.1029/2008WR007673

Cover

Abstract The dynamically dimensioned search (DDS) continuous global optimization algorithm by Tolson and Shoemaker (2007) is modified to solve discrete, single‐objective, constrained water distribution system (WDS) design problems. The new global optimization algorithm for WDS optimization is called hybrid discrete dynamically dimensioned search (HD‐DDS) and combines two local search heuristics with a discrete DDS search strategy adapted from the continuous DDS algorithm. The main advantage of the HD‐DDS algorithm compared with other heuristic global optimization algorithms, such as genetic and ant colony algorithms, is that its searching capability (i.e., the ability to find near globally optimal solutions) is as good, if not better, while being significantly more computationally efficient. The algorithm's computational efficiency is due to a number of factors, including the fact that it is not a population‐based algorithm and only requires computationally expensive hydraulic simulations to be conducted for a fraction of the solutions evaluated. This paper introduces and evaluates the algorithm by comparing its performance with that of three other algorithms (specific versions of the genetic algorithm, ant colony optimization, and particle swarm optimization) on four WDS case studies (21‐ to 454‐dimensional optimization problems) on which these algorithms have been found to perform well. The results obtained indicate that the HD‐DDS algorithm outperforms the state‐of‐the‐art existing algorithms in terms of searching ability and computational efficiency. In addition, the algorithm is easier to use, as it does not require any parameter tuning and automatically adjusts its search to find good solutions given the available computational budget.
AbstractList The dynamically dimensioned search (DDS) continuous global optimization algorithm by Tolson and Shoemaker (2007) is modified to solve discrete, single‐objective, constrained water distribution system (WDS) design problems. The new global optimization algorithm for WDS optimization is called hybrid discrete dynamically dimensioned search (HD‐DDS) and combines two local search heuristics with a discrete DDS search strategy adapted from the continuous DDS algorithm. The main advantage of the HD‐DDS algorithm compared with other heuristic global optimization algorithms, such as genetic and ant colony algorithms, is that its searching capability (i.e., the ability to find near globally optimal solutions) is as good, if not better, while being significantly more computationally efficient. The algorithm's computational efficiency is due to a number of factors, including the fact that it is not a population‐based algorithm and only requires computationally expensive hydraulic simulations to be conducted for a fraction of the solutions evaluated. This paper introduces and evaluates the algorithm by comparing its performance with that of three other algorithms (specific versions of the genetic algorithm, ant colony optimization, and particle swarm optimization) on four WDS case studies (21‐ to 454‐dimensional optimization problems) on which these algorithms have been found to perform well. The results obtained indicate that the HD‐DDS algorithm outperforms the state‐of‐the‐art existing algorithms in terms of searching ability and computational efficiency. In addition, the algorithm is easier to use, as it does not require any parameter tuning and automatically adjusts its search to find good solutions given the available computational budget.
Author Maier, Holger R
Tolson, Bryan A
Zecchin, Aaron
Asadzadeh, Masoud
Author_xml – sequence: 1
  fullname: Tolson, Bryan A
– sequence: 2
  fullname: Asadzadeh, Masoud
– sequence: 3
  fullname: Maier, Holger R
– sequence: 4
  fullname: Zecchin, Aaron
BookMark eNotUMFOwzAMjdCQ2AY37uQIh4KTtE1zRBswJCQkxsSxcpt0C1rbKek0lROfwDfyJaQakmVL9vN79puQUdM2hpBLBrcMuLrjANnHG4BMpTghY6biOJJKihEZA8QiYkLJMzLx_hOAxUkqx2S_6AtnNdXWl850huq-wdqWuN32oVmbxtsgoqk36MoNvV7Mf79_5vPlDcXtunW229S0ah09YGfcQNM5W-y7sER97ztTU228XTe03XW2tl84jM7JaYVbby7-65SsHh_eZ4vo5fXpeXb_EmEMXEYChIqVrhQUWMRCl-FqJUrkgJnUFSvAAIRUhcCEp2h4wiUqHkMiM-RiSqIj777ZYX8IT-U7Z2t0fc4gHzzLB88O7uhZwF8d8RW2Oa6d9flqyYEJYJlIkywTf3ilbOY
CitedBy_id crossref_primary_10_1002_2013WR014970
crossref_primary_10_1080_09715010_2022_2138585
crossref_primary_10_1007_s11269_021_02931_2
crossref_primary_10_1080_0305215X_2024_2319302
crossref_primary_10_3390_su16156689
crossref_primary_10_1029_2018JD029116
crossref_primary_10_1016_j_envsoft_2015_12_008
crossref_primary_10_1061__ASCE_WR_1943_5452_0000573
crossref_primary_10_1061__ASCE_WR_1943_5452_0000650
crossref_primary_10_1631_jzus_A1200072
crossref_primary_10_1007_s11269_014_0608_0
crossref_primary_10_1002_wrcr_20175
crossref_primary_10_3390_w13091163
crossref_primary_10_1061__ASCE_WR_1943_5452_0000649
crossref_primary_10_1016_j_ecoleng_2018_08_020
crossref_primary_10_1007_s13369_014_1367_1
crossref_primary_10_1061__ASCE_PS_1949_1204_0000580
crossref_primary_10_2166_aqua_2022_174
crossref_primary_10_1029_2019WR027009
crossref_primary_10_2166_aqua_2014_054
crossref_primary_10_1007_s11783_015_0776_z
crossref_primary_10_1007_s10898_017_0496_y
crossref_primary_10_1002_2013WR014143
crossref_primary_10_1061__ASCE_CP_1943_5487_0000552
crossref_primary_10_1080_23789689_2017_1328921
crossref_primary_10_1016_j_jhydrol_2019_01_015
crossref_primary_10_1109_ACCESS_2021_3052032
crossref_primary_10_1007_s10898_020_00917_9
crossref_primary_10_1038_srep15393
crossref_primary_10_1061__ASCE_WR_1943_5452_0000367
crossref_primary_10_1061__ASCE_WR_1943_5452_0001299
crossref_primary_10_2166_aqua_2023_075
crossref_primary_10_1061__ASCE_WR_1943_5452_0000321
crossref_primary_10_2166_hydro_2016_032
crossref_primary_10_1080_15623599_2022_2101593
crossref_primary_10_1016_j_envsoft_2014_09_023
crossref_primary_10_1007_s12065_024_00922_x
crossref_primary_10_1016_j_envsci_2022_08_021
crossref_primary_10_1016_j_jconhyd_2017_03_006
crossref_primary_10_1061__ASCE_WR_1943_5452_0000875
crossref_primary_10_3390_w12041037
crossref_primary_10_5194_hess_17_2001_2013
crossref_primary_10_1016_j_envsoft_2014_09_022
crossref_primary_10_1016_j_proeng_2014_02_152
crossref_primary_10_1029_2021JD035888
crossref_primary_10_1016_j_asej_2020_07_012
crossref_primary_10_1016_j_swevo_2014_02_002
crossref_primary_10_1080_09715010_2019_1624630
crossref_primary_10_2166_hydro_2014_013
crossref_primary_10_3390_w10030307
crossref_primary_10_1007_s11269_019_02322_8
crossref_primary_10_1029_2020JD033086
crossref_primary_10_1061__ASCE_WR_1943_5452_0000351
crossref_primary_10_1029_2010WR009739
crossref_primary_10_2166_hydro_2015_174
crossref_primary_10_1029_2012WR013160
crossref_primary_10_1007_s40534_015_0077_z
crossref_primary_10_1016_j_jhydrol_2015_11_052
crossref_primary_10_1109_ACCESS_2020_3017210
crossref_primary_10_3390_w9080587
crossref_primary_10_1016_j_envsoft_2011_09_010
crossref_primary_10_1016_j_proeng_2014_02_162
crossref_primary_10_3390_w14223633
crossref_primary_10_1016_j_envsoft_2014_09_010
crossref_primary_10_1080_02626667_2019_1657577
crossref_primary_10_1016_j_jwpe_2023_104087
crossref_primary_10_1029_2011WR010394
crossref_primary_10_1061__ASCE_CP_1943_5487_0000280
crossref_primary_10_14796_JWMM_H527
crossref_primary_10_1061__ASCE_WR_1943_5452_0000741
crossref_primary_10_1016_j_envsoft_2014_01_005
crossref_primary_10_1029_2010WR010292
crossref_primary_10_1061__ASCE_CP_1943_5487_0000849
crossref_primary_10_1061__ASCE_CP_1943_5487_0000208
crossref_primary_10_1080_1023697X_2014_912804
crossref_primary_10_1061__ASCE_WR_1943_5452_0000336
crossref_primary_10_1061__ASCE_WR_1943_5452_0000534
crossref_primary_10_1061__ASCE_WR_1943_5452_0000611
crossref_primary_10_1016_j_envsoft_2013_09_028
crossref_primary_10_1080_1573062X_2021_1877739
crossref_primary_10_1007_s11269_016_1320_z
crossref_primary_10_7202_1065203ar
ContentType Journal Article
DBID FBQ
ADTOC
UNPAY
DOI 10.1029/2008WR007673
DatabaseName AGRIS
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
ExternalDocumentID 10.1029/2008wr007673
US201301836588
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABCVL
ABHUG
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFGKR
AFKRA
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FBQ
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAHBH
AAMMB
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
ADTOC
ADXHL
AEFGJ
AEUYN
AFWVQ
AGQPQ
AGXDD
AIDQK
AIDYY
GROUPED_DOAJ
PHGZM
PHGZT
PQBZA
PQGLB
UNPAY
WIN
ID FETCH-LOGICAL-a4027-303949df90bab43dc01493ca20a87df1b0e00b0ef0efa526ae2527a9240578a23
IEDL.DBID UNPAY
ISSN 0043-1397
1944-7973
IngestDate Tue Aug 19 21:23:54 EDT 2025
Wed Dec 27 19:17:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4027-303949df90bab43dc01493ca20a87df1b0e00b0ef0efa526ae2527a9240578a23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2008WR007673
PageCount 15
ParticipantIDs unpaywall_primary_10_1029_2008wr007673
fao_agris_US201301836588
PublicationCentury 2000
PublicationDate December 2009
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: December 2009
PublicationDecade 2000
PublicationTitle Water resources research
PublicationYear 2009
SSID ssj0014567
Score 2.318289
Snippet The dynamically dimensioned search (DDS) continuous global optimization algorithm by Tolson and Shoemaker (2007) is modified to solve discrete,...
SourceID unpaywall
fao
SourceType Open Access Repository
Publisher
SubjectTerms algorithms
case studies
hydrologic models
optimization
water distribution
Title Hybrid discrete dynamically dimensioned search (HD‐DDS) algorithm for water distribution system design optimization
URI https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2008WR007673
UnpaywallVersion publishedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9jB98C6bl5EHEX2o1qS3PE7nGILD21CfSto0TtyNujHmkz_B3-gv8WTpxvBJEEopbRNOSXLynX7nAnDgMuULxaWlOTk0UCSzgsTjFndd6bkcnyQ63vm64dWbztWT-zQXC2PyQ8x-uOmVMdHXeoH3pTJ6Pks5wE81ef94p9kkny1CHjv37Bzkm42byvOUWtYQZ0ItO47lc59l3u_T5qPUNMe9RYneMhSG3b4Yj0S7PbfP1FYhnkpo3EveToaD6CT--JW88X-fsAYrGQwlFTNv1mEh6W5AYRql_I7XWXX01ngThvWxjusiOoI3RZBNpCljj9KP8WZH-8D3UF0Ts2zIUb36_flVrd4fE9F-6aWvg1aHIDgmIwS2qe5mVmaLmEzSRE4cSUgPFVgniwzdgmbt8uGibmXlGiyBRiiqKptxh0vF7UhEDpOxtr5YLKgtAl-qs8hObBtPCg_hUk8k1KW-QAMQMWMgKNuGXBelLQJJ0KxjSnoSzT0HJ1OQaHZTxRLt9cihqgRFHKxQvKAiDJv3VNOvqJsQTQUlOJyNYNg3GTvCCdNOeTg_4Dt_fXEXlmhWNMI-24PcIB0m-4hEBlEZFmvnt-Vswv0AiWPcaQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9qA-eBfv5EFEHzpr0lseh3MMQRF1qE8lbZop7kbtGPXJn-Bv9Jd40nRj-CQIpZS2CackOflOv3MBOHKZ8oXi0tKcHBookllB4nGLu670XI5PEh3vfH3jtdrO1ZP7NBMLY_JDTH-46ZVR6Gu9wIdSGT1fphzgZ5q8f7zTbJLP5qGKnXt2Bartm9v684Ra1hCnoJYdx_K5z0rv90nzcWqa496ixGAJFkb9ocjHotud2WeaKxBPJDTuJW-1URbV4o9fyRv_9wmrsFzCUFI382YN5pL-OixMopTf8bqsjv6Sb8Coleu4LqIjeFME2USaMvYofY43e9oHfoDqmphlQ05aje_Pr0bj_pSIbmeQvmYvPYLgmIwR2Ka6m2mZLWIySRNZOJKQASqwXhkZugnt5uXDRcsqyzVYAo1QVFU24w6XituRiBwmY219sVhQWwS-VOeRndg2nhQewqWeSKhLfYEGIGLGQFC2BZU-SrsNJEGzjinpSTT3HJxMQaLZTRVLtNcjh6od2MbBCkUHFWHYvqeafkXdhGgq2IHj6QiGQ5OxIyyYdsrD2QHf_euLe7BIy6IR9vk-VLJ0lBwgEsmiw3Kq_QBkZ9tv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+discrete+dynamically+dimensioned+search+%28HD%E2%80%90DDS%29+algorithm+for+water+distribution+system+design+optimization&rft.jtitle=Water+resources+research&rft.date=2009-12-01&rft.issn=1944-7973&rft_id=info:doi/10.1029%2F2008wr007673&rft.externalDocID=10.1029%2F2008wr007673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon