Dynamic Imaging of Glacier Structures at High‐Resolution Using Source Localization With a Dense Seismic Array
Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impul...
Saved in:
| Published in | Geophysical research letters Vol. 49; no. 6 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
John Wiley & Sons, Inc
28.03.2022
American Geophysical Union |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-8276 1944-8007 1944-8007 |
| DOI | 10.1029/2021GL095996 |
Cover
| Abstract | Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields.
Plain Language Summary
Over the past two decades, the growing use of dense seismic arrays has often overcome limitations of traditional observations methods and yielded new insights on the physics of subsurface process and properties. Yet scientific and computational challenges remain to be addressed for using the appropriate array‐processing approaches and automating the techniques on large volume of data and for complex wavefields. In this paper we address such challenges in the particular case of monitoring glaciers, which host numerous and diverse sets of seismic sources that produce signals ranging from impulsive to tremor‐like. We combine a physics‐based and a statistical approach to explore with a dense seismic array the spatial coherence of the seismic wavefield generated by such a diversity of sources. We show that even a small coherence in the phase signal remains rich in statistical information on concomitant and/or low amplitudes micro‐seismic sources. This allows us to localize seismic sources with a super‐resolution (meter to decameter) and identify emerging patterns associated with a wide range of glacier features and their dynamics, ranging from active crevasses, debris in transverse passive crevasses and subglacial water flow. Such methodological and conceptual advance may enable a more efficient and complete imaging of geophysical objects.
Key Points
We present an innovative array‐processing approach to image glaciers structures at high resolution by locating seismic sources
We investigate a large range of spatial phase coherences, from very low up to very high, over narrow frequency bands and short time windows
We image the spatial and temporal dynamics of sources originating from active and passive crevasses as well as from subglacial hydrology |
|---|---|
| AbstractList | Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields.
Plain Language Summary
Over the past two decades, the growing use of dense seismic arrays has often overcome limitations of traditional observations methods and yielded new insights on the physics of subsurface process and properties. Yet scientific and computational challenges remain to be addressed for using the appropriate array‐processing approaches and automating the techniques on large volume of data and for complex wavefields. In this paper we address such challenges in the particular case of monitoring glaciers, which host numerous and diverse sets of seismic sources that produce signals ranging from impulsive to tremor‐like. We combine a physics‐based and a statistical approach to explore with a dense seismic array the spatial coherence of the seismic wavefield generated by such a diversity of sources. We show that even a small coherence in the phase signal remains rich in statistical information on concomitant and/or low amplitudes micro‐seismic sources. This allows us to localize seismic sources with a super‐resolution (meter to decameter) and identify emerging patterns associated with a wide range of glacier features and their dynamics, ranging from active crevasses, debris in transverse passive crevasses and subglacial water flow. Such methodological and conceptual advance may enable a more efficient and complete imaging of geophysical objects.
Key Points
We present an innovative array‐processing approach to image glaciers structures at high resolution by locating seismic sources
We investigate a large range of spatial phase coherences, from very low up to very high, over narrow frequency bands and short time windows
We image the spatial and temporal dynamics of sources originating from active and passive crevasses as well as from subglacial hydrology Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields. Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields. Over the past two decades, the growing use of dense seismic arrays has often overcome limitations of traditional observations methods and yielded new insights on the physics of subsurface process and properties. Yet scientific and computational challenges remain to be addressed for using the appropriate array‐processing approaches and automating the techniques on large volume of data and for complex wavefields. In this paper we address such challenges in the particular case of monitoring glaciers, which host numerous and diverse sets of seismic sources that produce signals ranging from impulsive to tremor‐like. We combine a physics‐based and a statistical approach to explore with a dense seismic array the spatial coherence of the seismic wavefield generated by such a diversity of sources. We show that even a small coherence in the phase signal remains rich in statistical information on concomitant and/or low amplitudes micro‐seismic sources. This allows us to localize seismic sources with a super‐resolution (meter to decameter) and identify emerging patterns associated with a wide range of glacier features and their dynamics, ranging from active crevasses, debris in transverse passive crevasses and subglacial water flow. Such methodological and conceptual advance may enable a more efficient and complete imaging of geophysical objects. We present an innovative array‐processing approach to image glaciers structures at high resolution by locating seismic sources We investigate a large range of spatial phase coherences, from very low up to very high, over narrow frequency bands and short time windows We image the spatial and temporal dynamics of sources originating from active and passive crevasses as well as from subglacial hydrology |
| Author | Roux, Philippe Lecointre, Albanne Nanni, Ugo Gimbert, Florent |
| Author_xml | – sequence: 1 givenname: Ugo orcidid: 0000-0001-6677-6117 surname: Nanni fullname: Nanni, Ugo email: ugo.nanni0158@gmail.com organization: University of Oslo – sequence: 2 givenname: Philippe orcidid: 0000-0002-9409-3193 surname: Roux fullname: Roux, Philippe organization: IFSTTAR – sequence: 3 givenname: Florent orcidid: 0000-0001-7350-3563 surname: Gimbert fullname: Gimbert, Florent organization: IRD – sequence: 4 givenname: Albanne surname: Lecointre fullname: Lecointre, Albanne organization: IFSTTAR |
| BackLink | https://hal.science/hal-03613797$$DView record in HAL |
| BookMark | eNqFkc1q3DAQgEVJoZu0tz6AoKdC3Y5-LFnHJWl3A4ZCtqFHM6tqdxW81layE5xTHiHPmCepHTcESmlPI2a-0Yw-HZOjJjSOkLcMPjLg5hMHzhYlmNwY9YLMmJEyKwD0EZkBmOHMtXpFjlO6AgABgs1IOOsb3HtLz_e49c2Whg1d1Gi9i3TVxs62XXSJYkuXfrt7uLu_cCnUXetDQy_T2LAKXbSOlsFi7W_xsfLdtzuK9Mw1ydGV82mcMI8R-9fk5Qbr5N78jifk8svnb6fLrPy6OD-dlxlKYCpzvNBKrAumrUEOOc-dhFzDGrmQKseCwzp32mkhMDd2IxT_YaUr9FpiYaQWJySb7u2aA_Y3WNfVIfo9xr5iUI22qtHWtp5sDfz7id_hMxnQV8t5WY05EIoJbfQ1G9h3E3uI4WfnUltdDQ6a4TkVV1IKo3OWD9SHibIxpBTd5q8LPH3XgPM_cOvbR5ttRF__p-nG167_54BqcVEqUQglfgFYRKVw |
| CitedBy_id | crossref_primary_10_5194_tc_17_4979_2023 crossref_primary_10_1029_2022GL102007 crossref_primary_10_1017_jog_2024_38 crossref_primary_10_5194_tc_17_1567_2023 crossref_primary_10_5194_tc_18_2939_2024 crossref_primary_10_1190_geo2023_0058_1 crossref_primary_10_3389_fmars_2024_1351327 crossref_primary_10_5194_tc_18_2061_2024 crossref_primary_10_3390_rs15051282 |
| Cites_doi | 10.1111/j.1365-246X.2011.05147.x 10.5194/tc-14-1139-2020 10.1038/s41467-020-17841-x 10.1190/geo2018-0537.1 10.1121/1.5133944 10.1002/2015RG000504 10.1029/1998gl900237 10.1002/2015JF003601 10.5281/zenodo.5645545 10.1093/gji/ggz224 10.5194/tc-14-2949-2020 10.1017/S0022143000020396 10.1002/2016RG000526 10.1088/0034-4885/63/12/202 10.1190/1.9781560802310.ch12 10.1002/grl.50422 10.1038/s41598-018-25448-y 10.1529/biophysj.106.091116 10.1093/gji/ggv142 10.1093/gji/ggaa512 10.1190/geo2012-0453.1 10.1785/0220200280 10.1088/1742-6596/433/1/012039 10.1190/geo2011-0438.1 10.3389/feart.2019.00010 10.1093/gji/ggaa411 10.5194/tc-14-1475-2020 10.1017/aog.2018.29 10.1038/nmeth929 10.1002/2015JB011870 10.1002/(sici)1099-1085(199604)10:4<541::aid-hyp391>3.0.co;2-9 10.1785/0220200248 10.5281/zenodo.4024660 10.1029/2009GL039131 10.1002/2016GL070320 10.1017/jog.2016.35 10.1126/science.1127344 10.1029/2020JB020506 10.1029/2000RG000100 10.1017/jog.2020.116 10.1137/S1052623496303470 10.1073/pnas.2023757118 10.1029/2019JC015709 |
| ContentType | Journal Article |
| Copyright | 2022. The Authors. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022. The Authors. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC VOOES ADTOC UNPAY |
| DOI | 10.1029/2021GL095996 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics Statistics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | 10.1029/2021gl095996 oai:HAL:hal-03613797v1 10_1029_2021GL095996 GRL63836 |
| Genre | article |
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐17‐CE01‐0008; ANR‐18‐CE01‐0015‐01; ANR10LABX56 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC 31~ 6TJ 7XC 88I 8FE 8FG 8FH 8G5 AANHP AASGY ABJCF ABJNI ABUWG ACBWZ ACCMX ACRPL ACYXJ ADNMO AEUYN AFKRA AFZJQ AGQPQ AI. AIQQE ARAPS ASPBG ATCPS AVWKF AZQEC BDRZF BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K DDYGU DWQXO EJD FEDTE GNUQQ GROUPED_DOAJ GUQSH HCIFZ HVGLF K6- L6V LK5 M2O M2P M7R M7S MVM P62 PALCI PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS RIWAO RJQFR SAMSI UQL VH1 VOH VOOES ZCG ADTOC UNPAY |
| ID | FETCH-LOGICAL-a4016-e28763b817c9a20525e40570ba23465a820b5e7e733a59cf362dc4e87b4a89473 |
| IEDL.DBID | UNPAY |
| ISSN | 0094-8276 1944-8007 |
| IngestDate | Sun Oct 26 03:26:10 EDT 2025 Tue Oct 14 20:51:05 EDT 2025 Fri Jul 25 10:51:03 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Wed Oct 01 02:25:03 EDT 2025 Wed Jan 22 16:25:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4016-e28763b817c9a20525e40570ba23465a820b5e7e733a59cf362dc4e87b4a89473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7350-3563 0000-0002-9409-3193 0000-0001-6677-6117 0000-0002-8255-5338 0000-0002-5639-8869 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021GL095996 |
| PQID | 2644397515 |
| PQPubID | 54723 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1029_2021gl095996 hal_primary_oai_HAL_hal_03613797v1 proquest_journals_2644397515 crossref_primary_10_1029_2021GL095996 crossref_citationtrail_10_1029_2021GL095996 wiley_primary_10_1029_2021GL095996_GRL63836 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 28 March 2022 |
| PublicationDateYYYYMMDD | 2022-03-28 |
| PublicationDate_xml | – month: 03 year: 2022 text: 28 March 2022 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union |
| References | 1968; 7 2019; 7 2006; 91 2012; 120 2021; 67 2015; 202 2021; 126 2021; 224 2013; 40 2000; 63 1999; 26 2016; 54 2019; 146 2020; 14 2016; 121 2006; 3 2020; 11 2020; 125 2006; 313 2012; 77 1996; 10 2021; 92 1999; 9 2009; 36 2018; 8 2019; 60 2019; 84 2021 2013; 78 2020 2002; 40 2004; 56 2021; 118 2016; 43 2016; 62 2019; 218 1968; 11–12 2011; 187 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Nanni U. (e_1_2_7_29_1) 2020 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 125 start-page: 1 issue: 4 year: 2020 end-page: 17 article-title: Sea ice thickness and elastic properties from the analysis of multimodal guided wave propagation measured with a passive seismic array publication-title: Journal of Geophysical Research: Oceans – volume: 14 start-page: 1139 issue: 3 year: 2020 end-page: 1171 article-title: On the Green’s function emergence from interferometry of seismic wave fields generated in high‐melt glaciers: Implications for passive imaging and monitoring publication-title: The Cryosphere – volume: 224 start-page: 1133 issue: 2 year: 2021 end-page: 1140 article-title: Characterization with dense array data of seismic sources in the shallow part of the San Jacinto fault zone publication-title: Geophysical Journal International – volume: 313 start-page: 1642 issue: 5793 year: 2006 end-page: 1645 article-title: Imaging intracellular fluorescent proteins at Nanometer resolution publication-title: Science – volume: 224 start-page: 1287 issue: 2 year: 2021 end-page: 1300 article-title: Phase‐velocity inversion from data‐based diffraction kernels: Seismic Michelson interferometer publication-title: Geophysical Journal International – volume: 92 start-page: 1185 year: 2021 end-page: 1201 article-title: A multi‐physics experiment with a temporary dense seismic array on the Argentière Glacier, French Alps: The RESOLVE project publication-title: Seismological Research Letters – volume: 60 start-page: 137 issue: 79 year: 2019 end-page: 157 article-title: Diurnal seismicity cycle linked to subsurface melting on an ice shelf publication-title: Annals of Glaciology – volume: 3 start-page: 793 issue: 10 year: 2006 end-page: 796 article-title: Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM) publication-title: Nature Methods – year: 2020 article-title: DATA of ‘resolving the 2D temporal evolution of subglacial water flow with dense seismic array observations publication-title: Zenodo – volume: 14 start-page: 1475 issue: 5 year: 2020 end-page: 1496 article-title: Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier publication-title: The Cryosphere – volume: 63 start-page: 1933 issue: 12 year: 2000 end-page: 1995 article-title: Time‐reversed acoustics publication-title: Reports on Progress in Physics – volume: 118 issue: 28 year: 2021 article-title: “Observing the subglacial hydrology network and its dynamics with a dense seismic array” publication-title: Proceedings of the National Academy of Sciences – volume: 218 start-page: 1044 issue: 2 year: 2019 end-page: 1056 article-title: Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling publication-title: Geophysical Journal International – volume: 9 start-page: 112 year: 1999 end-page: 147 article-title: Convergence behavior of the Nelder‐Mead simplex algorithm in low dimensions publication-title: SIAM Journal on Optimization – volume: 43 start-page: 9644 issue: 18 year: 2016 end-page: 9652 article-title: Spatial coherence of the seismic wavefield continuously recorded by the USArray publication-title: Geophysical Research Letters – volume: 62 start-page: 805 issue: 235 year: 2016 end-page: 815 article-title: Sliding velocity fluctuations and subglacial hydrology over the last two decades on Argentière Glacier, Mont Blanc area publication-title: Journal of Glaciology – volume: 40 start-page: 2‐1 issue: 3 year: 2002 end-page: 2‐27 article-title: Array seismology: Methods and applications publication-title: Reviews of Geophysics – volume: 54 start-page: 119 issue: 1 year: 2016 end-page: 161 article-title: Glacier crevasses: Observations, models, and mass balance implications publication-title: Reviews of Geophysics – volume: 77 issue: 5 year: 2012 article-title: Multiscale matched‐field processing for noise‐source localization in exploration geophysics publication-title: Geophysics – volume: 91 start-page: 4258 issue: 11 year: 2006 end-page: 4272 article-title: Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy publication-title: Biophysical Journal – volume: 202 start-page: 1 issue: 1 year: 2015 end-page: 11 article-title: Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone publication-title: Geophysical Journal International – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 11 article-title: Anatomy of a fumarolic system inferred from a multiphysics approach publication-title: Scientific Reports – volume: 92 start-page: 623 year: 2021 end-page: 635 article-title: Humming trains in seismology: An opportune source for probing the shallow crust publication-title: Seismological Society of America – volume: 14 start-page: 2949 issue: 9 year: 2020 end-page: 2976 article-title: A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin, Canada publication-title: The Cryosphere – volume: 36 start-page: 5 issue: 18 year: 2009 end-page: 9 article-title: Determination of surface‐wave phase velocities across USArray from noise and aki’s spectral formulation publication-title: Geophysical Research Letters – volume: 126 issue: 1 year: 2021 article-title: Unsupervised learning of seismic wavefield features: Clustering continuous array seismic data during the 2009 L’Aquila earthquake publication-title: Journal of Geophysical Research: Solid Earth – volume: 84 start-page: 1 issue: 6 year: 2019 end-page: 55 article-title: High‐sensitivity microseismic monitoring: Automatic detection and localization of subsurface noise sources using matched‐field processing and dense patch arrays publication-title: Geophysics – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning publication-title: Nature Communications – volume: 54 start-page: 708 issue: 4 year: 2016 end-page: 758 article-title: Cryoseismology publication-title: Reviews of Geophysics – volume: 56 issue: 1 year: 2004 article-title: Recent progress of seismic observation networks in Japan publication-title: Earth Planets and Space – volume: 40 start-page: 1989 issue: 10 year: 2013 end-page: 1993 article-title: The plumbing of old faithful geyser revealed by hydrothermal tremor publication-title: Geophysical Research Letters – year: 2021 article-title: Seismic source location with a match field processing approach during the RESOLVE dense seismic array experiment on the glacier d’Argentiere publication-title: Zenodo – year: 2020 – volume: 26 start-page: 127 issue: 1 year: 1999 end-page: 130 article-title: Synthetic sediments using seismic wave transmission sample publication-title: Geophysical Research Letters – volume: 187 start-page: 385 issue: 1 year: 2011 end-page: 393 article-title: Locating hydrothermal acoustic sources at old faithful geyser using matched field processing publication-title: Geophysical Journal International – volume: 67 start-page: 421 issue: 263 year: 2021 end-page: 434 article-title: Determining the evolution of an Alpine glacier drainage system by solving inverse problems publication-title: Journal of Glaciology – volume: 7 year: 2019 article-title: “The influence of hydrology on the dynamics of land‐terminating sectors of the Greenland ice sheet” publication-title: Frontiers of Earth Science – volume: 78 start-page: Q45 issue: 4 year: 2013 end-page: Q56 article-title: High‐resolution 3D shallow crustal structure in long beach, California: Application of ambient noise tomography on a dense seismic Array Noise tomography with a dense array publication-title: Geophysics – volume: 11–12 year: 1968 – volume: 7 start-page: 21 issue: 49 year: 1968 end-page: 58 article-title: General theory of subglacial cavitation and sliding of temperate glaciers publication-title: Journal of Glaciology – volume: 120 start-page: 1159 issue: 8–9 year: 2012 end-page: 1173 article-title: Journal of geophysical research: Solid earth body wave extraction and tomography at long beach, California, with ambient‐noise interferometry publication-title: Geophysical Journal International – volume: 10 start-page: 541 issue: 4 year: 1996 end-page: 556 article-title: Hydrochemistry as an indicator of subglacial drainage system structure: A comparison of alpine and sub‐polar environments publication-title: Hydrological Processes – volume: 121 start-page: 223 issue: 2 year: 2016 end-page: 240 article-title: Meltwater influences on deep stick‐slip ice quakes near the base of the Greenland ice sheet publication-title: Journal of Geophysical Research F: Earth Surface – volume: 146 start-page: 3590 issue: 5 year: 2019 end-page: 3628 article-title: Machine learning in acoustics: Theory and applications publication-title: Journal of the Acoustical Society of America – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-246X.2011.05147.x – ident: e_1_2_7_38_1 doi: 10.5194/tc-14-1139-2020 – ident: e_1_2_7_39_1 doi: 10.1038/s41467-020-17841-x – ident: e_1_2_7_5_1 doi: 10.1190/geo2018-0537.1 – ident: e_1_2_7_4_1 doi: 10.1121/1.5133944 – ident: e_1_2_7_7_1 doi: 10.1002/2015RG000504 – ident: e_1_2_7_34_1 doi: 10.1029/1998gl900237 – ident: e_1_2_7_35_1 doi: 10.1002/2015JF003601 – ident: e_1_2_7_30_1 doi: 10.5281/zenodo.5645545 – ident: e_1_2_7_14_1 doi: 10.1093/gji/ggz224 – ident: e_1_2_7_20_1 doi: 10.5194/tc-14-2949-2020 – ident: e_1_2_7_23_1 doi: 10.1017/S0022143000020396 – ident: e_1_2_7_33_1 doi: 10.1002/2016RG000526 – ident: e_1_2_7_12_1 doi: 10.1088/0034-4885/63/12/202 – ident: e_1_2_7_22_1 doi: 10.1190/1.9781560802310.ch12 – ident: e_1_2_7_44_1 doi: 10.1002/grl.50422 – ident: e_1_2_7_16_1 doi: 10.1038/s41598-018-25448-y – ident: e_1_2_7_17_1 doi: 10.1529/biophysj.106.091116 – ident: e_1_2_7_2_1 doi: 10.1093/gji/ggv142 – ident: e_1_2_7_6_1 doi: 10.1093/gji/ggaa512 – ident: e_1_2_7_21_1 doi: 10.1190/geo2012-0453.1 – ident: e_1_2_7_13_1 doi: 10.1785/0220200280 – ident: e_1_2_7_31_1 doi: 10.1088/1742-6596/433/1/012039 – ident: e_1_2_7_8_1 doi: 10.1190/geo2011-0438.1 – ident: e_1_2_7_10_1 doi: 10.3389/feart.2019.00010 – ident: e_1_2_7_15_1 doi: 10.1093/gji/ggaa411 – ident: e_1_2_7_28_1 doi: 10.5194/tc-14-1475-2020 – ident: e_1_2_7_24_1 doi: 10.1017/aog.2018.29 – ident: e_1_2_7_37_1 doi: 10.1038/nmeth929 – ident: e_1_2_7_41_1 doi: 10.1002/2015JB011870 – ident: e_1_2_7_43_1 doi: 10.1002/(sici)1099-1085(199604)10:4<541::aid-hyp391>3.0.co;2-9 – ident: e_1_2_7_32_1 doi: 10.1785/0220200248 – ident: e_1_2_7_26_1 doi: 10.5281/zenodo.4024660 – ident: e_1_2_7_11_1 doi: 10.1029/2009GL039131 – ident: e_1_2_7_40_1 doi: 10.1002/2016GL070320 – ident: e_1_2_7_45_1 doi: 10.1017/jog.2016.35 – ident: e_1_2_7_3_1 doi: 10.1126/science.1127344 – ident: e_1_2_7_42_1 doi: 10.1029/2020JB020506 – volume-title: DATA of the RESOLVE project year: 2020 ident: e_1_2_7_29_1 – ident: e_1_2_7_36_1 doi: 10.1029/2000RG000100 – ident: e_1_2_7_18_1 doi: 10.1017/jog.2020.116 – ident: e_1_2_7_19_1 doi: 10.1137/S1052623496303470 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.2023757118 – ident: e_1_2_7_25_1 doi: 10.1029/2019JC015709 |
| SSID | ssj0003031 |
| Score | 2.4689863 |
| Snippet | Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and... |
| SourceID | unpaywall hal proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Arrays Computer applications Crevasses cryoseismology dense seismic array Dynamics Earth Sciences Geophysics Glacial drift Glaciers Glaciology Hydrology Imaging techniques Localization Methods Monitoring Mountain glaciers Optimization Phase coherence Physics Resolution Sciences of the Universe Seismic activity Seismic arrays seismic source localization Statistics Subglacial water Water flow |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB7cFdEX0aqYWmWQ6ksZupmZZDKPi7W7LbEU1-K-hZnsxC3EbNlLZd_8Cf2N_SWeM8mGLVjBtxBOmJBz-87JuRCyL5KcGzBzzCmlmBSJZUY7x3pWWam51dqvA_pyFg8v5Ok4GjcJN-yFqedDtAk31Axvr1HBjV00wwZwRiZE7eEgxTSWjjvkYQhQBiWcy_PWEoN5rjfmackSruKm8B2eP9x--o5L6kyxIHILbT5eVVdm_cuU5V386h3Q8TPytEGOtF-z-jl54Kod8mjgN_Ou4crXcuaLF2R2VG-Zpyc__QoiOivooDSgxHM68uNiVxBjU7OkWORx-_sGU_i1AFJfQUBHPqNPU_RzTZ8m_X65nFJDjyDsdXTkLhd4Qn8-N-uX5OL487dPQ9bsVWAGoqmYOY5j6GwSqlwbjovsHMK2njVcyDgyAAps5JRTQphI5wX4uEkuXQLcM4mWSrwi3WpWudeEWi3ywso4LCZaauxLT7icFLEuhOVRXgTkYPNps7wZOo67L8rM__zmOttmREA-tNRX9bCNe-jeA5daEpyQPeynGd4DhxwKpdV1GJC9DROzRi8XGcI_QGAA4gLysWXsXw_7UW4OO_Bc_-cbZYOvKVgyEe_-F_Ub8oRjO0VPMJ7skS7IgHsLIGdp33lJ_gP2VO8X priority: 102 providerName: Wiley-Blackwell |
| Title | Dynamic Imaging of Glacier Structures at High‐Resolution Using Source Localization With a Dense Seismic Array |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL095996 https://www.proquest.com/docview/2644397515 https://hal.science/hal-03613797 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021GL095996 |
| UnpaywallVersion | publishedVersion |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003031 issn: 1944-8007 databaseCode: AVUZU dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7RVggu_CMKS2Uh4IKyamwnjo8Ry7agslpRAguXyHYddkVoq_6AyolH4Bl5EsZOUnURICRuVmTHcTye-cYefwPwkCWGKlRzgRVCBJwlOlDS2qCvheaSail9OqCXR_Ew4y9OopOduzAVP8R2w82tDK-v3QKfT4pKz9eUA9J57uFg5LayZNyCThwhHm9DJzs6Tt9V9JM8SKjPMIfOOpbRItbR703zD2XV_Jxdap26qMgdyHlpPZ2rzRdVludBrLdCh1fBNN9fBZ983F-v9L75-gu14_8N8BpcqUEqSSupug4X7PQGXBz4JMAbLPmwUbO8CbODKqE9ef7JZzsis4IMSoX6YkHGnpl2je48USvi4kl-fPvuTgsqWSc-WIGM_eEBGTmTWl8JJW_PVqdEkQP0sC0Z27Ol6yFdLNTmFmSHz14_HQZ1CodAoeMWB5Y6xjudhMJIRV3OPOsQYl8ryngcKcQfOrLCCsZUJE2B5nRiuE1QUFQiuWC3oT2dTe0dIFoyU2geh8VEcumuwCeUT4pYFkzTyBRdeNJMYG5qfnOXZqPM_Tk7lfnuz-zCo23tecXr8Yd6D1AWtlUcGfcwHeXuGdr-kAkpPodd2GtEJa9VwDJ3SBPBHuLFLjzeis9vO2tkEIfgBeKvX5QPXo1QabL47r--9h5cpu7SRp8FNNmDNk6_vY9QaqV70KL8uAed9E32PuvVK-cnSXAW8w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdrR-leSrd1NOs_Mba-FLFYkiXrMfRP0s0to2lZ34zkyGvBS0qSbuRtH2GfsZ-kd7JjUtgGezNGQkYn3f3ufHc_Qt6LJOcW1BzzWmsmReKYNd6zttNOGu6MCXRAZ-eqdyU_XcfXNc8p1sJU_SGagBvejKCv8YJjQLruNoBNMsFtj7opxrGMWiLPpYoUel9cfmlUMejnijLPSJZwrerMd5j_cXH2E5u0dIMZkQtwc_V-eGdnP21ZPgWwwQKdrJO1GjrSTiXrl-SZH74iK91AzTuDp5DMmU9ek9FRRTNPT78HDiI6Kmi3tHCLx7Qf-sXeg5NN7ZRilsfDr98Yw69OIA0pBLQfQvo0RUNXF2rSr7fTG2rpEfi9nvb97QRX6IzHdrZBrk6OLw97rCZWYBbcKcU8xz50Lol0bixHJjuPuK3tLBdSxRZQgYu99loIG5u8ACM3yKVPQHw2MVKLN2R5OBr6TUKdEXnhYO-LgZEGC9MTLgeFMoVwPM6LFjmYb22W113HkfyizMLfb26yRUG0yIdm9F3VbeMv496BlJoh2CK710kzfAcWORLa6B9Ri2zPhZjVF3OSIf4DCAYorkX2G8H-cbFv5XyxgyD1f35R1r1IQZUJ9fa_Ru-R1d7lWZqlp-eft8gLjrUVbcF4sk2W4Tz4HUA8U7cbTvUj7dXygw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdYJ_68IP6KwgALAS-TRWM7cfxYrbQdhAlRChMvkZ06bFJoq7bb1Dc-Ap-RT7I7x406CZB4iyI3jnq-u99d7u5HyEuRFtyAmWNOKcWkSC0z2jnWscpKza3Wng7ow1EyHMt3x_Fx4DnFXph6PkSTcEPN8PYaFdzNJ2WYNoBDMiFsjwYZ5rF0skN2wZV3ZIvsdr-Mv40bYwwWuibN05KlXCWh9h2e8Gb791e80s4J1kRuAc6bZ9O5WV-YqroKYb0P6t8htwN4pN1a2nfJNTe9R64PPDnvGq58OWexvE9mvZponh7-8CxEdFbSQWVAjxd05CfGnkGYTc2KYp3H75-_MItfn0HqiwjoyCf1aYauLrRq0q-nqxNqaA8iX0dH7nSJO3QXC7N-QMb9t58PhixQKzADAVXCHMdJdDaNVKENRy47h8itYw0XMokN4AIbO-WUECbWRQlublJIl4IATaqlEg9JazqbukeEWi2K0sokKidaamxNT7mclIkuheVxUbbJ_uavzYswdxzpL6rcf__mOt8WRJu8albP63kbf1n3AqTULMEh2cNuluM98MmRUFqdR22ytxFiHlRzmSMCBBAGOK5NXjeC_eNm36vNZvte6v98o3zwKQNjJpLH_7X6ObnxsdfPs8Oj90_ILY7NFR3BeLpHWnAc3FOAPCv7LBzrS1oc89c |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbYrhBc-EcUFmQh4IK8amwnjo8Vy7agskKUiuUU2a7DrjbbVv0BlROPwDPyJMzYSdVFgJC4WZEdx_F45ht7_A0hT0TuuAE1x7xSikmRW2a096xjlZWaW61DOqA3R1l_JF8fp8dbd2EiP8Rmww1XRtDXuMBn4zLq-ZpyQKPnnvQGuJWlsx2ym6WAx1tkd3T0tvsx0k9KlvOQYQ6cdSiDRayj35vmn6rY_IJd2jnBqMgtyHllNZmZ9RdTVRdBbLBCh9eJa74_Bp-c7a-Wdt99_YXa8f8GeINcq0Eq7Uapukku-cktcrkXkgCvoRTCRt3iNpkexIT29NV5yHZEpyXtVQb0xZwOAzPtCtx5apYU40l-fPuOpwVR1mkIVqDDcHhAB2hS6yuh9MPp8oQaegAetqdDf7rAHrrzuVnfIaPDl-9f9FmdwoEZcNwy5jky3tk8UU4bjjnzPCLEjjVcyCw1gD9s6pVXQphUuxLM6dhJn4OgmFxLJe6S1mQ68fcItVq40sosKcdaarwCn3M5LjNdCstTV7bJ82YCC1fzm2OajaoI5-xcF9s_s02ebmrPIq_HH-o9BlnYVEEy7n53UOAzsP2JUFp9TtpkrxGVolYBiwKRJoA9wItt8mwjPr_trJFBGEIQiL9-UdF7NwClKbL7__raB-Qqx0sbHcF4vkdaMP3-IUCppX1Ur5WfILwUXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Imaging+of+Glacier+Structures+at+High%E2%80%90Resolution+Using+Source+Localization+With+a+Dense+Seismic+Array&rft.jtitle=Geophysical+research+letters&rft.au=Nanni%2C+Ugo&rft.au=Roux%2C+Philippe&rft.au=Gimbert%2C+Florent&rft.au=Lecointre%2C+Albanne&rft.date=2022-03-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=6&rft_id=info:doi/10.1029%2F2021GL095996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021GL095996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |