Dynamic Imaging of Glacier Structures at High‐Resolution Using Source Localization With a Dense Seismic Array

Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impul...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 49; no. 6
Main Authors Nanni, Ugo, Roux, Philippe, Gimbert, Florent, Lecointre, Albanne
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.03.2022
American Geophysical Union
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
1944-8007
DOI10.1029/2021GL095996

Cover

Abstract Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields. Plain Language Summary Over the past two decades, the growing use of dense seismic arrays has often overcome limitations of traditional observations methods and yielded new insights on the physics of subsurface process and properties. Yet scientific and computational challenges remain to be addressed for using the appropriate array‐processing approaches and automating the techniques on large volume of data and for complex wavefields. In this paper we address such challenges in the particular case of monitoring glaciers, which host numerous and diverse sets of seismic sources that produce signals ranging from impulsive to tremor‐like. We combine a physics‐based and a statistical approach to explore with a dense seismic array the spatial coherence of the seismic wavefield generated by such a diversity of sources. We show that even a small coherence in the phase signal remains rich in statistical information on concomitant and/or low amplitudes micro‐seismic sources. This allows us to localize seismic sources with a super‐resolution (meter to decameter) and identify emerging patterns associated with a wide range of glacier features and their dynamics, ranging from active crevasses, debris in transverse passive crevasses and subglacial water flow. Such methodological and conceptual advance may enable a more efficient and complete imaging of geophysical objects. Key Points We present an innovative array‐processing approach to image glaciers structures at high resolution by locating seismic sources We investigate a large range of spatial phase coherences, from very low up to very high, over narrow frequency bands and short time windows We image the spatial and temporal dynamics of sources originating from active and passive crevasses as well as from subglacial hydrology
AbstractList Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields. Plain Language Summary Over the past two decades, the growing use of dense seismic arrays has often overcome limitations of traditional observations methods and yielded new insights on the physics of subsurface process and properties. Yet scientific and computational challenges remain to be addressed for using the appropriate array‐processing approaches and automating the techniques on large volume of data and for complex wavefields. In this paper we address such challenges in the particular case of monitoring glaciers, which host numerous and diverse sets of seismic sources that produce signals ranging from impulsive to tremor‐like. We combine a physics‐based and a statistical approach to explore with a dense seismic array the spatial coherence of the seismic wavefield generated by such a diversity of sources. We show that even a small coherence in the phase signal remains rich in statistical information on concomitant and/or low amplitudes micro‐seismic sources. This allows us to localize seismic sources with a super‐resolution (meter to decameter) and identify emerging patterns associated with a wide range of glacier features and their dynamics, ranging from active crevasses, debris in transverse passive crevasses and subglacial water flow. Such methodological and conceptual advance may enable a more efficient and complete imaging of geophysical objects. Key Points We present an innovative array‐processing approach to image glaciers structures at high resolution by locating seismic sources We investigate a large range of spatial phase coherences, from very low up to very high, over narrow frequency bands and short time windows We image the spatial and temporal dynamics of sources originating from active and passive crevasses as well as from subglacial hydrology
Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields.
Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and spatial coverage. We present a methodology that goes beyond classical localization algorithms through gathering various types of sources (impulsive or continuous) using a single scheme based on a gradient‐descent optimization and evaluating different levels of phase coherence. We apply our methodology on an Alpine glacier and demonstrate that we can retrieve the dynamics of active crevasses with a metric resolution using sources associated with high phase coherence; the presence of diffracting materials (e.g., rocks) trapped in transverse crevasses using sources with moderate phase coherence; and the two‐dimensional time evolution of the subglacial hydrology system using sources with low phase coherence. Our study highlights the strength of using an appropriate and systematic seismological approach to image a wide range of subsurface structures and phenomena in settings with complex wavefields. Over the past two decades, the growing use of dense seismic arrays has often overcome limitations of traditional observations methods and yielded new insights on the physics of subsurface process and properties. Yet scientific and computational challenges remain to be addressed for using the appropriate array‐processing approaches and automating the techniques on large volume of data and for complex wavefields. In this paper we address such challenges in the particular case of monitoring glaciers, which host numerous and diverse sets of seismic sources that produce signals ranging from impulsive to tremor‐like. We combine a physics‐based and a statistical approach to explore with a dense seismic array the spatial coherence of the seismic wavefield generated by such a diversity of sources. We show that even a small coherence in the phase signal remains rich in statistical information on concomitant and/or low amplitudes micro‐seismic sources. This allows us to localize seismic sources with a super‐resolution (meter to decameter) and identify emerging patterns associated with a wide range of glacier features and their dynamics, ranging from active crevasses, debris in transverse passive crevasses and subglacial water flow. Such methodological and conceptual advance may enable a more efficient and complete imaging of geophysical objects. We present an innovative array‐processing approach to image glaciers structures at high resolution by locating seismic sources We investigate a large range of spatial phase coherences, from very low up to very high, over narrow frequency bands and short time windows We image the spatial and temporal dynamics of sources originating from active and passive crevasses as well as from subglacial hydrology
Author Roux, Philippe
Lecointre, Albanne
Nanni, Ugo
Gimbert, Florent
Author_xml – sequence: 1
  givenname: Ugo
  orcidid: 0000-0001-6677-6117
  surname: Nanni
  fullname: Nanni, Ugo
  email: ugo.nanni0158@gmail.com
  organization: University of Oslo
– sequence: 2
  givenname: Philippe
  orcidid: 0000-0002-9409-3193
  surname: Roux
  fullname: Roux, Philippe
  organization: IFSTTAR
– sequence: 3
  givenname: Florent
  orcidid: 0000-0001-7350-3563
  surname: Gimbert
  fullname: Gimbert, Florent
  organization: IRD
– sequence: 4
  givenname: Albanne
  surname: Lecointre
  fullname: Lecointre, Albanne
  organization: IFSTTAR
BackLink https://hal.science/hal-03613797$$DView record in HAL
BookMark eNqFkc1q3DAQgEVJoZu0tz6AoKdC3Y5-LFnHJWl3A4ZCtqFHM6tqdxW81layE5xTHiHPmCepHTcESmlPI2a-0Yw-HZOjJjSOkLcMPjLg5hMHzhYlmNwY9YLMmJEyKwD0EZkBmOHMtXpFjlO6AgABgs1IOOsb3HtLz_e49c2Whg1d1Gi9i3TVxs62XXSJYkuXfrt7uLu_cCnUXetDQy_T2LAKXbSOlsFi7W_xsfLdtzuK9Mw1ydGV82mcMI8R-9fk5Qbr5N78jifk8svnb6fLrPy6OD-dlxlKYCpzvNBKrAumrUEOOc-dhFzDGrmQKseCwzp32mkhMDd2IxT_YaUr9FpiYaQWJySb7u2aA_Y3WNfVIfo9xr5iUI22qtHWtp5sDfz7id_hMxnQV8t5WY05EIoJbfQ1G9h3E3uI4WfnUltdDQ6a4TkVV1IKo3OWD9SHibIxpBTd5q8LPH3XgPM_cOvbR5ttRF__p-nG167_54BqcVEqUQglfgFYRKVw
CitedBy_id crossref_primary_10_5194_tc_17_4979_2023
crossref_primary_10_1029_2022GL102007
crossref_primary_10_1017_jog_2024_38
crossref_primary_10_5194_tc_17_1567_2023
crossref_primary_10_5194_tc_18_2939_2024
crossref_primary_10_1190_geo2023_0058_1
crossref_primary_10_3389_fmars_2024_1351327
crossref_primary_10_5194_tc_18_2061_2024
crossref_primary_10_3390_rs15051282
Cites_doi 10.1111/j.1365-246X.2011.05147.x
10.5194/tc-14-1139-2020
10.1038/s41467-020-17841-x
10.1190/geo2018-0537.1
10.1121/1.5133944
10.1002/2015RG000504
10.1029/1998gl900237
10.1002/2015JF003601
10.5281/zenodo.5645545
10.1093/gji/ggz224
10.5194/tc-14-2949-2020
10.1017/S0022143000020396
10.1002/2016RG000526
10.1088/0034-4885/63/12/202
10.1190/1.9781560802310.ch12
10.1002/grl.50422
10.1038/s41598-018-25448-y
10.1529/biophysj.106.091116
10.1093/gji/ggv142
10.1093/gji/ggaa512
10.1190/geo2012-0453.1
10.1785/0220200280
10.1088/1742-6596/433/1/012039
10.1190/geo2011-0438.1
10.3389/feart.2019.00010
10.1093/gji/ggaa411
10.5194/tc-14-1475-2020
10.1017/aog.2018.29
10.1038/nmeth929
10.1002/2015JB011870
10.1002/(sici)1099-1085(199604)10:4<541::aid-hyp391>3.0.co;2-9
10.1785/0220200248
10.5281/zenodo.4024660
10.1029/2009GL039131
10.1002/2016GL070320
10.1017/jog.2016.35
10.1126/science.1127344
10.1029/2020JB020506
10.1029/2000RG000100
10.1017/jog.2020.116
10.1137/S1052623496303470
10.1073/pnas.2023757118
10.1029/2019JC015709
ContentType Journal Article
Copyright 2022. The Authors.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022. The Authors.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
1XC
VOOES
ADTOC
UNPAY
DOI 10.1029/2021GL095996
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Statistics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10.1029/2021gl095996
oai:HAL:hal-03613797v1
10_1029_2021GL095996
GRL63836
Genre article
GrantInformation_xml – fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐17‐CE01‐0008; ANR‐18‐CE01‐0015‐01; ANR10LABX56
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
1XC
31~
6TJ
7XC
88I
8FE
8FG
8FH
8G5
AANHP
AASGY
ABJCF
ABJNI
ABUWG
ACBWZ
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
AFKRA
AFZJQ
AGQPQ
AI.
AIQQE
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BDRZF
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
DDYGU
DWQXO
EJD
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
P62
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
VOOES
ZCG
ADTOC
UNPAY
ID FETCH-LOGICAL-a4016-e28763b817c9a20525e40570ba23465a820b5e7e733a59cf362dc4e87b4a89473
IEDL.DBID UNPAY
ISSN 0094-8276
1944-8007
IngestDate Sun Oct 26 03:26:10 EDT 2025
Tue Oct 14 20:51:05 EDT 2025
Fri Jul 25 10:51:03 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Wed Oct 01 02:25:03 EDT 2025
Wed Jan 22 16:25:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4016-e28763b817c9a20525e40570ba23465a820b5e7e733a59cf362dc4e87b4a89473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7350-3563
0000-0002-9409-3193
0000-0001-6677-6117
0000-0002-8255-5338
0000-0002-5639-8869
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021GL095996
PQID 2644397515
PQPubID 54723
PageCount 9
ParticipantIDs unpaywall_primary_10_1029_2021gl095996
hal_primary_oai_HAL_hal_03613797v1
proquest_journals_2644397515
crossref_primary_10_1029_2021GL095996
crossref_citationtrail_10_1029_2021GL095996
wiley_primary_10_1029_2021GL095996_GRL63836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 March 2022
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 28 March 2022
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Geophysical Union
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union
References 1968; 7
2019; 7
2006; 91
2012; 120
2021; 67
2015; 202
2021; 126
2021; 224
2013; 40
2000; 63
1999; 26
2016; 54
2019; 146
2020; 14
2016; 121
2006; 3
2020; 11
2020; 125
2006; 313
2012; 77
1996; 10
2021; 92
1999; 9
2009; 36
2018; 8
2019; 60
2019; 84
2021
2013; 78
2020
2002; 40
2004; 56
2021; 118
2016; 43
2016; 62
2019; 218
1968; 11–12
2011; 187
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Nanni U. (e_1_2_7_29_1) 2020
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 125
  start-page: 1
  issue: 4
  year: 2020
  end-page: 17
  article-title: Sea ice thickness and elastic properties from the analysis of multimodal guided wave propagation measured with a passive seismic array
  publication-title: Journal of Geophysical Research: Oceans
– volume: 14
  start-page: 1139
  issue: 3
  year: 2020
  end-page: 1171
  article-title: On the Green’s function emergence from interferometry of seismic wave fields generated in high‐melt glaciers: Implications for passive imaging and monitoring
  publication-title: The Cryosphere
– volume: 224
  start-page: 1133
  issue: 2
  year: 2021
  end-page: 1140
  article-title: Characterization with dense array data of seismic sources in the shallow part of the San Jacinto fault zone
  publication-title: Geophysical Journal International
– volume: 313
  start-page: 1642
  issue: 5793
  year: 2006
  end-page: 1645
  article-title: Imaging intracellular fluorescent proteins at Nanometer resolution
  publication-title: Science
– volume: 224
  start-page: 1287
  issue: 2
  year: 2021
  end-page: 1300
  article-title: Phase‐velocity inversion from data‐based diffraction kernels: Seismic Michelson interferometer
  publication-title: Geophysical Journal International
– volume: 92
  start-page: 1185
  year: 2021
  end-page: 1201
  article-title: A multi‐physics experiment with a temporary dense seismic array on the Argentière Glacier, French Alps: The RESOLVE project
  publication-title: Seismological Research Letters
– volume: 60
  start-page: 137
  issue: 79
  year: 2019
  end-page: 157
  article-title: Diurnal seismicity cycle linked to subsurface melting on an ice shelf
  publication-title: Annals of Glaciology
– volume: 3
  start-page: 793
  issue: 10
  year: 2006
  end-page: 796
  article-title: Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM)
  publication-title: Nature Methods
– year: 2020
  article-title: DATA of ‘resolving the 2D temporal evolution of subglacial water flow with dense seismic array observations
  publication-title: Zenodo
– volume: 14
  start-page: 1475
  issue: 5
  year: 2020
  end-page: 1496
  article-title: Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier
  publication-title: The Cryosphere
– volume: 63
  start-page: 1933
  issue: 12
  year: 2000
  end-page: 1995
  article-title: Time‐reversed acoustics
  publication-title: Reports on Progress in Physics
– volume: 118
  issue: 28
  year: 2021
  article-title: “Observing the subglacial hydrology network and its dynamics with a dense seismic array”
  publication-title: Proceedings of the National Academy of Sciences
– volume: 218
  start-page: 1044
  issue: 2
  year: 2019
  end-page: 1056
  article-title: Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling
  publication-title: Geophysical Journal International
– volume: 9
  start-page: 112
  year: 1999
  end-page: 147
  article-title: Convergence behavior of the Nelder‐Mead simplex algorithm in low dimensions
  publication-title: SIAM Journal on Optimization
– volume: 43
  start-page: 9644
  issue: 18
  year: 2016
  end-page: 9652
  article-title: Spatial coherence of the seismic wavefield continuously recorded by the USArray
  publication-title: Geophysical Research Letters
– volume: 62
  start-page: 805
  issue: 235
  year: 2016
  end-page: 815
  article-title: Sliding velocity fluctuations and subglacial hydrology over the last two decades on Argentière Glacier, Mont Blanc area
  publication-title: Journal of Glaciology
– volume: 40
  start-page: 2‐1
  issue: 3
  year: 2002
  end-page: 2‐27
  article-title: Array seismology: Methods and applications
  publication-title: Reviews of Geophysics
– volume: 54
  start-page: 119
  issue: 1
  year: 2016
  end-page: 161
  article-title: Glacier crevasses: Observations, models, and mass balance implications
  publication-title: Reviews of Geophysics
– volume: 77
  issue: 5
  year: 2012
  article-title: Multiscale matched‐field processing for noise‐source localization in exploration geophysics
  publication-title: Geophysics
– volume: 91
  start-page: 4258
  issue: 11
  year: 2006
  end-page: 4272
  article-title: Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy
  publication-title: Biophysical Journal
– volume: 202
  start-page: 1
  issue: 1
  year: 2015
  end-page: 11
  article-title: Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone
  publication-title: Geophysical Journal International
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 11
  article-title: Anatomy of a fumarolic system inferred from a multiphysics approach
  publication-title: Scientific Reports
– volume: 92
  start-page: 623
  year: 2021
  end-page: 635
  article-title: Humming trains in seismology: An opportune source for probing the shallow crust
  publication-title: Seismological Society of America
– volume: 14
  start-page: 2949
  issue: 9
  year: 2020
  end-page: 2976
  article-title: A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin, Canada
  publication-title: The Cryosphere
– volume: 36
  start-page: 5
  issue: 18
  year: 2009
  end-page: 9
  article-title: Determination of surface‐wave phase velocities across USArray from noise and aki’s spectral formulation
  publication-title: Geophysical Research Letters
– volume: 126
  issue: 1
  year: 2021
  article-title: Unsupervised learning of seismic wavefield features: Clustering continuous array seismic data during the 2009 L’Aquila earthquake
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 84
  start-page: 1
  issue: 6
  year: 2019
  end-page: 55
  article-title: High‐sensitivity microseismic monitoring: Automatic detection and localization of subsurface noise sources using matched‐field processing and dense patch arrays
  publication-title: Geophysics
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
  publication-title: Nature Communications
– volume: 54
  start-page: 708
  issue: 4
  year: 2016
  end-page: 758
  article-title: Cryoseismology
  publication-title: Reviews of Geophysics
– volume: 56
  issue: 1
  year: 2004
  article-title: Recent progress of seismic observation networks in Japan
  publication-title: Earth Planets and Space
– volume: 40
  start-page: 1989
  issue: 10
  year: 2013
  end-page: 1993
  article-title: The plumbing of old faithful geyser revealed by hydrothermal tremor
  publication-title: Geophysical Research Letters
– year: 2021
  article-title: Seismic source location with a match field processing approach during the RESOLVE dense seismic array experiment on the glacier d’Argentiere
  publication-title: Zenodo
– year: 2020
– volume: 26
  start-page: 127
  issue: 1
  year: 1999
  end-page: 130
  article-title: Synthetic sediments using seismic wave transmission sample
  publication-title: Geophysical Research Letters
– volume: 187
  start-page: 385
  issue: 1
  year: 2011
  end-page: 393
  article-title: Locating hydrothermal acoustic sources at old faithful geyser using matched field processing
  publication-title: Geophysical Journal International
– volume: 67
  start-page: 421
  issue: 263
  year: 2021
  end-page: 434
  article-title: Determining the evolution of an Alpine glacier drainage system by solving inverse problems
  publication-title: Journal of Glaciology
– volume: 7
  year: 2019
  article-title: “The influence of hydrology on the dynamics of land‐terminating sectors of the Greenland ice sheet”
  publication-title: Frontiers of Earth Science
– volume: 78
  start-page: Q45
  issue: 4
  year: 2013
  end-page: Q56
  article-title: High‐resolution 3D shallow crustal structure in long beach, California: Application of ambient noise tomography on a dense seismic Array Noise tomography with a dense array
  publication-title: Geophysics
– volume: 11–12
  year: 1968
– volume: 7
  start-page: 21
  issue: 49
  year: 1968
  end-page: 58
  article-title: General theory of subglacial cavitation and sliding of temperate glaciers
  publication-title: Journal of Glaciology
– volume: 120
  start-page: 1159
  issue: 8–9
  year: 2012
  end-page: 1173
  article-title: Journal of geophysical research: Solid earth body wave extraction and tomography at long beach, California, with ambient‐noise interferometry
  publication-title: Geophysical Journal International
– volume: 10
  start-page: 541
  issue: 4
  year: 1996
  end-page: 556
  article-title: Hydrochemistry as an indicator of subglacial drainage system structure: A comparison of alpine and sub‐polar environments
  publication-title: Hydrological Processes
– volume: 121
  start-page: 223
  issue: 2
  year: 2016
  end-page: 240
  article-title: Meltwater influences on deep stick‐slip ice quakes near the base of the Greenland ice sheet
  publication-title: Journal of Geophysical Research F: Earth Surface
– volume: 146
  start-page: 3590
  issue: 5
  year: 2019
  end-page: 3628
  article-title: Machine learning in acoustics: Theory and applications
  publication-title: Journal of the Acoustical Society of America
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-246X.2011.05147.x
– ident: e_1_2_7_38_1
  doi: 10.5194/tc-14-1139-2020
– ident: e_1_2_7_39_1
  doi: 10.1038/s41467-020-17841-x
– ident: e_1_2_7_5_1
  doi: 10.1190/geo2018-0537.1
– ident: e_1_2_7_4_1
  doi: 10.1121/1.5133944
– ident: e_1_2_7_7_1
  doi: 10.1002/2015RG000504
– ident: e_1_2_7_34_1
  doi: 10.1029/1998gl900237
– ident: e_1_2_7_35_1
  doi: 10.1002/2015JF003601
– ident: e_1_2_7_30_1
  doi: 10.5281/zenodo.5645545
– ident: e_1_2_7_14_1
  doi: 10.1093/gji/ggz224
– ident: e_1_2_7_20_1
  doi: 10.5194/tc-14-2949-2020
– ident: e_1_2_7_23_1
  doi: 10.1017/S0022143000020396
– ident: e_1_2_7_33_1
  doi: 10.1002/2016RG000526
– ident: e_1_2_7_12_1
  doi: 10.1088/0034-4885/63/12/202
– ident: e_1_2_7_22_1
  doi: 10.1190/1.9781560802310.ch12
– ident: e_1_2_7_44_1
  doi: 10.1002/grl.50422
– ident: e_1_2_7_16_1
  doi: 10.1038/s41598-018-25448-y
– ident: e_1_2_7_17_1
  doi: 10.1529/biophysj.106.091116
– ident: e_1_2_7_2_1
  doi: 10.1093/gji/ggv142
– ident: e_1_2_7_6_1
  doi: 10.1093/gji/ggaa512
– ident: e_1_2_7_21_1
  doi: 10.1190/geo2012-0453.1
– ident: e_1_2_7_13_1
  doi: 10.1785/0220200280
– ident: e_1_2_7_31_1
  doi: 10.1088/1742-6596/433/1/012039
– ident: e_1_2_7_8_1
  doi: 10.1190/geo2011-0438.1
– ident: e_1_2_7_10_1
  doi: 10.3389/feart.2019.00010
– ident: e_1_2_7_15_1
  doi: 10.1093/gji/ggaa411
– ident: e_1_2_7_28_1
  doi: 10.5194/tc-14-1475-2020
– ident: e_1_2_7_24_1
  doi: 10.1017/aog.2018.29
– ident: e_1_2_7_37_1
  doi: 10.1038/nmeth929
– ident: e_1_2_7_41_1
  doi: 10.1002/2015JB011870
– ident: e_1_2_7_43_1
  doi: 10.1002/(sici)1099-1085(199604)10:4<541::aid-hyp391>3.0.co;2-9
– ident: e_1_2_7_32_1
  doi: 10.1785/0220200248
– ident: e_1_2_7_26_1
  doi: 10.5281/zenodo.4024660
– ident: e_1_2_7_11_1
  doi: 10.1029/2009GL039131
– ident: e_1_2_7_40_1
  doi: 10.1002/2016GL070320
– ident: e_1_2_7_45_1
  doi: 10.1017/jog.2016.35
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1127344
– ident: e_1_2_7_42_1
  doi: 10.1029/2020JB020506
– volume-title: DATA of the RESOLVE project
  year: 2020
  ident: e_1_2_7_29_1
– ident: e_1_2_7_36_1
  doi: 10.1029/2000RG000100
– ident: e_1_2_7_18_1
  doi: 10.1017/jog.2020.116
– ident: e_1_2_7_19_1
  doi: 10.1137/S1052623496303470
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.2023757118
– ident: e_1_2_7_25_1
  doi: 10.1029/2019JC015709
SSID ssj0003031
Score 2.4689863
Snippet Dense seismic array monitoring combined with advanced processing can help retrieve and locate a variety of seismic sources with unprecedented resolution and...
SourceID unpaywall
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Arrays
Computer applications
Crevasses
cryoseismology
dense seismic array
Dynamics
Earth Sciences
Geophysics
Glacial drift
Glaciers
Glaciology
Hydrology
Imaging techniques
Localization
Methods
Monitoring
Mountain glaciers
Optimization
Phase coherence
Physics
Resolution
Sciences of the Universe
Seismic activity
Seismic arrays
seismic source localization
Statistics
Subglacial water
Water flow
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB7cFdEX0aqYWmWQ6ksZupmZZDKPi7W7LbEU1-K-hZnsxC3EbNlLZd_8Cf2N_SWeM8mGLVjBtxBOmJBz-87JuRCyL5KcGzBzzCmlmBSJZUY7x3pWWam51dqvA_pyFg8v5Ok4GjcJN-yFqedDtAk31Axvr1HBjV00wwZwRiZE7eEgxTSWjjvkYQhQBiWcy_PWEoN5rjfmackSruKm8B2eP9x--o5L6kyxIHILbT5eVVdm_cuU5V386h3Q8TPytEGOtF-z-jl54Kod8mjgN_Ou4crXcuaLF2R2VG-Zpyc__QoiOivooDSgxHM68uNiVxBjU7OkWORx-_sGU_i1AFJfQUBHPqNPU_RzTZ8m_X65nFJDjyDsdXTkLhd4Qn8-N-uX5OL487dPQ9bsVWAGoqmYOY5j6GwSqlwbjovsHMK2njVcyDgyAAps5JRTQphI5wX4uEkuXQLcM4mWSrwi3WpWudeEWi3ywso4LCZaauxLT7icFLEuhOVRXgTkYPNps7wZOo67L8rM__zmOttmREA-tNRX9bCNe-jeA5daEpyQPeynGd4DhxwKpdV1GJC9DROzRi8XGcI_QGAA4gLysWXsXw_7UW4OO_Bc_-cbZYOvKVgyEe_-F_Ub8oRjO0VPMJ7skS7IgHsLIGdp33lJ_gP2VO8X
  priority: 102
  providerName: Wiley-Blackwell
Title Dynamic Imaging of Glacier Structures at High‐Resolution Using Source Localization With a Dense Seismic Array
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL095996
https://www.proquest.com/docview/2644397515
https://hal.science/hal-03613797
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021GL095996
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 1944-8007
  databaseCode: AVUZU
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7RVggu_CMKS2Uh4IKyamwnjo8Ry7agslpRAguXyHYddkVoq_6AyolH4Bl5EsZOUnURICRuVmTHcTye-cYefwPwkCWGKlRzgRVCBJwlOlDS2qCvheaSail9OqCXR_Ew4y9OopOduzAVP8R2w82tDK-v3QKfT4pKz9eUA9J57uFg5LayZNyCThwhHm9DJzs6Tt9V9JM8SKjPMIfOOpbRItbR703zD2XV_Jxdap26qMgdyHlpPZ2rzRdVludBrLdCh1fBNN9fBZ983F-v9L75-gu14_8N8BpcqUEqSSupug4X7PQGXBz4JMAbLPmwUbO8CbODKqE9ef7JZzsis4IMSoX6YkHGnpl2je48USvi4kl-fPvuTgsqWSc-WIGM_eEBGTmTWl8JJW_PVqdEkQP0sC0Z27Ol6yFdLNTmFmSHz14_HQZ1CodAoeMWB5Y6xjudhMJIRV3OPOsQYl8ryngcKcQfOrLCCsZUJE2B5nRiuE1QUFQiuWC3oT2dTe0dIFoyU2geh8VEcumuwCeUT4pYFkzTyBRdeNJMYG5qfnOXZqPM_Tk7lfnuz-zCo23tecXr8Yd6D1AWtlUcGfcwHeXuGdr-kAkpPodd2GtEJa9VwDJ3SBPBHuLFLjzeis9vO2tkEIfgBeKvX5QPXo1QabL47r--9h5cpu7SRp8FNNmDNk6_vY9QaqV70KL8uAed9E32PuvVK-cnSXAW8w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdrR-leSrd1NOs_Mba-FLFYkiXrMfRP0s0to2lZ34zkyGvBS0qSbuRtH2GfsZ-kd7JjUtgGezNGQkYn3f3ufHc_Qt6LJOcW1BzzWmsmReKYNd6zttNOGu6MCXRAZ-eqdyU_XcfXNc8p1sJU_SGagBvejKCv8YJjQLruNoBNMsFtj7opxrGMWiLPpYoUel9cfmlUMejnijLPSJZwrerMd5j_cXH2E5u0dIMZkQtwc_V-eGdnP21ZPgWwwQKdrJO1GjrSTiXrl-SZH74iK91AzTuDp5DMmU9ek9FRRTNPT78HDiI6Kmi3tHCLx7Qf-sXeg5NN7ZRilsfDr98Yw69OIA0pBLQfQvo0RUNXF2rSr7fTG2rpEfi9nvb97QRX6IzHdrZBrk6OLw97rCZWYBbcKcU8xz50Lol0bixHJjuPuK3tLBdSxRZQgYu99loIG5u8ACM3yKVPQHw2MVKLN2R5OBr6TUKdEXnhYO-LgZEGC9MTLgeFMoVwPM6LFjmYb22W113HkfyizMLfb26yRUG0yIdm9F3VbeMv496BlJoh2CK710kzfAcWORLa6B9Ri2zPhZjVF3OSIf4DCAYorkX2G8H-cbFv5XyxgyD1f35R1r1IQZUJ9fa_Ru-R1d7lWZqlp-eft8gLjrUVbcF4sk2W4Tz4HUA8U7cbTvUj7dXygw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdYJ_68IP6KwgALAS-TRWM7cfxYrbQdhAlRChMvkZ06bFJoq7bb1Dc-Ap-RT7I7x406CZB4iyI3jnq-u99d7u5HyEuRFtyAmWNOKcWkSC0z2jnWscpKza3Wng7ow1EyHMt3x_Fx4DnFXph6PkSTcEPN8PYaFdzNJ2WYNoBDMiFsjwYZ5rF0skN2wZV3ZIvsdr-Mv40bYwwWuibN05KlXCWh9h2e8Gb791e80s4J1kRuAc6bZ9O5WV-YqroKYb0P6t8htwN4pN1a2nfJNTe9R64PPDnvGq58OWexvE9mvZponh7-8CxEdFbSQWVAjxd05CfGnkGYTc2KYp3H75-_MItfn0HqiwjoyCf1aYauLrRq0q-nqxNqaA8iX0dH7nSJO3QXC7N-QMb9t58PhixQKzADAVXCHMdJdDaNVKENRy47h8itYw0XMokN4AIbO-WUECbWRQlublJIl4IATaqlEg9JazqbukeEWi2K0sokKidaamxNT7mclIkuheVxUbbJ_uavzYswdxzpL6rcf__mOt8WRJu8albP63kbf1n3AqTULMEh2cNuluM98MmRUFqdR22ytxFiHlRzmSMCBBAGOK5NXjeC_eNm36vNZvte6v98o3zwKQNjJpLH_7X6ObnxsdfPs8Oj90_ILY7NFR3BeLpHWnAc3FOAPCv7LBzrS1oc89c
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbYrhBc-EcUFmQh4IK8amwnjo8Vy7agskKUiuUU2a7DrjbbVv0BlROPwDPyJMzYSdVFgJC4WZEdx_F45ht7_A0hT0TuuAE1x7xSikmRW2a096xjlZWaW61DOqA3R1l_JF8fp8dbd2EiP8Rmww1XRtDXuMBn4zLq-ZpyQKPnnvQGuJWlsx2ym6WAx1tkd3T0tvsx0k9KlvOQYQ6cdSiDRayj35vmn6rY_IJd2jnBqMgtyHllNZmZ9RdTVRdBbLBCh9eJa74_Bp-c7a-Wdt99_YXa8f8GeINcq0Eq7Uapukku-cktcrkXkgCvoRTCRt3iNpkexIT29NV5yHZEpyXtVQb0xZwOAzPtCtx5apYU40l-fPuOpwVR1mkIVqDDcHhAB2hS6yuh9MPp8oQaegAetqdDf7rAHrrzuVnfIaPDl-9f9FmdwoEZcNwy5jky3tk8UU4bjjnzPCLEjjVcyCw1gD9s6pVXQphUuxLM6dhJn4OgmFxLJe6S1mQ68fcItVq40sosKcdaarwCn3M5LjNdCstTV7bJ82YCC1fzm2OajaoI5-xcF9s_s02ebmrPIq_HH-o9BlnYVEEy7n53UOAzsP2JUFp9TtpkrxGVolYBiwKRJoA9wItt8mwjPr_trJFBGEIQiL9-UdF7NwClKbL7__raB-Qqx0sbHcF4vkdaMP3-IUCppX1Ur5WfILwUXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Imaging+of+Glacier+Structures+at+High%E2%80%90Resolution+Using+Source+Localization+With+a+Dense+Seismic+Array&rft.jtitle=Geophysical+research+letters&rft.au=Nanni%2C+Ugo&rft.au=Roux%2C+Philippe&rft.au=Gimbert%2C+Florent&rft.au=Lecointre%2C+Albanne&rft.date=2022-03-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=6&rft_id=info:doi/10.1029%2F2021GL095996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021GL095996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon