Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling
The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditiona...
        Saved in:
      
    
          | Published in | Mathematical geosciences Vol. 42; no. 5; pp. 487 - 517 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article Conference Proceeding | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer-Verlag
    
        01.07.2010
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1874-8961 1874-8953  | 
| DOI | 10.1007/s11004-010-9276-7 | 
Cover
| Abstract | The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented.
In the developed methodology, patterns scanned from the training image are represented as points in a Cartesian space using multidimensional scaling. The idea behind this mapping is to use distance functions as a tool for analyzing variability between all the patterns in a training image. These distance functions can be tailored to the application at hand. Next, by significantly reducing the dimensionality of the problem and using kernel space mapping, an improved pattern classification algorithm is obtained. This paper discusses the various implementation details to accomplish these ideas. Several examples are presented and a qualitative comparison is made with previous methods. An improved pattern continuity and data-conditioning capability is observed in the generated realizations for both continuous and categorical variables. We show how the proposed methodology is much less sensitive to the user-provided parameters, and at the same time has the potential to reduce computational time significantly. | 
    
|---|---|
| AbstractList | The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented. In the developed methodology, patterns scanned from the training image are represented as points in a Cartesian space using multidimensional scaling. The idea behind this mapping is to use distance functions as a tool for analyzing variability between all the patterns in a training image. These distance functions can be tailored to the application at hand. Next, by significantly reducing the dimensionality of the problem and using kernel space mapping, an improved pattern classification algorithm is obtained. This paper discusses the various implementation details to accomplish these ideas. Several examples are presented and a qualitative comparison is made with previous methods. An improved pattern continuity and data-conditioning capability is observed in the generated realizations for both continuous and categorical variables. We show how the proposed methodology is much less sensitive to the user-provided parameters, and at the same time has the potential to reduce computational time significantly. The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented. In the developed methodology, patterns scanned from the training image are represented as points in a Cartesian space using multidimensional scaling. The idea behind this mapping is to use distance functions as a tool for analyzing variability between all the patterns in a training image. These distance functions can be tailored to the application at hand. Next, by significantly reducing the dimensionality of the problem and using kernel space mapping, an improved pattern classification algorithm is obtained. This paper discusses the various implementation details to accomplish these ideas. Several examples are presented and a qualitative comparison is made with previous methods. An improved pattern continuity and data-conditioning capability is observed in the generated realizations for both continuous and categorical variables. We show how the proposed methodology is much less sensitive to the user-provided parameters, and at the same time has the potential to reduce computational time significantly. [PUBLICATION ABSTRACT] The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented. In the developed methodology, patterns scanned from the training image are represented as points in a Cartesian space using multidimensional scaling. The idea behind this mapping is to use distance functions as a tool for analyzing variability between all the patterns in a training image. These distance functions can be tailored to the application at hand. Next, by significantly reducing the dimensionality of the problem and using kernel space mapping, an improved pattern classification algorithm is obtained. This paper discusses the various implementation details to accomplish these ideas. Several examples are presented and a qualitative comparison is made with previous methods. An improved pattern continuity and data-conditioning capability is observed in the generated realizations for both continuous and categorical variables. We show how the proposed methodology is much less sensitive to the user-provided parameters, and at the same time has the potential to reduce computational time significantly.  | 
    
| Author | Honarkhah, Mehrdad Caers, Jef  | 
    
| Author_xml | – sequence: 1 givenname: Mehrdad surname: Honarkhah fullname: Honarkhah, Mehrdad email: mehrdadh@stanford.edu organization: Department of Energy Resources Engineering, Stanford University – sequence: 2 givenname: Jef surname: Caers fullname: Caers, Jef organization: Department of Energy Resources Engineering, Stanford University  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23014606$$DView record in Pascal Francis | 
    
| BookMark | eNp9kU1LAzEQhoMoaNUf4G0RxNNqspuPzdFvBUXBeg7ZNNHINqmZ9OC_N7VVQdDTDMzzvszMO0LrIQaL0B7BRwRjcQykFFpjgmvZCF6LNbRFOkHrTrJ2_bvnZBONAF4x5qRlZAtdPeZoXjRkb6pHP50POvsYquiqB52zTQGqJ_DhuTr3kHUwtj7VYCdf0-ouTuxQ5jtow-kB7O6qbqPx5cX47Lq-vb-6OTu5rTXFONcTbhxlojdYNr3lne173mlBLWmdZqZvGXOdcYa7xvRSThx2zNGWS9ZYi127jQ6XtrMU3-YWspp6MHYYdLBxDkqwljPKJS_k_i_yNc5TKLspRqTkFDe0QAcrSIPRg0vlQg9qlvxUp3fVtJhQjhdmYsmZFAGSdcr4_PmpnLQfFMFqkYJapqBKCmqRghJFSX4pv8z_0zRLDRQ2PNv0s_rfog9kXZtX | 
    
| CitedBy_id | crossref_primary_10_1016_j_cageo_2019_04_004 crossref_primary_10_1016_j_jappgeo_2023_105026 crossref_primary_10_1002_2013WR015069 crossref_primary_10_1016_j_eswa_2019_03_051 crossref_primary_10_1016_j_spasta_2016_06_003 crossref_primary_10_1007_s00477_017_1453_5 crossref_primary_10_1007_s11771_014_2343_3 crossref_primary_10_1007_s00477_014_0985_1 crossref_primary_10_1007_s11053_017_9364_1 crossref_primary_10_1016_j_cageo_2017_06_013 crossref_primary_10_1007_s11004_018_9744_z crossref_primary_10_1007_s00477_014_0947_7 crossref_primary_10_1002_2015WR018378 crossref_primary_10_4236_gm_2012_23008 crossref_primary_10_1016_j_cageo_2013_01_020 crossref_primary_10_1007_s00477_020_01925_7 crossref_primary_10_1016_j_cageo_2022_105208 crossref_primary_10_1260_0144_5987_31_1_17 crossref_primary_10_1007_s00477_014_0857_8 crossref_primary_10_1007_s11004_022_10004_2 crossref_primary_10_1007_s11053_024_10405_6 crossref_primary_10_1115_1_4038379 crossref_primary_10_1137_19M1291601 crossref_primary_10_1016_j_petrol_2021_108664 crossref_primary_10_1002_qre_1686 crossref_primary_10_1016_j_visres_2015_08_013 crossref_primary_10_1007_s00190_025_01937_7 crossref_primary_10_1016_j_rcim_2015_09_011 crossref_primary_10_2118_163673_PA crossref_primary_10_1016_j_physrep_2021_09_003 crossref_primary_10_1109_TCYB_2021_3109066 crossref_primary_10_3390_rs15112708 crossref_primary_10_1007_s12517_022_10194_3 crossref_primary_10_1016_j_spasta_2015_04_004 crossref_primary_10_1007_s12517_014_1724_0 crossref_primary_10_1190_tle36030239_1 crossref_primary_10_1093_gji_ggv008 crossref_primary_10_1016_j_cageo_2016_12_012 crossref_primary_10_1007_s11242_015_0471_3 crossref_primary_10_1007_s40295_021_00259_y crossref_primary_10_1016_j_heliyon_2018_e00774 crossref_primary_10_1007_s10596_015_9519_2 crossref_primary_10_1007_s10596_019_09901_z crossref_primary_10_1016_j_advwatres_2012_11_018 crossref_primary_10_1093_icesjms_fsu095 crossref_primary_10_1109_LGRS_2024_3477633 crossref_primary_10_7906_indecs_22_6_9 crossref_primary_10_1111_cote_12130 crossref_primary_10_1007_s11004_011_9326_9 crossref_primary_10_1007_s10596_014_9452_9 crossref_primary_10_1007_s12145_023_01012_9 crossref_primary_10_1016_j_oreoa_2022_100018 crossref_primary_10_1016_j_envsoft_2013_09_001 crossref_primary_10_1016_j_apenergy_2017_02_021 crossref_primary_10_1016_j_petrol_2021_108411 crossref_primary_10_1007_s11053_021_09813_9 crossref_primary_10_1016_j_cageo_2015_10_010 crossref_primary_10_1007_s11004_013_9490_1 crossref_primary_10_5194_gmd_13_2611_2020 crossref_primary_10_1007_s40745_024_00548_x crossref_primary_10_1016_j_cageo_2015_03_016 crossref_primary_10_1016_j_cageo_2015_12_020 crossref_primary_10_1103_PhysRevE_97_033302 crossref_primary_10_1109_TSMC_2013_2296276 crossref_primary_10_1007_s00477_019_01759_y crossref_primary_10_1016_j_spasta_2021_100535 crossref_primary_10_1155_2020_6641642 crossref_primary_10_1016_j_cageo_2014_01_001 crossref_primary_10_3390_geosciences14060162 crossref_primary_10_1016_j_cageo_2015_03_010 crossref_primary_10_53941_ijndi_2023_100020 crossref_primary_10_1016_j_petrol_2016_10_046 crossref_primary_10_1016_j_petrol_2018_09_028 crossref_primary_10_1016_j_cageo_2013_09_009 crossref_primary_10_1016_j_oregeorev_2021_104427 crossref_primary_10_3390_machines11020270 crossref_primary_10_1158_0008_5472_CAN_17_1353 crossref_primary_10_1016_j_cageo_2012_03_028 crossref_primary_10_1007_s12182_019_00366_4 crossref_primary_10_1108_TR_07_2020_0292 crossref_primary_10_1007_s11053_013_9221_9 crossref_primary_10_1016_j_cageo_2016_07_006 crossref_primary_10_1007_s00477_019_01660_8 crossref_primary_10_1190_geo2017_0025_1 crossref_primary_10_3390_app12178775 crossref_primary_10_1007_s13202_014_0107_0 crossref_primary_10_1016_j_engstruct_2022_114648 crossref_primary_10_3390_s19030685 crossref_primary_10_1016_j_cageo_2015_12_018 crossref_primary_10_3390_en12101859 crossref_primary_10_1016_j_cageo_2014_06_001 crossref_primary_10_1016_j_procs_2015_02_030 crossref_primary_10_1071_EG17171 crossref_primary_10_1007_s11004_013_9482_1 crossref_primary_10_3389_feart_2018_00203 crossref_primary_10_1145_3178155 crossref_primary_10_1109_JSTARS_2015_2417156 crossref_primary_10_2118_215843_PA crossref_primary_10_1002_2015WR017806 crossref_primary_10_3390_en17051022 crossref_primary_10_1088_1742_2140_aac694 crossref_primary_10_1007_s00477_014_0964_6 crossref_primary_10_1007_s00477_015_1197_z crossref_primary_10_1007_s13369_023_07741_9 crossref_primary_10_1007_s40815_022_01358_0 crossref_primary_10_5194_hess_18_3015_2014 crossref_primary_10_1016_j_advwatres_2015_04_015 crossref_primary_10_1007_s12517_013_0850_4 crossref_primary_10_1007_s11004_012_9413_6 crossref_primary_10_1007_s00477_015_1142_1 crossref_primary_10_1016_S1876_3804_21_60032_0 crossref_primary_10_4236_gm_2013_34020 crossref_primary_10_1016_j_jappgeo_2023_105112 crossref_primary_10_1029_2020WR027542 crossref_primary_10_1103_PhysRevE_91_032401 crossref_primary_10_1130_L700_1 crossref_primary_10_1007_s10596_012_9319_x crossref_primary_10_1016_j_petrol_2019_04_046 crossref_primary_10_1080_02664763_2012_754853 crossref_primary_10_1007_s10596_016_9612_1 crossref_primary_10_1190_INT_2022_0023_1 crossref_primary_10_3390_rs15215122 crossref_primary_10_1016_j_cageo_2014_03_009 crossref_primary_10_1016_j_cageo_2016_03_009 crossref_primary_10_1016_j_eswa_2022_119266 crossref_primary_10_1103_PhysRevE_107_L013301 crossref_primary_10_1109_JSTARS_2015_2438299 crossref_primary_10_1007_s00477_017_1414_z crossref_primary_10_4236_psych_2014_519211 crossref_primary_10_1007_s00477_019_01742_7 crossref_primary_10_1007_s11004_013_9489_7 crossref_primary_10_1007_s11069_015_1745_3 crossref_primary_10_1007_s00477_015_1207_1 crossref_primary_10_1007_s11063_020_10298_5 crossref_primary_10_1016_j_eswa_2016_03_011 crossref_primary_10_1016_j_cageo_2017_05_012 crossref_primary_10_1007_s10596_024_10279_w crossref_primary_10_3390_min8050220 crossref_primary_10_1016_j_cageo_2011_11_006 crossref_primary_10_1109_TGRS_2016_2527841 crossref_primary_10_1002_joc_7342 crossref_primary_10_1007_s11004_012_9387_4 crossref_primary_10_1016_j_is_2017_01_008 crossref_primary_10_1007_s10596_013_9372_0 crossref_primary_10_1117_1_JRS_10_045005 crossref_primary_10_1088_1742_2132_11_6_065002 crossref_primary_10_1007_s11004_013_9510_1 crossref_primary_10_1007_s11004_024_10169_y crossref_primary_10_1109_ACCESS_2020_3014021 crossref_primary_10_1007_s00477_020_01801_4 crossref_primary_10_1016_j_aiig_2023_05_002 crossref_primary_10_1007_s11053_022_10071_6 crossref_primary_10_1002_2016WR019550 crossref_primary_10_1109_COMST_2019_2921972 crossref_primary_10_2118_199906_PA crossref_primary_10_1016_j_petrol_2021_109974 crossref_primary_10_1002_sam_11352 crossref_primary_10_1016_j_marpetgeo_2022_105932 crossref_primary_10_1007_s10596_015_9482_y crossref_primary_10_1016_j_cageo_2010_09_007 crossref_primary_10_1016_j_envsoft_2015_07_007 crossref_primary_10_3390_math11071675 crossref_primary_10_1002_nag_1117 crossref_primary_10_1080_12269328_2011_10541334 crossref_primary_10_1007_s10100_017_0514_7 crossref_primary_10_1007_s12665_017_6647_0 crossref_primary_10_1093_gji_ggu132 crossref_primary_10_1016_j_jappgeo_2023_105239 crossref_primary_10_1061_JWPED5_WWENG_2150 crossref_primary_10_1134_S1995425513060127 crossref_primary_10_1108_INTR_01_2019_0013 crossref_primary_10_1007_s10596_016_9611_2 crossref_primary_10_1016_j_neucom_2017_06_053 crossref_primary_10_1016_j_petrol_2021_109724 crossref_primary_10_1016_j_eswa_2012_03_030 crossref_primary_10_3390_rs9070724 crossref_primary_10_1007_s10596_012_9287_1 crossref_primary_10_1016_j_jappgeo_2015_12_005 crossref_primary_10_3390_jmse12111907 crossref_primary_10_5194_gmd_15_1477_2022 crossref_primary_10_1260_0144_5987_31_5_713  | 
    
| Cites_doi | 10.2118/102154-MS 10.2118/118740-PA 10.1007/s11004-006-9075-3 10.1007/s11004-009-9235-3 10.1093/oso/9780195115383.001.0001 10.1023/A:1014009426274 10.1007/s10596-007-9063-9 10.1002/9780470316993 10.1007/978-1-4757-2711-1 10.1017/CBO9780511809682 10.1515/9783112719176 10.1007/s11004-008-9186-0 10.1007/s11004-008-9154-8 10.1002/0471200611 10.2118/10976-PA 10.2118/24753-MS 10.7551/mitpress/4175.001.0001 10.1007/s11004-009-9258-9 10.1007/BF01031292 10.3997/2214-4609.20146404 10.1016/j.csda.2005.09.010 10.1007/978-94-011-1739-5_12 10.1002/j.1538-7305.1948.tb01338.x 10.1198/106186008X318440 10.2118/36514-MS 10.1023/A:1021769526425 10.1023/B:MATG.0000037736.00489.b5  | 
    
| ContentType | Journal Article Conference Proceeding  | 
    
| Copyright | International Association for Mathematical Geosciences 2010 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: International Association for Mathematical Geosciences 2010 – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 3V. 7SC 7TG 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 HCIFZ JQ2 K7- KL. KR7 L.G L6V L7M L~C L~D M0N M2P M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U  | 
    
| DOI | 10.1007/s11004-010-9276-7 | 
    
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Civil Engineering Abstracts Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology Physics Computer Science  | 
    
| EISSN | 1874-8953 | 
    
| EndPage | 517 | 
    
| ExternalDocumentID | 2066446521 23014606 10_1007_s11004_010_9276_7  | 
    
| Genre | Feature | 
    
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV L6V L8X LK5 LLZTM M0N M2P M4Y M7R M7S MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM P2P P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PTHSS PYCSY Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8R Z8S Z8T Z8W Z8Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7SC 7TG 7UA 7XB 8AL 8FD 8FK C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-a400t-d6cf457bc092be68ebb68a74e13fa5cb355f8cfc6f2cb99df0f5f436952ee0f3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1874-8961 | 
    
| IngestDate | Fri Sep 05 13:45:31 EDT 2025 Mon Oct 20 23:17:39 EDT 2025 Mon Jul 21 09:15:27 EDT 2025 Wed Oct 01 06:54:53 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Fri Feb 21 02:33:11 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Training image Multiple point statistics Pattern classification Geostatistics Mapping Distance-based method Kernel geostatistics algorithms models efficiency maps probability accuracy digital simulation cartography classification subsurface image analysis stochastic models mathematical methods three-dimensional models data bases statistics  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MeetingName | Computational Methods for the Earth, Energy and Environmental Sciences | 
    
| MergedId | FETCHMERGED-LOGICAL-a400t-d6cf457bc092be68ebb68a74e13fa5cb355f8cfc6f2cb99df0f5f436952ee0f3 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PQID | 519964024 | 
    
| PQPubID | 54390 | 
    
| PageCount | 31 | 
    
| ParticipantIDs | proquest_miscellaneous_753654696 proquest_journals_519964024 pascalfrancis_primary_23014606 crossref_citationtrail_10_1007_s11004_010_9276_7 crossref_primary_10_1007_s11004_010_9276_7 springer_journals_10_1007_s11004_010_9276_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-07-01 | 
    
| PublicationDateYYYYMMDD | 2010-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: Dordrecht  | 
    
| PublicationTitle | Mathematical geosciences | 
    
| PublicationTitleAbbrev | Math Geosci | 
    
| PublicationYear | 2010 | 
    
| Publisher | Springer-Verlag Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V  | 
    
| References | ZhuMGhodsiAAutomatic dimensionality selection from the scree plot via the use of profile likelihoodComput Stat Data Anal200651291893010.1016/j.csda.2005.09.010 Strebelle S (2000) Sequential simulation drawing structures from training images. PhD thesis, Stanford University Deutsch CV, Wang L (1996). Hierarchical object-based geostatistical modeling of fluvial reservoirs. Paper SPE 36514 presented at the 1996 SPE Annual Technical Conference and Exhibition, Denver, Oct 6–9 Isaaks E (1990) The application of Monte Carlo methods to the analysis of spatially correlated data. PhD thesis, Stanford University Maitre H, Campedel M, Moulines E, Datcu M (2005) Feature selection for satellite image indexing. In: ESA-EUSC: image information mining, Frascati, Italy ShannonCEA mathematical theory of communicationBell Syst Tech J194827379423 SuzukiSCaumonGCaersJDynamic data integration for structural modeling: model screening approach using a distance-based model parameterizationComput Geosci200812110511910.1007/s10596-007-9063-9 HaldorsenHHLakeLWA new approach to shale management in field-scale modelsSoc Pet Eng J1984248447452 ScheidtCCaersJRepresenting spatial uncertainty using distances and kernelsMath Geosci200841439741910.1007/s11004-008-9186-0 Arpat GB (2005) Sequential simulation with patterns. PhD thesis, Stanford University Deutsch CV, Gringarten E (2000). Accounting for multiple-point continuity in geostatistical modeling. In: 6th International Geostatistics Congress, Geostatistics Association of Southern Africa, vol 1, pp 156–165 Honarkhah M, Caers J (2009) Stochastic simulation of patterns using distance-based pattern modeling. In: 22nd SCRF affiliate meeting, Stanford University RemyNBoucherAWuJApplied geostatistics with SGeMS: a user’s guide2008CambridgeCambridge University Press DalyCKnudbyCMultipoint statistics in reservoir modelling and in computer visionPetroleum Geostatistics 20072007PortugalCascais ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT Press Caers J (2008) Distance-based random field models and their applications. In: Proceedings of the eighth international geostatistics congress, Santiago, Chile, vol 1, Plenary Honarkhah M, Caers J (2008) Classifying existing and generating new training image patterns in kernel space. In: 21st SCRF affiliate meeting, Stanford University TjelmelandHStochastic Models in reservoir characterization and Markov random fields for compact objects. Doctoral Dissertation, Norwegian University of Science and Technology1996NorwayTrondheim Wu J (2007) 4D seismic and multiple-point pattern data integration using geostatistics. Phd thesis, Stanford University MacQueen JB (1967) Some Methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley symposium on mathematical statistics and probability, Berkeley, University of California Press, vol 1, pp 281–297 RussJCImage processing handbook19952Boca RatonCRC Press DalyCLeuangthongODeutschCVHigher order models using entropy, Markov random fields and sequential simulationGeostatistics, Banff 20042004DordrechtSpringer215224 GuardianoFSrivastavaRMSoaresAMultivariate, geostatistics: beyond bivariate momentsGeostatistics Troia1993DordrechtKluwer Academic133144 ChilesJPDelfinerPGeostatistics: modeling spatial uncertainty1999New YorkWiley StrebelleSConditional simulation of complex geological structures using multiple-point geostatisticsMath Geol200234112210.1023/A:1014009426274 Lyster S, Deutsch CV (2008) MPS simulation in a Gibbs sampler algorithm. In: Proceedings of the eighth international geostatistics congress, Santiago, Chile, vol 1, Plenary Kjønsberg H, Kolbjørnsen O (2008) Markov mesh simulations with data conditioning through indicator kriging. In: Proceedings of the Eighth International Geostatistics Congress, Santiago, Chile Caers J, Park, KA (2008) Distance-based representation of reservoir uncertainty: the Metric EnKF. In: Proceedings to the 11th European conference on the mathematics of oil recovery, Bergen, Norway Suzuki S, Caers J (2006) History matching with an uncertain geological scenario. In: SPE Annual Technical Conference and Exhibition, SPE 102154 CoverTMThomasJAElements of information theory1991New YorkWiley10.1002/0471200611 Parra A, Ortiz JM (2009) Conditional multiple-point simulation with a texture synthesis algorithm. In: IAMG 2009 Conference, Stanford University TjelmelandHEidsvikJLeuangthongODeutschCVDirectional metropolis-Hastings updates for posteriors with non linear likelihoodGeostatistics, Banff2004DordrechtSpringer95104 Scheidt C, Caers J (2009) A new method for uncertainty quantification using distances and kernel methods. Application to a deepwater turbidite reservoir. In: SPEJ, SPE-118740-PA GoovaertsPGeostatistics for natural resources evaluation1997New YorkOxford University Press MacKayDJCInformation theory, inference, and learning algorithms2003CambridgeCambridge University Press BujaASwayneDFLittmanMDeanNHofmannHChenLData visualization with multidimensional scalingJ Comput Graph Stat200817244447210.1198/106186008X318440 HoldenLHaugeRSkareOSkorstadAModeling of fluvial reservoirs with object modelsMath Geol199830547349610.1023/A:1021769526425 SuzukiSCaersJA distance-based prior model parameterization for constraining solutions of spatial inverse problemsMath Geosci200840444546910.1007/s11004-008-9154-8 CoxTFCoxMAAMultidimensional scaling2001LondonChapman & Hall OrtizJMDeutschCVIndicator simulation accounting for multiple-Point statisticsMath Geol200436554556510.1023/B:MATG.0000037736.00489.b5 Srivastava RM (1992) Reservoir characterization with probability field simulation. SPE paper no. 24753 BorgIGroenenPJFModern multidimensional scaling1997New YorkSpringer GloaguenEDimitrakopoulosRTwo-dimensional conditional simulations based on the wavelet decomposition of training imagesMath Geosci200941667970110.1007/s11004-009-9235-3 ArpatBGCaersJStochastic simulation with patternsMath Geol20073920217720310.1007/s11004-006-9075-3 Dujardin B, Wu J, Journel A (2006), Sensitivity analysis on filtersim. In: 19th SCRF affiliate meeting, Stanford University Park KA, Schiedt C, Caers J (2008) Simultaneous conditioning of multiple non-Gaussian geostatistical models to highly nonlinear data using distances in kernel space. In: Proceedings of the eighth international geostatistical congress, Santiago, vol 1, Plenary JournelAGNon-parametric estimation of spatial distributionsMath Geol198315344546810.1007/BF01031292 DimitrakopoulosRMustaphaHGloaguenEHigh-order statistics of spatial random fields: Exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomenaMath Geosci20104216510010.1007/s11004-009-9258-9 Zhang T (2006) Filter-based training pattern classification for spatial pattern simulation. PhD thesis, Stanford University, Stanford, CA StoyanDKendallWSMeckeJStochastic geometry and its applications1987New YorkWiley Shawe-TaylorJCristianiniNKernel methods for pattern analysis2004CambridgeCambridge University Press 9276_CR1 J Shawe-Taylor (9276_CR39) 2004 9276_CR5 M Zhu (9276_CR51) 2006; 51 I Borg (9276_CR3) 1997 L Holden (9276_CR20) 1998; 30 9276_CR36 JP Chiles (9276_CR7) 1999 9276_CR31 HH Haldorsen (9276_CR19) 1984; 24 AG Journel (9276_CR24) 1983; 15 9276_CR32 P Goovaerts (9276_CR17) 1997 B Scholkopf (9276_CR37) 2001 F Guardiano (9276_CR18) 1993 DJC MacKay (9276_CR27) 2003 S Strebelle (9276_CR43) 2002; 34 9276_CR28 9276_CR29 9276_CR26 E Gloaguen (9276_CR16) 2009; 41 9276_CR25 C Scheidt (9276_CR35) 2008; 41 9276_CR22 9276_CR23 9276_CR6 9276_CR21 JM Ortiz (9276_CR30) 2004; 36 H Tjelmeland (9276_CR47) 1996 CE Shannon (9276_CR38) 1948; 27 H Tjelmeland (9276_CR48) 2004 TM Cover (9276_CR8) 1991 C Daly (9276_CR11) 2007 N Remy (9276_CR33) 2008 TF Cox (9276_CR9) 2001 A Buja (9276_CR4) 2008; 17 9276_CR15 9276_CR13 9276_CR12 C Daly (9276_CR10) 2004 S Suzuki (9276_CR45) 2008; 40 9276_CR50 D Stoyan (9276_CR41) 1987 R Dimitrakopoulos (9276_CR14) 2010; 42 S Suzuki (9276_CR46) 2008; 12 JC Russ (9276_CR34) 1995 9276_CR49 9276_CR44 BG Arpat (9276_CR2) 2007; 39 9276_CR42 9276_CR40  | 
    
| References_xml | – reference: DalyCKnudbyCMultipoint statistics in reservoir modelling and in computer visionPetroleum Geostatistics 20072007PortugalCascais – reference: Wu J (2007) 4D seismic and multiple-point pattern data integration using geostatistics. Phd thesis, Stanford University – reference: ChilesJPDelfinerPGeostatistics: modeling spatial uncertainty1999New YorkWiley – reference: MacKayDJCInformation theory, inference, and learning algorithms2003CambridgeCambridge University Press – reference: SuzukiSCaumonGCaersJDynamic data integration for structural modeling: model screening approach using a distance-based model parameterizationComput Geosci200812110511910.1007/s10596-007-9063-9 – reference: Parra A, Ortiz JM (2009) Conditional multiple-point simulation with a texture synthesis algorithm. In: IAMG 2009 Conference, Stanford University – reference: HaldorsenHHLakeLWA new approach to shale management in field-scale modelsSoc Pet Eng J1984248447452 – reference: CoverTMThomasJAElements of information theory1991New YorkWiley10.1002/0471200611 – reference: RemyNBoucherAWuJApplied geostatistics with SGeMS: a user’s guide2008CambridgeCambridge University Press – reference: Caers J (2008) Distance-based random field models and their applications. In: Proceedings of the eighth international geostatistics congress, Santiago, Chile, vol 1, Plenary – reference: StrebelleSConditional simulation of complex geological structures using multiple-point geostatisticsMath Geol200234112210.1023/A:1014009426274 – reference: ArpatBGCaersJStochastic simulation with patternsMath Geol20073920217720310.1007/s11004-006-9075-3 – reference: ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT Press – reference: Strebelle S (2000) Sequential simulation drawing structures from training images. PhD thesis, Stanford University – reference: GloaguenEDimitrakopoulosRTwo-dimensional conditional simulations based on the wavelet decomposition of training imagesMath Geosci200941667970110.1007/s11004-009-9235-3 – reference: Park KA, Schiedt C, Caers J (2008) Simultaneous conditioning of multiple non-Gaussian geostatistical models to highly nonlinear data using distances in kernel space. In: Proceedings of the eighth international geostatistical congress, Santiago, vol 1, Plenary – reference: Zhang T (2006) Filter-based training pattern classification for spatial pattern simulation. PhD thesis, Stanford University, Stanford, CA – reference: BorgIGroenenPJFModern multidimensional scaling1997New YorkSpringer – reference: GoovaertsPGeostatistics for natural resources evaluation1997New YorkOxford University Press – reference: Isaaks E (1990) The application of Monte Carlo methods to the analysis of spatially correlated data. PhD thesis, Stanford University – reference: ShannonCEA mathematical theory of communicationBell Syst Tech J194827379423 – reference: Dujardin B, Wu J, Journel A (2006), Sensitivity analysis on filtersim. In: 19th SCRF affiliate meeting, Stanford University – reference: Honarkhah M, Caers J (2009) Stochastic simulation of patterns using distance-based pattern modeling. In: 22nd SCRF affiliate meeting, Stanford University – reference: StoyanDKendallWSMeckeJStochastic geometry and its applications1987New YorkWiley – reference: Scheidt C, Caers J (2009) A new method for uncertainty quantification using distances and kernel methods. Application to a deepwater turbidite reservoir. In: SPEJ, SPE-118740-PA – reference: Deutsch CV, Wang L (1996). Hierarchical object-based geostatistical modeling of fluvial reservoirs. Paper SPE 36514 presented at the 1996 SPE Annual Technical Conference and Exhibition, Denver, Oct 6–9 – reference: SuzukiSCaersJA distance-based prior model parameterization for constraining solutions of spatial inverse problemsMath Geosci200840444546910.1007/s11004-008-9154-8 – reference: Maitre H, Campedel M, Moulines E, Datcu M (2005) Feature selection for satellite image indexing. In: ESA-EUSC: image information mining, Frascati, Italy – reference: Deutsch CV, Gringarten E (2000). Accounting for multiple-point continuity in geostatistical modeling. In: 6th International Geostatistics Congress, Geostatistics Association of Southern Africa, vol 1, pp 156–165 – reference: HoldenLHaugeRSkareOSkorstadAModeling of fluvial reservoirs with object modelsMath Geol199830547349610.1023/A:1021769526425 – reference: TjelmelandHStochastic Models in reservoir characterization and Markov random fields for compact objects. Doctoral Dissertation, Norwegian University of Science and Technology1996NorwayTrondheim – reference: DalyCLeuangthongODeutschCVHigher order models using entropy, Markov random fields and sequential simulationGeostatistics, Banff 20042004DordrechtSpringer215224 – reference: ScheidtCCaersJRepresenting spatial uncertainty using distances and kernelsMath Geosci200841439741910.1007/s11004-008-9186-0 – reference: GuardianoFSrivastavaRMSoaresAMultivariate, geostatistics: beyond bivariate momentsGeostatistics Troia1993DordrechtKluwer Academic133144 – reference: Caers J, Park, KA (2008) Distance-based representation of reservoir uncertainty: the Metric EnKF. In: Proceedings to the 11th European conference on the mathematics of oil recovery, Bergen, Norway – reference: OrtizJMDeutschCVIndicator simulation accounting for multiple-Point statisticsMath Geol200436554556510.1023/B:MATG.0000037736.00489.b5 – reference: Shawe-TaylorJCristianiniNKernel methods for pattern analysis2004CambridgeCambridge University Press – reference: Srivastava RM (1992) Reservoir characterization with probability field simulation. SPE paper no. 24753 – reference: MacQueen JB (1967) Some Methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley symposium on mathematical statistics and probability, Berkeley, University of California Press, vol 1, pp 281–297 – reference: RussJCImage processing handbook19952Boca RatonCRC Press – reference: Honarkhah M, Caers J (2008) Classifying existing and generating new training image patterns in kernel space. In: 21st SCRF affiliate meeting, Stanford University – reference: BujaASwayneDFLittmanMDeanNHofmannHChenLData visualization with multidimensional scalingJ Comput Graph Stat200817244447210.1198/106186008X318440 – reference: ZhuMGhodsiAAutomatic dimensionality selection from the scree plot via the use of profile likelihoodComput Stat Data Anal200651291893010.1016/j.csda.2005.09.010 – reference: DimitrakopoulosRMustaphaHGloaguenEHigh-order statistics of spatial random fields: Exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomenaMath Geosci20104216510010.1007/s11004-009-9258-9 – reference: Lyster S, Deutsch CV (2008) MPS simulation in a Gibbs sampler algorithm. In: Proceedings of the eighth international geostatistics congress, Santiago, Chile, vol 1, Plenary – reference: JournelAGNon-parametric estimation of spatial distributionsMath Geol198315344546810.1007/BF01031292 – reference: Kjønsberg H, Kolbjørnsen O (2008) Markov mesh simulations with data conditioning through indicator kriging. In: Proceedings of the Eighth International Geostatistics Congress, Santiago, Chile – reference: Suzuki S, Caers J (2006) History matching with an uncertain geological scenario. In: SPE Annual Technical Conference and Exhibition, SPE 102154 – reference: CoxTFCoxMAAMultidimensional scaling2001LondonChapman & Hall – reference: Arpat GB (2005) Sequential simulation with patterns. PhD thesis, Stanford University – reference: TjelmelandHEidsvikJLeuangthongODeutschCVDirectional metropolis-Hastings updates for posteriors with non linear likelihoodGeostatistics, Banff2004DordrechtSpringer95104 – ident: 9276_CR44 doi: 10.2118/102154-MS – ident: 9276_CR36 doi: 10.2118/118740-PA – volume: 39 start-page: 177 issue: 202 year: 2007 ident: 9276_CR2 publication-title: Math Geol doi: 10.1007/s11004-006-9075-3 – ident: 9276_CR42 – volume-title: Applied geostatistics with SGeMS: a user’s guide year: 2008 ident: 9276_CR33 – ident: 9276_CR5 – volume: 41 start-page: 679 issue: 6 year: 2009 ident: 9276_CR16 publication-title: Math Geosci doi: 10.1007/s11004-009-9235-3 – volume-title: Stochastic Models in reservoir characterization and Markov random fields for compact objects. Doctoral Dissertation, Norwegian University of Science and Technology year: 1996 ident: 9276_CR47 – volume-title: Geostatistics for natural resources evaluation year: 1997 ident: 9276_CR17 doi: 10.1093/oso/9780195115383.001.0001 – ident: 9276_CR49 – ident: 9276_CR1 – start-page: 215 volume-title: Geostatistics, Banff 2004 year: 2004 ident: 9276_CR10 – ident: 9276_CR22 – ident: 9276_CR26 – volume-title: Information theory, inference, and learning algorithms year: 2003 ident: 9276_CR27 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 9276_CR43 publication-title: Math Geol doi: 10.1023/A:1014009426274 – volume: 12 start-page: 105 issue: 1 year: 2008 ident: 9276_CR46 publication-title: Comput Geosci doi: 10.1007/s10596-007-9063-9 – ident: 9276_CR25 – volume-title: Image processing handbook year: 1995 ident: 9276_CR34 – volume-title: Geostatistics: modeling spatial uncertainty year: 1999 ident: 9276_CR7 doi: 10.1002/9780470316993 – ident: 9276_CR29 – volume-title: Modern multidimensional scaling year: 1997 ident: 9276_CR3 doi: 10.1007/978-1-4757-2711-1 – volume-title: Kernel methods for pattern analysis year: 2004 ident: 9276_CR39 doi: 10.1017/CBO9780511809682 – ident: 9276_CR32 – volume-title: Stochastic geometry and its applications year: 1987 ident: 9276_CR41 doi: 10.1515/9783112719176 – volume: 41 start-page: 397 issue: 4 year: 2008 ident: 9276_CR35 publication-title: Math Geosci doi: 10.1007/s11004-008-9186-0 – start-page: 95 volume-title: Geostatistics, Banff year: 2004 ident: 9276_CR48 – volume: 40 start-page: 445 issue: 4 year: 2008 ident: 9276_CR45 publication-title: Math Geosci doi: 10.1007/s11004-008-9154-8 – volume-title: Elements of information theory year: 1991 ident: 9276_CR8 doi: 10.1002/0471200611 – ident: 9276_CR15 – volume: 24 start-page: 447 issue: 8 year: 1984 ident: 9276_CR19 publication-title: Soc Pet Eng J doi: 10.2118/10976-PA – ident: 9276_CR21 – ident: 9276_CR40 doi: 10.2118/24753-MS – volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond year: 2001 ident: 9276_CR37 doi: 10.7551/mitpress/4175.001.0001 – ident: 9276_CR50 – volume-title: Multidimensional scaling year: 2001 ident: 9276_CR9 – volume: 42 start-page: 65 issue: 1 year: 2010 ident: 9276_CR14 publication-title: Math Geosci doi: 10.1007/s11004-009-9258-9 – volume: 15 start-page: 445 issue: 3 year: 1983 ident: 9276_CR24 publication-title: Math Geol doi: 10.1007/BF01031292 – ident: 9276_CR28 – ident: 9276_CR31 – ident: 9276_CR6 doi: 10.3997/2214-4609.20146404 – volume-title: Petroleum Geostatistics 2007 year: 2007 ident: 9276_CR11 – ident: 9276_CR12 – volume: 51 start-page: 918 issue: 2 year: 2006 ident: 9276_CR51 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2005.09.010 – start-page: 133 volume-title: Geostatistics Troia year: 1993 ident: 9276_CR18 doi: 10.1007/978-94-011-1739-5_12 – volume: 27 start-page: 379 year: 1948 ident: 9276_CR38 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 17 start-page: 444 issue: 2 year: 2008 ident: 9276_CR4 publication-title: J Comput Graph Stat doi: 10.1198/106186008X318440 – ident: 9276_CR13 doi: 10.2118/36514-MS – ident: 9276_CR23 – volume: 30 start-page: 473 issue: 5 year: 1998 ident: 9276_CR20 publication-title: Math Geol doi: 10.1023/A:1021769526425 – volume: 36 start-page: 545 issue: 5 year: 2004 ident: 9276_CR30 publication-title: Math Geol doi: 10.1023/B:MATG.0000037736.00489.b5  | 
    
| SSID | ssj0061351 | 
    
| Score | 2.3916209 | 
    
| Snippet | The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the... | 
    
| SourceID | proquest pascalfrancis crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 487 | 
    
| SubjectTerms | Algorithms Areal geology Areal geology. Maps Chemistry and Earth Sciences Computational mathematics Computer Science Computer simulation Earth and Environmental Science Earth science Earth Sciences Earth, ocean, space Exact sciences and technology Geologic maps, cartography Geological structures Geostatistics Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mathematical analysis Mathematical models Physics Simulation Special Issue Statistics for Engineering Stochastic models Training  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB80IghSWj9omlb2wSfLYXK3u7f3UMS0ahAUqQq-HfuJgr2LTfLQ_74zl9uECPq8O3vL7OzszM3HD-BQE64q-gGJyNFF4dJkVKzME-Wd0koa5RwVOF9dy9E9v3wQD2twFWthKK0y6sRGUbva0j_yY0Hpsujs8JPxS0KgURRcjQgaukVWcD-aDmPrsJFSY6wObAzPrm9-R9UsCY6OPDCV424KOYhhzqaWbtDkZKBaKtJcJvnKQ7U91hPkWZiDXaxYo68CqM27dP4RPrQGJTudS8AnWPPVDmxeNIC9_3bh4nZa20dN3ZjZ7dOfFqyL1YHdNJ01qwlrsgbYLzIkUQKSIb5rLo4ywkqjivU9uDs_u_s5SlrwhETjtZwmTtrARW5sv0iNl8obI5XOuR9kQQtr0M4IygYrQ2pNUbjQDyLwTBYi9b4fsn3oVHXlPwPzuAK3nmcajSevgnYCJxcKCbQIg7wL_cio0raNxQnf4rlctkQm3pbI25J4WyLJ0YJkPO-q8d7kgxXuLyhScgfRAetCLx5H2d7ASbmQly6wxSheHYqH6MrXs0mJnhqVchW4wPd4iMsF3tzPl3c_14OteYIBZfR-hc7078x_Q7tlag5aafwPZ23pJA priority: 102 providerName: ProQuest  | 
    
| Title | Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling | 
    
| URI | https://link.springer.com/article/10.1007/s11004-010-9276-7 https://www.proquest.com/docview/519964024 https://www.proquest.com/docview/753654696  | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1874-8953 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0061351 issn: 1874-8961 databaseCode: AMVHM dateStart: 20080124 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1874-8953 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061351 issn: 1874-8961 databaseCode: AFBBN dateStart: 19690301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1874-8953 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0061351 issn: 1874-8961 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1874-8953 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0061351 issn: 1874-8961 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1874-8953 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061351 issn: 1874-8961 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1874-8953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061351 issn: 1874-8961 databaseCode: U2A dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WlMFgtGu7sSxt0EOfWgyJLcnyY9ImKS0NpR_QPRlJluhgc8qcPuy_351jJaS0hT7ZIN3Z3Onjjvv4ARxqwlVFPyASKbooXJqEipV5pFyhtJJGFQUVOF9O5dkdP78X900ddxWy3UNIsj6pV8Vu_TppAs-NLE5llG7ApqBuXriI7-JBOH4lQc6Rl6VS_GIm-yGU-RKLtcvo86OuUC5-AWixZnE-C5LWd8_4C2w1RiMbLLS8Ax9cuQvbAZCBNftzFz5Oapzef_hWZ3baag8mN_OZfdDUjpnd_PrToHWxmWdXdWvNsmJ12gA7JUsS2URDvNiKMMoILI1K1r_C7Xh0e3IWNegJkcZ9OY8KaT0XqbG9LDZOKmeMVDrlrp94LaxBQ8Mr6630sTVZVvieF54nMhOxcz2ffINWOSvdd2AOOXDreKLRenLK60Lg5EwhgRa-n7ahF6SY26azOAFc_M5XPZFJ8DkKPifB50hytCR5XLTVeGtyd001S4qY_EH0wNrQCbrKmy1Y5YLyq9E75m1gy1HcOxQQ0aWbPVU5umpUy5Uhg-Og4RWDV__nx7tmd-DTIuOAUnz3oTX_--QO0JCZmy5sqPGkC5uD8XA4pefk58UIn8PR9Oq6Wy_r_8L67lc | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwRSVfGq2LYUH-ACithNbMc-VIjSx5a2q4ouUm-WnwIJkoVsVfW_9ccxk423WiR669mPJOOxZ754Zj5C3hjkVQUckPESIAoTtsBkZZbJ4KWRwkrvMcH5dCSG39iXC36xRG5SLgyGVaYzsT2ofe3wH_kHjuGyAHbYx8nvDEmj8HI1MWiYjlnB77QVxrq8juNwfQUIrtk52oPlfpvnB_vjz8OsIxnIDKjvNPPCRcZL6_oqt0HIYK2QpmRhUETDnQV7HKWLTsTcWaV87EceWSEUz0PoxwKmfUBWWMEUQL-V3f3R2ddkCQSy3yHgkyV8vBKDdKvapu4N2hAQOAVVXoqsXLCLqxPTwBLFGbfGgvP7z31tawYPnpC1zn-ln2YK95QsheoZeXjY8gNfPyeH59PafTdY_Jme__jVcYPROtKztpBn1dA2SIHuod8KCpftghn1qZUiNRsmyL8g4_sQ4zpZruoqvCQ0wAzMBVYY8NWCjMZz6KwkDDA8Dsoe6SdBadfVMUc6jZ_6tgIzylaDbDXKVsOQd_Mhk1kRj7s6by9Ifz4iR_QJeK9HNtNy6G7DN3qunj1C562wU_H6xVShvmw0AEPMHFMwwfu0iLcT_Pd9Nu583GvyaDg-PdEnR6PjTfJ4FtuAwcRbZHn65zK8Apdparc7zaRE3_Ne-AsyuSfj | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLc2pk1I08YYiBsM8sDTpoq7NknTRzY42AcICZB4i5I0EUjQO9HywH8_u23udBObxFulxG5lx40tf_wAdg3hqmIckIgcQxQubUbNyjxRvlRGSavKkhqcT07l8SX_eSWuepzTOla7x5Rk19NAU5qqZm9ahr1549uoLaDAf0iR5jLJX8IrTnMS8EBfpvvxVywJfo4iLpXj2ws5imnNp1gsXExvp6ZGGYUO3GLB-_wrYdreQ-MVeNc7kGy_0_gHeOGrVXgfwRlYb6ur8Pqoxex9xKe2ytPVH-HovJm4a0Ojmdn5zV2P3MUmgZ21YzarmrUlBOyAvEpkk3zDS66Mq4yA06h9fQ0uxocX34-THkkhMWijTVJKF7jIrRsWqfVSeWulMjn3oywY4Sw6HUG54GRInS2KMgyDCDyThUi9H4ZsHZaqSeU3gHnkwJ3nmUFPyqtgSoGbC4UERoRRPoBhlKJ2_ZRxAru41fP5yCR4jYLXJHiNJF9mJNNuxMb_Nm8vqGZGkVJsiNHYADajrnRvjrUWVGuNkTIfAJutoh1RcsRUfvJQawzbqK-rQAZfo4bnDP75PZ-etXsH3pwdjPXvH6e_NmG5K0Sgyt8tWGruH_xn9G8au92e4T_Zf-_v | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+geosciences&rft.atitle=Stochastic+Simulation+of+Patterns+Using+Distance-Based+Pattern+Modeling&rft.au=HONARKHAH%2C+Mehrdad&rft.au=CAERS%2C+Jef&rft.date=2010-07-01&rft.pub=Springer&rft.issn=1874-8961&rft.volume=42&rft.issue=5&rft.spage=487&rft.epage=517&rft_id=info:doi/10.1007%2Fs11004-010-9276-7&rft.externalDBID=n%2Fa&rft.externalDocID=23014606 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-8961&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-8961&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-8961&client=summon |