Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design

Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 6; pp. 6059 - 6068
Main Authors Yeo, Junyeob, Hong, Sukjoon, Kim, Gunho, Lee, Habeom, Suh, Young Duk, Park, Inkyu, Grigoropoulos, Costas P, Ko, Seung Hwan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.06.2015
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.5b01125

Cover

Abstract Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.
AbstractList Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.
Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.
Author Suh, Young Duk
Lee, Habeom
Yeo, Junyeob
Hong, Sukjoon
Kim, Gunho
Park, Inkyu
Grigoropoulos, Costas P
Ko, Seung Hwan
AuthorAffiliation University of California
Department of Mechanical Engineering
Applied Nano and Thermal Science Lab, Department of Mechanical Engineering
Seoul National University
Laser Thermal Lab, Department of Mechanical Engineering
Korea Advanced Institute of Science and Technology (KAIST)
AuthorAffiliation_xml – name: Korea Advanced Institute of Science and Technology (KAIST)
– name: University of California
– name: Laser Thermal Lab, Department of Mechanical Engineering
– name: Applied Nano and Thermal Science Lab, Department of Mechanical Engineering
– name: Department of Mechanical Engineering
– name: Seoul National University
Author_xml – sequence: 1
  givenname: Junyeob
  surname: Yeo
  fullname: Yeo, Junyeob
– sequence: 2
  givenname: Sukjoon
  surname: Hong
  fullname: Hong, Sukjoon
– sequence: 3
  givenname: Gunho
  surname: Kim
  fullname: Kim, Gunho
– sequence: 4
  givenname: Habeom
  surname: Lee
  fullname: Lee, Habeom
– sequence: 5
  givenname: Young Duk
  surname: Suh
  fullname: Suh, Young Duk
– sequence: 6
  givenname: Inkyu
  surname: Park
  fullname: Park, Inkyu
– sequence: 7
  givenname: Costas P
  surname: Grigoropoulos
  fullname: Grigoropoulos, Costas P
– sequence: 8
  givenname: Seung Hwan
  surname: Ko
  fullname: Ko, Seung Hwan
  email: maxko@snu.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26035452$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1PHDEQxa2IKHylThe5jIQWbK_Xt1siEjikSygSpHSWP8ZgtGdfbK_gGv52DHdQRKIaa_x7M3rz9tFOiAEQ-kLJMSWMniiTgwrxuNOEUtZ9QHt0aEVDevF35-3d0V20n_MdId2sn4lPaJcJ0na8Y3vocaEypOYy2MmAxfO1TbHcQlqqEV-keF9ucXR4DgVSvIEAccr4JxQ1NlcP3gL-Vbff-wQ4Bnw-woPXI-Dfk84lqQJYr_HLAnyqc0yr4iu2UOva-A7Z34RD9NGpMcPnbT1A1-c__pzNm8XVxeXZ6aJR7TCUxrleGd0PomdMWAEEeKdnhnPNTWc1Ia4ng2NO9LwFMuPWWO2Y4CAI04SL9gB928xdpfhvglzk0mcD46heLEkqBkqo4MNQ0a9bdNJLsHKV_FKltXy9WQW6DWBSzDmBk8YX9WytevajpEQ-ZyO32chtNlV38p_udfT7iqONon7IuzilUG_0Lv0EBM6jUg
CitedBy_id crossref_primary_10_1002_asia_201800251
crossref_primary_10_1039_C8RA03523G
crossref_primary_10_3788_AOS241110
crossref_primary_10_1002_adfm_202405457
crossref_primary_10_1016_j_mtcomm_2018_10_011
crossref_primary_10_1021_acsami_8b03647
crossref_primary_10_1002_adfm_202214950
crossref_primary_10_1039_C8NR03069C
crossref_primary_10_1016_j_apsusc_2022_152708
crossref_primary_10_1021_acsabm_8b00838
crossref_primary_10_1002_aelm_202300469
crossref_primary_10_1016_j_apsusc_2021_149382
crossref_primary_10_1021_acsami_1c06204
crossref_primary_10_1007_s40820_021_00714_3
crossref_primary_10_1088_0268_1242_31_7_073003
crossref_primary_10_1002_agt2_189
crossref_primary_10_1016_j_precisioneng_2016_05_006
crossref_primary_10_1021_acsnano_2c02812
crossref_primary_10_1021_acsami_6b06625
crossref_primary_10_1186_s11671_018_2774_0
crossref_primary_10_1039_D1TA01267C
crossref_primary_10_1002_smtd_202400474
crossref_primary_10_3390_mi11030264
crossref_primary_10_1016_j_nantod_2016_08_007
crossref_primary_10_1021_acs_nanolett_9b04073
crossref_primary_10_3390_nano6010012
crossref_primary_10_1016_j_nanoen_2018_11_077
crossref_primary_10_3788_IRLA20240458
crossref_primary_10_1016_j_carbon_2019_06_015
crossref_primary_10_1002_adfm_202008547
crossref_primary_10_1016_j_commatsci_2018_03_072
crossref_primary_10_1021_acsnano_8b00159
crossref_primary_10_1016_j_nanoen_2023_108606
crossref_primary_10_1039_C8NR06890A
crossref_primary_10_1088_2053_1591_ad068a
crossref_primary_10_3390_ma14154083
crossref_primary_10_3390_mi8020052
crossref_primary_10_1021_acsanm_9b00360
crossref_primary_10_37188_lam_2025_007
crossref_primary_10_1038_s41378_020_0144_4
crossref_primary_10_1002_smtd_202101194
crossref_primary_10_1016_j_apsusc_2018_10_249
crossref_primary_10_1021_acsami_9b15860
crossref_primary_10_1016_j_jhazmat_2021_125841
crossref_primary_10_1021_acsami_2c03561
crossref_primary_10_1007_s40820_020_00577_0
crossref_primary_10_1021_acsanm_3c00883
crossref_primary_10_1088_1367_2630_18_10_103046
crossref_primary_10_1007_s42242_024_00300_7
crossref_primary_10_1021_acsami_6b16719
crossref_primary_10_1007_s42114_025_01246_9
crossref_primary_10_1021_acsnano_2c08650
crossref_primary_10_3390_nano12183213
crossref_primary_10_1002_adfm_202006854
crossref_primary_10_1007_s12274_022_4804_6
crossref_primary_10_1002_adma_202402014
crossref_primary_10_1038_s41528_024_00362_8
crossref_primary_10_1007_s40684_024_00653_5
crossref_primary_10_1002_smll_202302864
crossref_primary_10_1002_aelm_201800900
crossref_primary_10_1007_s40684_016_0028_0
crossref_primary_10_1016_j_jallcom_2021_163003
crossref_primary_10_1088_2631_7990_ad038f
crossref_primary_10_1007_s40684_016_0022_6
crossref_primary_10_1016_j_jscs_2017_09_004
crossref_primary_10_1021_acs_jpcc_1c02254
crossref_primary_10_1021_acsanm_0c00659
crossref_primary_10_1142_S0217979218502971
crossref_primary_10_1002_adma_201606586
crossref_primary_10_1016_j_nimb_2019_07_041
crossref_primary_10_1016_j_apsusc_2019_07_159
crossref_primary_10_1021_acs_jpclett_6b01557
crossref_primary_10_1021_acsnano_2c12163
crossref_primary_10_1002_adma_201705148
crossref_primary_10_1002_adma_201805093
crossref_primary_10_1016_j_matdes_2017_01_089
crossref_primary_10_1021_acs_langmuir_3c01717
crossref_primary_10_1007_s00339_025_08403_3
crossref_primary_10_1039_D2SD00060A
crossref_primary_10_1021_acsanm_2c00049
crossref_primary_10_1007_s40820_024_01483_5
crossref_primary_10_1039_C9NR07248A
crossref_primary_10_1021_acsanm_0c01034
crossref_primary_10_1021_acsnano_7b06098
crossref_primary_10_1002_admi_202200200
crossref_primary_10_1002_adma_202307586
crossref_primary_10_1002_smsc_202200093
crossref_primary_10_1007_s11082_022_04473_2
Cites_doi 10.1088/0957-4484/18/34/345202
10.1080/09500340008235124
10.1021/nl802096a
10.1016/0017-9310(94)90394-8
10.1021/ja8078972
10.1063/1.123973
10.1021/la203781x
10.1002/smll.201301599
10.1021/jp501642j
10.1021/nl035102c
10.1002/smll.201401427
10.1002/adfm.201203863
10.1088/0960-1317/13/5/304
10.1021/nl1037962
10.1002/adfm.201404215
10.1002/smll.201102046
10.1002/anie.200351461
10.1021/jp512776p
10.1109/84.767114
10.1063/1.4893465
10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
10.1002/adma.201404192
10.1126/science.1080759
10.1039/c3nr34346d
10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
10.1039/c2lc40154a
10.1088/0957-4484/22/20/205602
10.1186/1556-276X-8-489
10.1039/b923791g
10.1063/1.1290272
10.1155/2013/246328
10.1021/jp2019044
10.1021/nl2026585
10.1038/nmat1563
10.1021/ja0059138
10.1088/0957-4484/23/19/194005
10.1063/1.1147638
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.5b01125
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 6068
ExternalDocumentID 26035452
10_1021_acsnano_5b01125
b988565305
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-ff8acb8968226d6e0e45b7c44b4c5db00f809f2f6843e074dcdbf264e602b0463
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:05:46 EDT 2025
Thu Apr 03 07:07:56 EDT 2025
Thu Jul 03 08:44:17 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Thu Aug 27 13:42:23 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords one-step direct growth
selective local laser growth
low temperature synthesis
hydrothermal growth
flexible substrate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-ff8acb8968226d6e0e45b7c44b4c5db00f809f2f6843e074dcdbf264e602b0463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26035452
PQID 1691016499
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1691016499
pubmed_primary_26035452
crossref_citationtrail_10_1021_acsnano_5b01125
crossref_primary_10_1021_acsnano_5b01125
acs_journals_10_1021_acsnano_5b01125
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2015-06-23
PublicationDateYYYYMMDD 2015-06-23
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Smith P. A. (ref2/cit2) 2000; 77
Herman I. (ref38/cit38) 2012; 23
Kim F. (ref1/cit1) 2001; 123
Yeo J. (ref18/cit18) 2013; 23
Ko S. H. (ref23/cit23) 2007; 18
Hong S. (ref22/cit22) 2013; 2013
Kwon J. (ref6/cit6) 2013; 8
Chen G. (ref29/cit29) 1999; 74
Yeo J. (ref20/cit20) 2014; 118
Kurabayashi K. (ref28/cit28) 1999; 8
Hong S. (ref5/cit5) 2013; 5
Puigcorbe J. (ref15/cit15) 2003; 13
Iida Y. (ref33/cit33) 1994; 37
Greene L. E. (ref36/cit36) 2003; 42
Yang D. (ref11/cit11) 2015; 27
Kim J. (ref14/cit14) 2012; 12
Privorotskaya N. (ref13/cit13) 2010; 10
In J. B. (ref19/cit19) 2014; 10
Paeng D. (ref24/cit24) 2015; 119
Son Y. (ref26/cit26) 2011; 23
Yeo J. (ref17/cit17) 2014; 10
Paeng D. (ref25/cit25) 2014; 105
Kang H. W. (ref8/cit8) 2011; 115
Wu Y. (ref9/cit9) 2002; 8
Ko S. H. (ref7/cit7) 2012; 28
Wang X. (ref3/cit3) 2004; 4
Ko S. H. (ref37/cit37) 2011; 11
Pacholski C. (ref35/cit35) 2002; 41
Bui C. T. (ref30/cit30) 2012; 8
Berry D. W. (ref34/cit34) 2000; 47
Pauzauskie P. J. (ref4/cit4) 2006; 5
Liu B. (ref31/cit31) 2009; 131
Feng X. (ref32/cit32) 2008; 8
Huber D. L. (ref10/cit10) 2003; 301
Kwon K. (ref21/cit21) 2015; 25
Langer G. (ref27/cit27) 1997; 68
Hong Y. J. (ref12/cit12) 2011; 22
Jin C. Y. (ref16/cit16) 2011; 11
References_xml – volume: 18
  start-page: 345202
  year: 2007
  ident: ref23/cit23
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/34/345202
– volume: 47
  start-page: 1575
  year: 2000
  ident: ref34/cit34
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340008235124
– volume: 8
  start-page: 3781
  year: 2008
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl802096a
– volume: 37
  start-page: 2771
  year: 1994
  ident: ref33/cit33
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)90394-8
– volume: 131
  start-page: 3985
  year: 2009
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8078972
– volume: 74
  start-page: 2942
  year: 1999
  ident: ref29/cit29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123973
– volume: 28
  start-page: 4787
  year: 2012
  ident: ref7/cit7
  publication-title: Langmuir
  doi: 10.1021/la203781x
– volume: 10
  start-page: 741
  year: 2014
  ident: ref19/cit19
  publication-title: Small
  doi: 10.1002/smll.201301599
– volume: 118
  start-page: 15448
  year: 2014
  ident: ref20/cit20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp501642j
– volume: 4
  start-page: 423
  year: 2004
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl035102c
– volume: 10
  start-page: 5015
  year: 2014
  ident: ref17/cit17
  publication-title: Small
  doi: 10.1002/smll.201401427
– volume: 23
  start-page: 3316
  year: 2013
  ident: ref18/cit18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203863
– volume: 13
  start-page: 548
  year: 2003
  ident: ref15/cit15
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/13/5/304
– volume: 11
  start-page: 666
  year: 2011
  ident: ref37/cit37
  publication-title: Nano Lett.
  doi: 10.1021/nl1037962
– volume: 25
  start-page: 2222
  year: 2015
  ident: ref21/cit21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404215
– volume: 8
  start-page: 738
  year: 2012
  ident: ref30/cit30
  publication-title: Small
  doi: 10.1002/smll.201102046
– volume: 42
  start-page: 3031
  year: 2003
  ident: ref36/cit36
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200351461
– volume: 119
  start-page: 6363
  year: 2015
  ident: ref24/cit24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp512776p
– volume: 8
  start-page: 180
  year: 1999
  ident: ref28/cit28
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.767114
– volume: 105
  start-page: 073110
  year: 2014
  ident: ref25/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4893465
– volume: 41
  start-page: 1188
  year: 2002
  ident: ref35/cit35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
– volume: 27
  start-page: 1207
  year: 2015
  ident: ref11/cit11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404192
– volume: 301
  start-page: 352
  year: 2003
  ident: ref10/cit10
  publication-title: Science
  doi: 10.1126/science.1080759
– volume: 5
  start-page: 3698
  year: 2013
  ident: ref5/cit5
  publication-title: Nanoscale
  doi: 10.1039/c3nr34346d
– volume: 8
  start-page: 1260
  year: 2002
  ident: ref9/cit9
  publication-title: Chem.—Eur. J.
  doi: 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
– volume: 12
  start-page: 2914
  year: 2012
  ident: ref14/cit14
  publication-title: Lab Chip
  doi: 10.1039/c2lc40154a
– volume: 22
  start-page: 205602
  year: 2011
  ident: ref12/cit12
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/20/205602
– volume: 8
  start-page: 1
  year: 2013
  ident: ref6/cit6
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-489
– volume: 10
  start-page: 1135
  year: 2010
  ident: ref13/cit13
  publication-title: Lab Chip
  doi: 10.1039/b923791g
– volume: 77
  start-page: 1399
  year: 2000
  ident: ref2/cit2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1290272
– volume: 2013
  start-page: 246328
  year: 2013
  ident: ref22/cit22
  publication-title: J. Nanomater.
  doi: 10.1155/2013/246328
– volume: 23
  start-page: 3716
  year: 2011
  ident: ref26/cit26
  publication-title: Adv. Mater.
– volume: 115
  start-page: 11435
  year: 2011
  ident: ref8/cit8
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2019044
– volume: 11
  start-page: 4818
  year: 2011
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl2026585
– volume: 5
  start-page: 97
  year: 2006
  ident: ref4/cit4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1563
– volume: 123
  start-page: 4360
  year: 2001
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0059138
– volume: 23
  start-page: 194005
  year: 2012
  ident: ref38/cit38
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/19/194005
– volume: 68
  start-page: 1510
  year: 1997
  ident: ref27/cit27
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1147638
SSID ssj0057876
Score 2.4768257
Snippet Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6059
Title Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design
URI http://dx.doi.org/10.1021/acsnano.5b01125
https://www.ncbi.nlm.nih.gov/pubmed/26035452
https://www.proquest.com/docview/1691016499
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BuMCh5dmmBbRIPXBxsNfrjX2M0oYI8ThApd6sfcwK1NauYkdqe-hv78zaCdAqgqvl9WP8zcy3mvE3jB34rFCJ1kVklXORzCGJjPY5Op63Y9AFiYxRt8VXNT-Wn06yk99i0Xcr-CL5oG1T6aoeZQahKLKH7JFQuSIAT6bfV0GXcKe6AjJukJFFrFV87l2A0pBt_k5DG7hlyDGz7a47qwnShNRacjpatmZkr-8LN_778Z-yrZ5p8kkHjWfsAVTP2ZM_9AdfsJvPmMMWEY3vsOD4_Motwg9Z57juI-7P25-89nxOHTM1Ag3qZcO_ANL16NvlLwccQ3NNWse8rviMlDXNGXAKRUHylpsrHm7AJ6apFyE24QHk-Pww9I28ZMezox_TedQPZIg08pg28j7X1uSFQlahnIIYZGbGVkojbebQgX0eF154lcsUkJs464xHxgUqFoakyV6xQVVXsMu4GCtwsYu1hViCNUalTqQgBRiVeG2H7AAtV_YO1ZShVi6Ssjdn2ZtzyEarz1jaXtScZmucbV7wfr3gotPz2HzquxUuSvQ5KqToYOmSBIZImqwohmynA8z6Yrg_TGlu-97_vcA-e4wULKPmM5G-ZoN2sYQ3SHNa8zYA_Bbv2Pq_
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tywE48H6Up5H2wCXdPBw3OVYLJUB3EWJX2lvkx1gglgQ1qcRy4Lcz46blpUpwtWLHmczjs2b8DcCez0uVaF1GVjkXyQKTyGhfkOF5O0FdMskYV1scqepEvj7NT3cgXt-FoU10tFIXkvg_2QWSfRprdNOOc0MameYX4CJBkYSLuKYH79e-l9VPrfLIdE4mMLEh8_lrAY5Gtvs9Gm2BmCHUzK7Bu80mQ4XJp_GyN2P77Q_-xv_5iutwdcCdYrpSlBuwg81NuPILG-Et-D6niLaIuJmHRSeqc7cI17M-07yXdFrvP4jWi4rrZ1pSO2yXnThEAu_R268fHQpy1C0zH4u2ETPm2TRnKNgxBQJcYc5FeIGYmq5dBE9FA4T4xfNQRXIbTmYvjg-qaGjPEGlCNX3kfaGtKUpFGEM5hTHK3EyslEba3JE5-yIufepVITMkpOKsM57wF6o4NUxUdgd2m7bBeyDSiUIXu1hbjCVaY1Tm0gxlikYlXtsR7JHk6sG8ujpkztOkHsRZD-IcwXj9N2s7UJxzp42z7ROebSZ8WbF7bH_06Vo9arJATqvoIOma6YaYqKwsR3B3pTebxei0mHEX9_v_9gFP4FJ1fDiv56-O3jyAywTOci5LS7OHsNsvlviIAFBvHged_wEqiwMu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkRA98KakvBapBy5O_Vhv7GPUEgKUggSRerP2MSuqFruKHYn2wG9nZuNEPBQJrivvej2ex7ea2W8A9nxeqkTrMrLKuUgWmERG-4IMz9sR6pJJxrja4lhNZ_LdSX7SXwrjuzC0iZZWakMSn636wvmeYSDZp_Fa180wN6SVaX4dbjAc4UKu8cHnlf9lFVTLXDKdlQlQrAl9_lqAI5Jtf49IG2BmCDeTOzBbbzRUmZwNF50Z2qs_OBz_90vuwu0ef4rxUmHuwTWs78P2L6yED-DHEUW2ecRNPSw6Mb1083BN6xvNe0On9u6raLyYch1NQ-qHzaIVH5BAfPTx-6lDQQ67YQZk0dRiwnyb5hwFO6hAhCvMpQgvEGPTNvPgsWiAkL84DNUkD2E2ef3lYBr1bRoiTeimi7wvtDVFqQhrKKcwRpmbkZXSSJs7MmtfxKVPvSpkhoRYnHXGEw5DFaeGCcsewVbd1PgYRDpS6GIXa4uxRGuMylyaoUzRqMRrO4A9klzVm1lbhQx6mlS9OKtenAMYrv5oZXuqc-64cb55wqv1hIsly8fmR1-uVKQiS-T0ig6Srph2iAnLynIAO0vdWS9Gp8aMu7nv_tsHvICbnw4n1dHb4_dP4BZhtJyr09LsKWx18wU-IxzUmedB7X8CeqYFsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser-Induced+Hydrothermal+Growth+of+Heterogeneous+Metal-Oxide+Nanowire+on+Flexible+Substrate+by+Laser+Absorption+Layer+Design&rft.jtitle=ACS+nano&rft.au=Yeo%2C+Junyeob&rft.au=Hong%2C+Sukjoon&rft.au=Kim%2C+Gunho&rft.au=Lee%2C+Habeom&rft.date=2015-06-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=9&rft.issue=6&rft.spage=6059&rft_id=info:doi/10.1021%2Facsnano.5b01125&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon