Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design
Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited...
Saved in:
Published in | ACS nano Vol. 9; no. 6; pp. 6059 - 6068 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.5b01125 |
Cover
Abstract | Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate. |
---|---|
AbstractList | Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate. Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate. |
Author | Suh, Young Duk Lee, Habeom Yeo, Junyeob Hong, Sukjoon Kim, Gunho Park, Inkyu Grigoropoulos, Costas P Ko, Seung Hwan |
AuthorAffiliation | University of California Department of Mechanical Engineering Applied Nano and Thermal Science Lab, Department of Mechanical Engineering Seoul National University Laser Thermal Lab, Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) |
AuthorAffiliation_xml | – name: Korea Advanced Institute of Science and Technology (KAIST) – name: University of California – name: Laser Thermal Lab, Department of Mechanical Engineering – name: Applied Nano and Thermal Science Lab, Department of Mechanical Engineering – name: Department of Mechanical Engineering – name: Seoul National University |
Author_xml | – sequence: 1 givenname: Junyeob surname: Yeo fullname: Yeo, Junyeob – sequence: 2 givenname: Sukjoon surname: Hong fullname: Hong, Sukjoon – sequence: 3 givenname: Gunho surname: Kim fullname: Kim, Gunho – sequence: 4 givenname: Habeom surname: Lee fullname: Lee, Habeom – sequence: 5 givenname: Young Duk surname: Suh fullname: Suh, Young Duk – sequence: 6 givenname: Inkyu surname: Park fullname: Park, Inkyu – sequence: 7 givenname: Costas P surname: Grigoropoulos fullname: Grigoropoulos, Costas P – sequence: 8 givenname: Seung Hwan surname: Ko fullname: Ko, Seung Hwan email: maxko@snu.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26035452$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PHDEQxa2IKHylThe5jIQWbK_Xt1siEjikSygSpHSWP8ZgtGdfbK_gGv52DHdQRKIaa_x7M3rz9tFOiAEQ-kLJMSWMniiTgwrxuNOEUtZ9QHt0aEVDevF35-3d0V20n_MdId2sn4lPaJcJ0na8Y3vocaEypOYy2MmAxfO1TbHcQlqqEV-keF9ucXR4DgVSvIEAccr4JxQ1NlcP3gL-Vbff-wQ4Bnw-woPXI-Dfk84lqQJYr_HLAnyqc0yr4iu2UOva-A7Z34RD9NGpMcPnbT1A1-c__pzNm8XVxeXZ6aJR7TCUxrleGd0PomdMWAEEeKdnhnPNTWc1Ia4ng2NO9LwFMuPWWO2Y4CAI04SL9gB928xdpfhvglzk0mcD46heLEkqBkqo4MNQ0a9bdNJLsHKV_FKltXy9WQW6DWBSzDmBk8YX9WytevajpEQ-ZyO32chtNlV38p_udfT7iqONon7IuzilUG_0Lv0EBM6jUg |
CitedBy_id | crossref_primary_10_1002_asia_201800251 crossref_primary_10_1039_C8RA03523G crossref_primary_10_3788_AOS241110 crossref_primary_10_1002_adfm_202405457 crossref_primary_10_1016_j_mtcomm_2018_10_011 crossref_primary_10_1021_acsami_8b03647 crossref_primary_10_1002_adfm_202214950 crossref_primary_10_1039_C8NR03069C crossref_primary_10_1016_j_apsusc_2022_152708 crossref_primary_10_1021_acsabm_8b00838 crossref_primary_10_1002_aelm_202300469 crossref_primary_10_1016_j_apsusc_2021_149382 crossref_primary_10_1021_acsami_1c06204 crossref_primary_10_1007_s40820_021_00714_3 crossref_primary_10_1088_0268_1242_31_7_073003 crossref_primary_10_1002_agt2_189 crossref_primary_10_1016_j_precisioneng_2016_05_006 crossref_primary_10_1021_acsnano_2c02812 crossref_primary_10_1021_acsami_6b06625 crossref_primary_10_1186_s11671_018_2774_0 crossref_primary_10_1039_D1TA01267C crossref_primary_10_1002_smtd_202400474 crossref_primary_10_3390_mi11030264 crossref_primary_10_1016_j_nantod_2016_08_007 crossref_primary_10_1021_acs_nanolett_9b04073 crossref_primary_10_3390_nano6010012 crossref_primary_10_1016_j_nanoen_2018_11_077 crossref_primary_10_3788_IRLA20240458 crossref_primary_10_1016_j_carbon_2019_06_015 crossref_primary_10_1002_adfm_202008547 crossref_primary_10_1016_j_commatsci_2018_03_072 crossref_primary_10_1021_acsnano_8b00159 crossref_primary_10_1016_j_nanoen_2023_108606 crossref_primary_10_1039_C8NR06890A crossref_primary_10_1088_2053_1591_ad068a crossref_primary_10_3390_ma14154083 crossref_primary_10_3390_mi8020052 crossref_primary_10_1021_acsanm_9b00360 crossref_primary_10_37188_lam_2025_007 crossref_primary_10_1038_s41378_020_0144_4 crossref_primary_10_1002_smtd_202101194 crossref_primary_10_1016_j_apsusc_2018_10_249 crossref_primary_10_1021_acsami_9b15860 crossref_primary_10_1016_j_jhazmat_2021_125841 crossref_primary_10_1021_acsami_2c03561 crossref_primary_10_1007_s40820_020_00577_0 crossref_primary_10_1021_acsanm_3c00883 crossref_primary_10_1088_1367_2630_18_10_103046 crossref_primary_10_1007_s42242_024_00300_7 crossref_primary_10_1021_acsami_6b16719 crossref_primary_10_1007_s42114_025_01246_9 crossref_primary_10_1021_acsnano_2c08650 crossref_primary_10_3390_nano12183213 crossref_primary_10_1002_adfm_202006854 crossref_primary_10_1007_s12274_022_4804_6 crossref_primary_10_1002_adma_202402014 crossref_primary_10_1038_s41528_024_00362_8 crossref_primary_10_1007_s40684_024_00653_5 crossref_primary_10_1002_smll_202302864 crossref_primary_10_1002_aelm_201800900 crossref_primary_10_1007_s40684_016_0028_0 crossref_primary_10_1016_j_jallcom_2021_163003 crossref_primary_10_1088_2631_7990_ad038f crossref_primary_10_1007_s40684_016_0022_6 crossref_primary_10_1016_j_jscs_2017_09_004 crossref_primary_10_1021_acs_jpcc_1c02254 crossref_primary_10_1021_acsanm_0c00659 crossref_primary_10_1142_S0217979218502971 crossref_primary_10_1002_adma_201606586 crossref_primary_10_1016_j_nimb_2019_07_041 crossref_primary_10_1016_j_apsusc_2019_07_159 crossref_primary_10_1021_acs_jpclett_6b01557 crossref_primary_10_1021_acsnano_2c12163 crossref_primary_10_1002_adma_201705148 crossref_primary_10_1002_adma_201805093 crossref_primary_10_1016_j_matdes_2017_01_089 crossref_primary_10_1021_acs_langmuir_3c01717 crossref_primary_10_1007_s00339_025_08403_3 crossref_primary_10_1039_D2SD00060A crossref_primary_10_1021_acsanm_2c00049 crossref_primary_10_1007_s40820_024_01483_5 crossref_primary_10_1039_C9NR07248A crossref_primary_10_1021_acsanm_0c01034 crossref_primary_10_1021_acsnano_7b06098 crossref_primary_10_1002_admi_202200200 crossref_primary_10_1002_adma_202307586 crossref_primary_10_1002_smsc_202200093 crossref_primary_10_1007_s11082_022_04473_2 |
Cites_doi | 10.1088/0957-4484/18/34/345202 10.1080/09500340008235124 10.1021/nl802096a 10.1016/0017-9310(94)90394-8 10.1021/ja8078972 10.1063/1.123973 10.1021/la203781x 10.1002/smll.201301599 10.1021/jp501642j 10.1021/nl035102c 10.1002/smll.201401427 10.1002/adfm.201203863 10.1088/0960-1317/13/5/304 10.1021/nl1037962 10.1002/adfm.201404215 10.1002/smll.201102046 10.1002/anie.200351461 10.1021/jp512776p 10.1109/84.767114 10.1063/1.4893465 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5 10.1002/adma.201404192 10.1126/science.1080759 10.1039/c3nr34346d 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q 10.1039/c2lc40154a 10.1088/0957-4484/22/20/205602 10.1186/1556-276X-8-489 10.1039/b923791g 10.1063/1.1290272 10.1155/2013/246328 10.1021/jp2019044 10.1021/nl2026585 10.1038/nmat1563 10.1021/ja0059138 10.1088/0957-4484/23/19/194005 10.1063/1.1147638 |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.5b01125 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 6068 |
ExternalDocumentID | 26035452 10_1021_acsnano_5b01125 b988565305 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-ff8acb8968226d6e0e45b7c44b4c5db00f809f2f6843e074dcdbf264e602b0463 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:05:46 EDT 2025 Thu Apr 03 07:07:56 EDT 2025 Thu Jul 03 08:44:17 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Thu Aug 27 13:42:23 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | one-step direct growth selective local laser growth low temperature synthesis hydrothermal growth flexible substrate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-ff8acb8968226d6e0e45b7c44b4c5db00f809f2f6843e074dcdbf264e602b0463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26035452 |
PQID | 1691016499 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1691016499 pubmed_primary_26035452 crossref_citationtrail_10_1021_acsnano_5b01125 crossref_primary_10_1021_acsnano_5b01125 acs_journals_10_1021_acsnano_5b01125 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-23 |
PublicationDateYYYYMMDD | 2015-06-23 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Smith P. A. (ref2/cit2) 2000; 77 Herman I. (ref38/cit38) 2012; 23 Kim F. (ref1/cit1) 2001; 123 Yeo J. (ref18/cit18) 2013; 23 Ko S. H. (ref23/cit23) 2007; 18 Hong S. (ref22/cit22) 2013; 2013 Kwon J. (ref6/cit6) 2013; 8 Chen G. (ref29/cit29) 1999; 74 Yeo J. (ref20/cit20) 2014; 118 Kurabayashi K. (ref28/cit28) 1999; 8 Hong S. (ref5/cit5) 2013; 5 Puigcorbe J. (ref15/cit15) 2003; 13 Iida Y. (ref33/cit33) 1994; 37 Greene L. E. (ref36/cit36) 2003; 42 Yang D. (ref11/cit11) 2015; 27 Kim J. (ref14/cit14) 2012; 12 Privorotskaya N. (ref13/cit13) 2010; 10 In J. B. (ref19/cit19) 2014; 10 Paeng D. (ref24/cit24) 2015; 119 Son Y. (ref26/cit26) 2011; 23 Yeo J. (ref17/cit17) 2014; 10 Paeng D. (ref25/cit25) 2014; 105 Kang H. W. (ref8/cit8) 2011; 115 Wu Y. (ref9/cit9) 2002; 8 Ko S. H. (ref7/cit7) 2012; 28 Wang X. (ref3/cit3) 2004; 4 Ko S. H. (ref37/cit37) 2011; 11 Pacholski C. (ref35/cit35) 2002; 41 Bui C. T. (ref30/cit30) 2012; 8 Berry D. W. (ref34/cit34) 2000; 47 Pauzauskie P. J. (ref4/cit4) 2006; 5 Liu B. (ref31/cit31) 2009; 131 Feng X. (ref32/cit32) 2008; 8 Huber D. L. (ref10/cit10) 2003; 301 Kwon K. (ref21/cit21) 2015; 25 Langer G. (ref27/cit27) 1997; 68 Hong Y. J. (ref12/cit12) 2011; 22 Jin C. Y. (ref16/cit16) 2011; 11 |
References_xml | – volume: 18 start-page: 345202 year: 2007 ident: ref23/cit23 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/34/345202 – volume: 47 start-page: 1575 year: 2000 ident: ref34/cit34 publication-title: J. Mod. Opt. doi: 10.1080/09500340008235124 – volume: 8 start-page: 3781 year: 2008 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl802096a – volume: 37 start-page: 2771 year: 1994 ident: ref33/cit33 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)90394-8 – volume: 131 start-page: 3985 year: 2009 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8078972 – volume: 74 start-page: 2942 year: 1999 ident: ref29/cit29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123973 – volume: 28 start-page: 4787 year: 2012 ident: ref7/cit7 publication-title: Langmuir doi: 10.1021/la203781x – volume: 10 start-page: 741 year: 2014 ident: ref19/cit19 publication-title: Small doi: 10.1002/smll.201301599 – volume: 118 start-page: 15448 year: 2014 ident: ref20/cit20 publication-title: J. Phys. Chem. C doi: 10.1021/jp501642j – volume: 4 start-page: 423 year: 2004 ident: ref3/cit3 publication-title: Nano Lett. doi: 10.1021/nl035102c – volume: 10 start-page: 5015 year: 2014 ident: ref17/cit17 publication-title: Small doi: 10.1002/smll.201401427 – volume: 23 start-page: 3316 year: 2013 ident: ref18/cit18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203863 – volume: 13 start-page: 548 year: 2003 ident: ref15/cit15 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/13/5/304 – volume: 11 start-page: 666 year: 2011 ident: ref37/cit37 publication-title: Nano Lett. doi: 10.1021/nl1037962 – volume: 25 start-page: 2222 year: 2015 ident: ref21/cit21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404215 – volume: 8 start-page: 738 year: 2012 ident: ref30/cit30 publication-title: Small doi: 10.1002/smll.201102046 – volume: 42 start-page: 3031 year: 2003 ident: ref36/cit36 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200351461 – volume: 119 start-page: 6363 year: 2015 ident: ref24/cit24 publication-title: J. Phys. Chem. C doi: 10.1021/jp512776p – volume: 8 start-page: 180 year: 1999 ident: ref28/cit28 publication-title: J. Microelectromech. Syst. doi: 10.1109/84.767114 – volume: 105 start-page: 073110 year: 2014 ident: ref25/cit25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4893465 – volume: 41 start-page: 1188 year: 2002 ident: ref35/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5 – volume: 27 start-page: 1207 year: 2015 ident: ref11/cit11 publication-title: Adv. Mater. doi: 10.1002/adma.201404192 – volume: 301 start-page: 352 year: 2003 ident: ref10/cit10 publication-title: Science doi: 10.1126/science.1080759 – volume: 5 start-page: 3698 year: 2013 ident: ref5/cit5 publication-title: Nanoscale doi: 10.1039/c3nr34346d – volume: 8 start-page: 1260 year: 2002 ident: ref9/cit9 publication-title: Chem.—Eur. J. doi: 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q – volume: 12 start-page: 2914 year: 2012 ident: ref14/cit14 publication-title: Lab Chip doi: 10.1039/c2lc40154a – volume: 22 start-page: 205602 year: 2011 ident: ref12/cit12 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/20/205602 – volume: 8 start-page: 1 year: 2013 ident: ref6/cit6 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-489 – volume: 10 start-page: 1135 year: 2010 ident: ref13/cit13 publication-title: Lab Chip doi: 10.1039/b923791g – volume: 77 start-page: 1399 year: 2000 ident: ref2/cit2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1290272 – volume: 2013 start-page: 246328 year: 2013 ident: ref22/cit22 publication-title: J. Nanomater. doi: 10.1155/2013/246328 – volume: 23 start-page: 3716 year: 2011 ident: ref26/cit26 publication-title: Adv. Mater. – volume: 115 start-page: 11435 year: 2011 ident: ref8/cit8 publication-title: J. Phys. Chem. C doi: 10.1021/jp2019044 – volume: 11 start-page: 4818 year: 2011 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl2026585 – volume: 5 start-page: 97 year: 2006 ident: ref4/cit4 publication-title: Nat. Mater. doi: 10.1038/nmat1563 – volume: 123 start-page: 4360 year: 2001 ident: ref1/cit1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0059138 – volume: 23 start-page: 194005 year: 2012 ident: ref38/cit38 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/19/194005 – volume: 68 start-page: 1510 year: 1997 ident: ref27/cit27 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1147638 |
SSID | ssj0057876 |
Score | 2.4768257 |
Snippet | Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6059 |
Title | Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design |
URI | http://dx.doi.org/10.1021/acsnano.5b01125 https://www.ncbi.nlm.nih.gov/pubmed/26035452 https://www.proquest.com/docview/1691016499 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BuMCh5dmmBbRIPXBxsNfrjX2M0oYI8ThApd6sfcwK1NauYkdqe-hv78zaCdAqgqvl9WP8zcy3mvE3jB34rFCJ1kVklXORzCGJjPY5Op63Y9AFiYxRt8VXNT-Wn06yk99i0Xcr-CL5oG1T6aoeZQahKLKH7JFQuSIAT6bfV0GXcKe6AjJukJFFrFV87l2A0pBt_k5DG7hlyDGz7a47qwnShNRacjpatmZkr-8LN_778Z-yrZ5p8kkHjWfsAVTP2ZM_9AdfsJvPmMMWEY3vsOD4_Motwg9Z57juI-7P25-89nxOHTM1Ag3qZcO_ANL16NvlLwccQ3NNWse8rviMlDXNGXAKRUHylpsrHm7AJ6apFyE24QHk-Pww9I28ZMezox_TedQPZIg08pg28j7X1uSFQlahnIIYZGbGVkojbebQgX0eF154lcsUkJs464xHxgUqFoakyV6xQVVXsMu4GCtwsYu1hViCNUalTqQgBRiVeG2H7AAtV_YO1ZShVi6Ssjdn2ZtzyEarz1jaXtScZmucbV7wfr3gotPz2HzquxUuSvQ5KqToYOmSBIZImqwohmynA8z6Yrg_TGlu-97_vcA-e4wULKPmM5G-ZoN2sYQ3SHNa8zYA_Bbv2Pq_ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tywE48H6Up5H2wCXdPBw3OVYLJUB3EWJX2lvkx1gglgQ1qcRy4Lcz46blpUpwtWLHmczjs2b8DcCez0uVaF1GVjkXyQKTyGhfkOF5O0FdMskYV1scqepEvj7NT3cgXt-FoU10tFIXkvg_2QWSfRprdNOOc0MameYX4CJBkYSLuKYH79e-l9VPrfLIdE4mMLEh8_lrAY5Gtvs9Gm2BmCHUzK7Bu80mQ4XJp_GyN2P77Q_-xv_5iutwdcCdYrpSlBuwg81NuPILG-Et-D6niLaIuJmHRSeqc7cI17M-07yXdFrvP4jWi4rrZ1pSO2yXnThEAu_R268fHQpy1C0zH4u2ETPm2TRnKNgxBQJcYc5FeIGYmq5dBE9FA4T4xfNQRXIbTmYvjg-qaGjPEGlCNX3kfaGtKUpFGEM5hTHK3EyslEba3JE5-yIufepVITMkpOKsM57wF6o4NUxUdgd2m7bBeyDSiUIXu1hbjCVaY1Tm0gxlikYlXtsR7JHk6sG8ujpkztOkHsRZD-IcwXj9N2s7UJxzp42z7ROebSZ8WbF7bH_06Vo9arJATqvoIOma6YaYqKwsR3B3pTebxei0mHEX9_v_9gFP4FJ1fDiv56-O3jyAywTOci5LS7OHsNsvlviIAFBvHged_wEqiwMu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkRA98KakvBapBy5O_Vhv7GPUEgKUggSRerP2MSuqFruKHYn2wG9nZuNEPBQJrivvej2ex7ea2W8A9nxeqkTrMrLKuUgWmERG-4IMz9sR6pJJxrja4lhNZ_LdSX7SXwrjuzC0iZZWakMSn636wvmeYSDZp_Fa180wN6SVaX4dbjAc4UKu8cHnlf9lFVTLXDKdlQlQrAl9_lqAI5Jtf49IG2BmCDeTOzBbbzRUmZwNF50Z2qs_OBz_90vuwu0ef4rxUmHuwTWs78P2L6yED-DHEUW2ecRNPSw6Mb1083BN6xvNe0On9u6raLyYch1NQ-qHzaIVH5BAfPTx-6lDQQ67YQZk0dRiwnyb5hwFO6hAhCvMpQgvEGPTNvPgsWiAkL84DNUkD2E2ef3lYBr1bRoiTeimi7wvtDVFqQhrKKcwRpmbkZXSSJs7MmtfxKVPvSpkhoRYnHXGEw5DFaeGCcsewVbd1PgYRDpS6GIXa4uxRGuMylyaoUzRqMRrO4A9klzVm1lbhQx6mlS9OKtenAMYrv5oZXuqc-64cb55wqv1hIsly8fmR1-uVKQiS-T0ig6Srph2iAnLynIAO0vdWS9Gp8aMu7nv_tsHvICbnw4n1dHb4_dP4BZhtJyr09LsKWx18wU-IxzUmedB7X8CeqYFsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser-Induced+Hydrothermal+Growth+of+Heterogeneous+Metal-Oxide+Nanowire+on+Flexible+Substrate+by+Laser+Absorption+Layer+Design&rft.jtitle=ACS+nano&rft.au=Yeo%2C+Junyeob&rft.au=Hong%2C+Sukjoon&rft.au=Kim%2C+Gunho&rft.au=Lee%2C+Habeom&rft.date=2015-06-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=9&rft.issue=6&rft.spage=6059&rft_id=info:doi/10.1021%2Facsnano.5b01125&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |