Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures
Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evol...
Saved in:
Published in | ACS nano Vol. 12; no. 12; pp. 12080 - 12088 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.8b04979 |
Cover
Abstract | Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant–TMD complex with small 1T and 1T′ patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T–2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2–MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap. |
---|---|
AbstractList | Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant-TMD complex with small 1T and 1T' patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T-2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2-MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap.Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant-TMD complex with small 1T and 1T' patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T-2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2-MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap. Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS or MoS has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant-TMD complex with small 1T and 1T' patches embedded in the 2H matrix. Existing growth methods have, however, produced WS or MoS solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T-2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS -MoS heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap. Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant–TMD complex with small 1T and 1T′ patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T–2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2–MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap. |
Author | Nakajima, Hideaki Lin, Yung-Chang Suenaga, Kazu Lin, Ho-Chun Yeh, Chao-Hui Siao, Ming-Deng Chiu, Po-Wen Chou, Mei-Yin Liu, Zheng Okazaki, Toshiya |
AuthorAffiliation | Inorganic Functional Materials Research Institute Nanomaterials Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Department of Electrical Engineering Academia Sinica The University of Tokyo CNT-Application Research Center Department of Mechanical Engineering |
AuthorAffiliation_xml | – name: Inorganic Functional Materials Research Institute – name: National Institute of Advanced Industrial Science and Technology (AIST) – name: Academia Sinica – name: Department of Mechanical Engineering – name: The University of Tokyo – name: CNT-Application Research Center – name: Nanomaterials Research Institute – name: Department of Electrical Engineering |
Author_xml | – sequence: 1 givenname: Yung-Chang orcidid: 0000-0002-3968-7239 surname: Lin fullname: Lin, Yung-Chang – sequence: 2 givenname: Chao-Hui orcidid: 0000-0002-9437-055X surname: Yeh fullname: Yeh, Chao-Hui organization: Department of Electrical Engineering – sequence: 3 givenname: Ho-Chun surname: Lin fullname: Lin, Ho-Chun organization: Academia Sinica – sequence: 4 givenname: Ming-Deng surname: Siao fullname: Siao, Ming-Deng organization: Department of Electrical Engineering – sequence: 5 givenname: Zheng orcidid: 0000-0001-9095-7647 surname: Liu fullname: Liu, Zheng organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 6 givenname: Hideaki surname: Nakajima fullname: Nakajima, Hideaki – sequence: 7 givenname: Toshiya surname: Okazaki fullname: Okazaki, Toshiya – sequence: 8 givenname: Mei-Yin surname: Chou fullname: Chou, Mei-Yin organization: Academia Sinica – sequence: 9 givenname: Kazu surname: Suenaga fullname: Suenaga, Kazu organization: The University of Tokyo – sequence: 10 givenname: Po-Wen orcidid: 0000-0003-4909-0310 surname: Chiu fullname: Chiu, Po-Wen email: pwchiu@ee.nthu.edu.tw organization: Academia Sinica |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30525432$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLAzEURoNUrK-1O8lSkGoymUwm7krVWqm4aBV3IclkdMo00TwQ_71T27oQXN0L93wf3HMAetZZA8AJRhcYZfhS6mCldRelQjlnfAfsY06KASqLl97vTnEfHISwQIiykhV7oE8QzWhOsn3wPItStQbiOZwn-xqisfC6Camtm8rAB2ddK7-Mh9JWcBIDvE9Wx8bZcAXH3n3Gt5_LMLplo-Es-qRj8iYcgd1atsEcb-YheLq9mY_uBtPH8WQ0nA4k4TwOSsoKajTPJakZLoosz2vFMSmUUjRnlPCaZTkvO4LhDEuulC4UI7KqsFGUkUNwtu599-4jmRDFsgnatK20xqUgMkwppqjEqENPN2hSS1OJd98spf8SWxcdQNeA9i4Eb2qhmyhXz0Yvm1ZgJFbOxca52Djvcpd_ctvq_xPn60R3EAuXvO0c_Ut_A4m_k6Y |
CitedBy_id | crossref_primary_10_1039_D1NR00318F crossref_primary_10_1021_acsnano_1c07803 crossref_primary_10_1002_adma_201900237 crossref_primary_10_1002_smll_202306165 crossref_primary_10_1002_smsc_202100047 crossref_primary_10_1021_acsnano_9b03250 crossref_primary_10_1021_acsami_2c01400 crossref_primary_10_1002_admt_202300972 crossref_primary_10_1039_D1CS01016F crossref_primary_10_1039_D0TC02037K crossref_primary_10_1002_smll_202005573 crossref_primary_10_1002_admi_202002205 crossref_primary_10_1016_j_physb_2022_414568 crossref_primary_10_3390_surfaces4010001 crossref_primary_10_1002_cphc_202400788 crossref_primary_10_1002_inf2_12093 crossref_primary_10_1016_j_apcatb_2022_122300 crossref_primary_10_1021_acsphotonics_4c00983 crossref_primary_10_1002_adma_202005303 crossref_primary_10_1002_bkcs_12626 crossref_primary_10_1016_j_mattod_2020_02_021 crossref_primary_10_1016_j_jcrysgro_2020_125609 crossref_primary_10_1016_j_cej_2023_141858 crossref_primary_10_1038_s41467_024_45676_3 crossref_primary_10_1002_sstr_202000093 crossref_primary_10_1021_acsnano_3c07665 crossref_primary_10_1039_D0DT01561J crossref_primary_10_1007_s41918_020_00087_y crossref_primary_10_1007_s11467_023_1286_2 crossref_primary_10_1016_j_flatc_2021_100242 crossref_primary_10_1038_s41699_020_00168_y crossref_primary_10_1039_C9RA06219J crossref_primary_10_1002_lpor_202000239 crossref_primary_10_1002_pssr_201900355 crossref_primary_10_1021_acs_chemrev_2c00455 crossref_primary_10_1016_j_seppur_2022_120976 crossref_primary_10_7498_aps_71_20220273 crossref_primary_10_1016_j_apsusc_2019_144371 crossref_primary_10_1021_acsnano_1c06736 crossref_primary_10_1016_j_coco_2024_101956 crossref_primary_10_1002_smll_202007171 crossref_primary_10_35848_1347_4065_ac4464 crossref_primary_10_1021_acsaelm_0c00742 crossref_primary_10_1002_smll_202300766 crossref_primary_10_1109_JSEN_2021_3050145 crossref_primary_10_1088_1361_6528_ab884b crossref_primary_10_1016_j_jmst_2021_05_068 crossref_primary_10_1039_D2NR01863B crossref_primary_10_1016_j_mtcomm_2024_108830 crossref_primary_10_1007_s42864_019_00012_x crossref_primary_10_1039_D4QI00892H crossref_primary_10_1016_j_jpowsour_2022_231325 crossref_primary_10_1021_acsnano_4c10302 crossref_primary_10_1021_acsnanoscienceau_3c00028 crossref_primary_10_1021_acsaom_4c00419 crossref_primary_10_1039_D1CP00504A crossref_primary_10_1088_2053_1583_abe739 crossref_primary_10_1021_acsaelm_1c00366 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1021_acs_jpcc_0c04765 crossref_primary_10_1038_s41578_023_00609_2 crossref_primary_10_1002_adma_202307867 crossref_primary_10_1016_j_ceramint_2021_12_066 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1021_acsnano_0c00098 crossref_primary_10_1016_j_surfin_2021_101308 crossref_primary_10_1021_acsnano_8b09032 crossref_primary_10_1039_D0CS00143K crossref_primary_10_1016_j_apcatb_2021_119897 crossref_primary_10_3390_ijms23020733 crossref_primary_10_1002_advs_202304890 crossref_primary_10_1016_j_nanoen_2022_107712 crossref_primary_10_1002_smll_202105215 crossref_primary_10_1039_D1NR04809K crossref_primary_10_1002_adfm_202104260 crossref_primary_10_1016_j_jallcom_2020_154076 |
Cites_doi | 10.1016/j.apmt.2015.09.001 10.1038/ncomms5214 10.1103/PhysRevB.96.165305 10.1021/jp403976d 10.1038/nmat4064 10.1021/nn302422x 10.1021/jp2076325 10.1126/science.aab4097 10.1021/acs.chemmater.7b04149 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.48.13115 10.1088/1361-6528/aa6f01 10.1103/PhysRevLett.77.3865 10.1021/jp4076355 10.1021/acsnano.6b05746 10.1021/jacs.6b13238 10.1021/nl3040042 10.1103/PhysRevB.50.17953 10.1021/acsami.7b10892 10.1002/adma.201401802 10.1038/nnano.2014.222 10.1038/nature24043 10.1021/nl4007479 10.1103/PhysRevB.59.1758 10.1038/nnano.2014.64 10.1038/nmat3633 10.1021/acs.nanolett.7b02311 10.1039/C5CS00151J 10.1038/s41598-017-14928-2 10.1038/nmat3700 10.1016/0039-6028(94)00731-4 10.1021/acsnano.7b08149 10.1088/2053-1583/2/3/035013 10.1016/0927-0256(96)00008-0 10.1038/ncomms10671 10.1021/ja506261t 10.1021/acs.chemmater.8b01239 10.1021/nn200105j 10.1038/srep18116 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.8b04979 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12088 |
ExternalDocumentID | 30525432 10_1021_acsnano_8b04979 c592016530 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-85765ec94a3f7166244fb9136bbb547539f72498c947121a9bbc6b73add1eb573 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 12:33:17 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Tue Jul 01 01:34:22 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | phase transition 1T WS2 transition-metal dichalcogenides heterojunctions chemical vapor deposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-85765ec94a3f7166244fb9136bbb547539f72498c947121a9bbc6b73add1eb573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9095-7647 0000-0002-9437-055X 0000-0003-4909-0310 0000-0002-3968-7239 |
PMID | 30525432 |
PQID | 2155150810 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2155150810 pubmed_primary_30525432 crossref_citationtrail_10_1021_acsnano_8b04979 crossref_primary_10_1021_acsnano_8b04979 acs_journals_10_1021_acsnano_8b04979 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-26 |
PublicationDateYYYYMMDD | 2018-12-26 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1016/j.apmt.2015.09.001 – ident: ref1/cit1 doi: 10.1038/ncomms5214 – ident: ref3/cit3 doi: 10.1103/PhysRevB.96.165305 – ident: ref28/cit28 doi: 10.1021/jp403976d – ident: ref29/cit29 doi: 10.1038/nmat4064 – ident: ref26/cit26 doi: 10.1021/nn302422x – ident: ref7/cit7 doi: 10.1021/jp2076325 – ident: ref31/cit31 doi: 10.1126/science.aab4097 – ident: ref25/cit25 doi: 10.1021/acs.chemmater.7b04149 – ident: ref35/cit35 doi: 10.1103/PhysRevB.54.11169 – ident: ref33/cit33 doi: 10.1103/PhysRevB.48.13115 – ident: ref15/cit15 doi: 10.1088/1361-6528/aa6f01 – ident: ref38/cit38 doi: 10.1103/PhysRevLett.77.3865 – ident: ref6/cit6 doi: 10.1021/jp4076355 – ident: ref13/cit13 doi: 10.1021/acsnano.6b05746 – ident: ref21/cit21 doi: 10.1021/jacs.6b13238 – ident: ref27/cit27 doi: 10.1021/nl3040042 – ident: ref36/cit36 doi: 10.1103/PhysRevB.50.17953 – ident: ref4/cit4 doi: 10.1021/acsami.7b10892 – ident: ref9/cit9 doi: 10.1002/adma.201401802 – ident: ref30/cit30 doi: 10.1038/nnano.2014.222 – ident: ref11/cit11 doi: 10.1038/nature24043 – ident: ref23/cit23 doi: 10.1021/nl4007479 – ident: ref37/cit37 doi: 10.1103/PhysRevB.59.1758 – ident: ref8/cit8 doi: 10.1038/nnano.2014.64 – ident: ref24/cit24 doi: 10.1038/nmat3633 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.7b02311 – ident: ref5/cit5 doi: 10.1039/C5CS00151J – ident: ref16/cit16 doi: 10.1038/s41598-017-14928-2 – ident: ref18/cit18 doi: 10.1038/nmat3700 – ident: ref39/cit39 doi: 10.1016/0039-6028(94)00731-4 – ident: ref10/cit10 doi: 10.1021/acsnano.7b08149 – ident: ref20/cit20 doi: 10.1088/2053-1583/2/3/035013 – ident: ref34/cit34 doi: 10.1016/0927-0256(96)00008-0 – ident: ref2/cit2 doi: 10.1038/ncomms10671 – ident: ref12/cit12 doi: 10.1021/ja506261t – ident: ref32/cit32 doi: 10.1021/acs.chemmater.8b01239 – ident: ref22/cit22 doi: 10.1021/nn200105j – ident: ref19/cit19 doi: 10.1038/srep18116 |
SSID | ssj0057876 |
Score | 2.5600097 |
Snippet | Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12080 |
Title | Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures |
URI | http://dx.doi.org/10.1021/acsnano.8b04979 https://www.ncbi.nlm.nih.gov/pubmed/30525432 https://www.proquest.com/docview/2155150810 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBgX8omI3HgklLbiZNwq8ouwYUW9RZ5bEdUVClS0gtfzzhJy1JVcI5txZ4Zz3uy_YaQs5YwqQrAeMaEwnOFtz0lIu2FvolAB9zXzD1OfnySdz3_oR_0v8Sif5_gc3ahdJ6pbNSMAMFsGC-SZS4j5nhWu_M82XSd38nqABkJMqKIqYrPzAAuDen8Zxqagy3LHHOzXt3OyktpQne15K05LqCpP2aFG__-_Q2yViNN2q5cY5Ms2GyLrH7TH9wmLwg1YWgp69IuBj0aPKNXg3w8TAfGUgx35L0IyanKDL0vcvqASbD000t6i_S9eC2_tAv3spk-l0q0Y6TvO6R3c93t3Hl1oQW0SxwXXoSkI7A69pVIkT9JTPkpxExIAAh8JDRxGiJNi7BFyDhTMYCWEArcG5mFIBS7ZCkbZXaf0FhZXyGIiQzOF0CCMUGLa9wXteLKyAY5wxVJ6kDJk_IMnLOkXqakXqYGaU7Mk-harNzVzBjO73A-7fBe6XTMb3o6sXeCseQOSFRmR-M84Q4_ImJlrQbZqxxhOphwBf98wQ_-N4FDsoLQKnIXX7g8IktoAnuM8KWAk9JxPwFZderU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB1BOJQeWlpKCYXWlThw2RCv95MbCtAQEqSKpMpt5bG9IiLaVNrNhV_P2NmktFUkuO7alu0Zz7zR2G8AjttC5zJE7WkdC88W3vakSJQXBzpBFfqB4vZx8uA26o6C3jgcb0B7-RaGJlHSSKVL4v9hF-Cn9K2QxayVIGHaON2ELceDYsFQ525pe636RYs8MsXJBCZWZD7_DWC9kSr_9kZrIKZzNVfv4edqku6GyUNrXmFLPf7D3_iaVezAuxp3svOFonyADVN8hLfP2Ah34RcBT5waxodsSCaAxF-wi0k5n-YTbRgdfoqCCaAzWWh2XZWsRy7Rae0Z-0HBfHXv_pxX9p0zu3O8tHMK5j_B6Opy2Ol6ddkFklKaVl5CIUhoVBpIkVM0FREAyDHlIkLEMKDwJs1jCtoSahFzn8sUUUUYC7KU3GAYiz1oFLPC7ANLpQkkQZpE03oRI9Q6bPuKrKSSvtRRE45pR7L62JSZy4j7PKu3Kau3qQmtpZQyVVOX2woa0_UdTlYdfi9YO9Y3_b4Ue0Yny6ZLZGFm8zLzLZok_MrbTfi80IfVYMKW_wuEf_CyBXyDN93hoJ_1r29vvsA2ga7EXonxo0NokDjMEQGbCr86XX4CGGvzPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB48QPTB-6hnBB982dps9vRN1GrrgWArvi2ZJIti2Qq7ffHXO9luiwcFfd1NQpKZTL5hMt8AHDWETqWP2tE6FI4tvO1IESkn9HSEync9xW1y8t19cN312s_-c5UUZnNhaBI5jZSXQXx7qt91WjEM8BP6nsmsX4-QcG0YT8OsbwngLCA6fxzZX6uCwTCWTL4yAYoxoc-vAeyNpPLvN9IEmFleN80l6I4nWr4yeasPCqyrjx8cjv9dyTIsVviTnQ0VZgWmTLYKC19YCdfgiQAo9gzjHdYhU0BqkLGL13zQS1-1YWQEyBsmoM5kplmryFmbrsZSe0_ZFTn1xUv556yw-c7sseSnHZBTvw7d5mXn_Nqpyi-QtOK4cCJyRXyjYk-KlLyqgIBAijEXASL6Hrk5cRqS8xZRi5C7XMaIKsBQkMXkBv1QbMBM1s_MFrBYGk8StIk0rRcxQK39hqvIWirpSh3U4Ih2JKmOT56UkXGXJ9U2JdU21aA-klSiKgpzW0mjN7nD8bjD-5C9Y3LTw5HoEzphNmwiM9Mf5IlrUSXhWN6oweZQJ8aDCVsG0BPu9t8WcABzDxfN5LZ1f7MD84S9Ivsyxg12YYakYfYI3xS4X6rzJ-t89bk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+1T+Tungsten+Disulfide+Monolayer+and+Its+Junctions%3A+Growth+and+Atomic+Structures&rft.jtitle=ACS+nano&rft.au=Lin%2C+Yung-Chang&rft.au=Yeh%2C+Chao-Hui&rft.au=Lin%2C+Ho-Chun&rft.au=Siao%2C+Ming-Deng&rft.date=2018-12-26&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=12&rft.issue=12&rft.spage=12080&rft.epage=12088&rft_id=info:doi/10.1021%2Facsnano.8b04979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_8b04979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |