Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures

Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evol...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 12; no. 12; pp. 12080 - 12088
Main Authors Lin, Yung-Chang, Yeh, Chao-Hui, Lin, Ho-Chun, Siao, Ming-Deng, Liu, Zheng, Nakajima, Hideaki, Okazaki, Toshiya, Chou, Mei-Yin, Suenaga, Kazu, Chiu, Po-Wen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.12.2018
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.8b04979

Cover

Abstract Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant–TMD complex with small 1T and 1T′ patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T–2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2–MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap.
AbstractList Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant-TMD complex with small 1T and 1T' patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T-2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2-MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap.Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant-TMD complex with small 1T and 1T' patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T-2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2-MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap.
Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS or MoS has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant-TMD complex with small 1T and 1T' patches embedded in the 2H matrix. Existing growth methods have, however, produced WS or MoS solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T-2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS -MoS heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap.
Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and partly to their potential applications in the next generation of electronic devices, including supercapacitors, electrocatalytic hydrogen evolution, and phase-transition memories. The primary method for obtaining 1T WS2 or MoS2 has been using ion intercalation in combination with solution-based exfoliation. The resulting flakes are small in size and tend to aggregate upon deposition, forming an intercalant–TMD complex with small 1T and 1T′ patches embedded in the 2H matrix. Existing growth methods have, however, produced WS2 or MoS2 solely in the 2H phase. Here, we have refined the growth approach to obtain monolayer 1T WS2 up to 80 μm in size based on chemical vapor deposition. With the aid of synergistic catalysts (iron oxide and sodium chloride), 1T WS2 can nucleate in the infant stage of the growth, forming special butterfly-like single crystals with the 1T phase in one wing and the 2H phase in the other. Distinctive types of phase boundaries are discovered at the 1T–2H interface. The 1T structure thus grown is thermodynamically stable over time and even persists at a high temperature above 800 °C, allowing for a stepwise edge epitaxy of lateral 1T heterostructures. Atomic images show that the 1T WS2–MoS2 heterojunction features a coherent and defectless interface with a sharp atomic transition. The stable 1T phase represents a missing piece of the puzzle in the research of atomic thin van der Waals crystals, and our growth approach provides an accessible way of filling this gap.
Author Nakajima, Hideaki
Lin, Yung-Chang
Suenaga, Kazu
Lin, Ho-Chun
Yeh, Chao-Hui
Siao, Ming-Deng
Chiu, Po-Wen
Chou, Mei-Yin
Liu, Zheng
Okazaki, Toshiya
AuthorAffiliation Inorganic Functional Materials Research Institute
Nanomaterials Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)
Department of Electrical Engineering
Academia Sinica
The University of Tokyo
CNT-Application Research Center
Department of Mechanical Engineering
AuthorAffiliation_xml – name: Inorganic Functional Materials Research Institute
– name: National Institute of Advanced Industrial Science and Technology (AIST)
– name: Academia Sinica
– name: Department of Mechanical Engineering
– name: The University of Tokyo
– name: CNT-Application Research Center
– name: Nanomaterials Research Institute
– name: Department of Electrical Engineering
Author_xml – sequence: 1
  givenname: Yung-Chang
  orcidid: 0000-0002-3968-7239
  surname: Lin
  fullname: Lin, Yung-Chang
– sequence: 2
  givenname: Chao-Hui
  orcidid: 0000-0002-9437-055X
  surname: Yeh
  fullname: Yeh, Chao-Hui
  organization: Department of Electrical Engineering
– sequence: 3
  givenname: Ho-Chun
  surname: Lin
  fullname: Lin, Ho-Chun
  organization: Academia Sinica
– sequence: 4
  givenname: Ming-Deng
  surname: Siao
  fullname: Siao, Ming-Deng
  organization: Department of Electrical Engineering
– sequence: 5
  givenname: Zheng
  orcidid: 0000-0001-9095-7647
  surname: Liu
  fullname: Liu, Zheng
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 6
  givenname: Hideaki
  surname: Nakajima
  fullname: Nakajima, Hideaki
– sequence: 7
  givenname: Toshiya
  surname: Okazaki
  fullname: Okazaki, Toshiya
– sequence: 8
  givenname: Mei-Yin
  surname: Chou
  fullname: Chou, Mei-Yin
  organization: Academia Sinica
– sequence: 9
  givenname: Kazu
  surname: Suenaga
  fullname: Suenaga, Kazu
  organization: The University of Tokyo
– sequence: 10
  givenname: Po-Wen
  orcidid: 0000-0003-4909-0310
  surname: Chiu
  fullname: Chiu, Po-Wen
  email: pwchiu@ee.nthu.edu.tw
  organization: Academia Sinica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30525432$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLAzEURoNUrK-1O8lSkGoymUwm7krVWqm4aBV3IclkdMo00TwQ_71T27oQXN0L93wf3HMAetZZA8AJRhcYZfhS6mCldRelQjlnfAfsY06KASqLl97vTnEfHISwQIiykhV7oE8QzWhOsn3wPItStQbiOZwn-xqisfC6Camtm8rAB2ddK7-Mh9JWcBIDvE9Wx8bZcAXH3n3Gt5_LMLplo-Es-qRj8iYcgd1atsEcb-YheLq9mY_uBtPH8WQ0nA4k4TwOSsoKajTPJakZLoosz2vFMSmUUjRnlPCaZTkvO4LhDEuulC4UI7KqsFGUkUNwtu599-4jmRDFsgnatK20xqUgMkwppqjEqENPN2hSS1OJd98spf8SWxcdQNeA9i4Eb2qhmyhXz0Yvm1ZgJFbOxca52Djvcpd_ctvq_xPn60R3EAuXvO0c_Ut_A4m_k6Y
CitedBy_id crossref_primary_10_1039_D1NR00318F
crossref_primary_10_1021_acsnano_1c07803
crossref_primary_10_1002_adma_201900237
crossref_primary_10_1002_smll_202306165
crossref_primary_10_1002_smsc_202100047
crossref_primary_10_1021_acsnano_9b03250
crossref_primary_10_1021_acsami_2c01400
crossref_primary_10_1002_admt_202300972
crossref_primary_10_1039_D1CS01016F
crossref_primary_10_1039_D0TC02037K
crossref_primary_10_1002_smll_202005573
crossref_primary_10_1002_admi_202002205
crossref_primary_10_1016_j_physb_2022_414568
crossref_primary_10_3390_surfaces4010001
crossref_primary_10_1002_cphc_202400788
crossref_primary_10_1002_inf2_12093
crossref_primary_10_1016_j_apcatb_2022_122300
crossref_primary_10_1021_acsphotonics_4c00983
crossref_primary_10_1002_adma_202005303
crossref_primary_10_1002_bkcs_12626
crossref_primary_10_1016_j_mattod_2020_02_021
crossref_primary_10_1016_j_jcrysgro_2020_125609
crossref_primary_10_1016_j_cej_2023_141858
crossref_primary_10_1038_s41467_024_45676_3
crossref_primary_10_1002_sstr_202000093
crossref_primary_10_1021_acsnano_3c07665
crossref_primary_10_1039_D0DT01561J
crossref_primary_10_1007_s41918_020_00087_y
crossref_primary_10_1007_s11467_023_1286_2
crossref_primary_10_1016_j_flatc_2021_100242
crossref_primary_10_1038_s41699_020_00168_y
crossref_primary_10_1039_C9RA06219J
crossref_primary_10_1002_lpor_202000239
crossref_primary_10_1002_pssr_201900355
crossref_primary_10_1021_acs_chemrev_2c00455
crossref_primary_10_1016_j_seppur_2022_120976
crossref_primary_10_7498_aps_71_20220273
crossref_primary_10_1016_j_apsusc_2019_144371
crossref_primary_10_1021_acsnano_1c06736
crossref_primary_10_1016_j_coco_2024_101956
crossref_primary_10_1002_smll_202007171
crossref_primary_10_35848_1347_4065_ac4464
crossref_primary_10_1021_acsaelm_0c00742
crossref_primary_10_1002_smll_202300766
crossref_primary_10_1109_JSEN_2021_3050145
crossref_primary_10_1088_1361_6528_ab884b
crossref_primary_10_1016_j_jmst_2021_05_068
crossref_primary_10_1039_D2NR01863B
crossref_primary_10_1016_j_mtcomm_2024_108830
crossref_primary_10_1007_s42864_019_00012_x
crossref_primary_10_1039_D4QI00892H
crossref_primary_10_1016_j_jpowsour_2022_231325
crossref_primary_10_1021_acsnano_4c10302
crossref_primary_10_1021_acsnanoscienceau_3c00028
crossref_primary_10_1021_acsaom_4c00419
crossref_primary_10_1039_D1CP00504A
crossref_primary_10_1088_2053_1583_abe739
crossref_primary_10_1021_acsaelm_1c00366
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1021_acs_jpcc_0c04765
crossref_primary_10_1038_s41578_023_00609_2
crossref_primary_10_1002_adma_202307867
crossref_primary_10_1016_j_ceramint_2021_12_066
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1021_acsnano_0c00098
crossref_primary_10_1016_j_surfin_2021_101308
crossref_primary_10_1021_acsnano_8b09032
crossref_primary_10_1039_D0CS00143K
crossref_primary_10_1016_j_apcatb_2021_119897
crossref_primary_10_3390_ijms23020733
crossref_primary_10_1002_advs_202304890
crossref_primary_10_1016_j_nanoen_2022_107712
crossref_primary_10_1002_smll_202105215
crossref_primary_10_1039_D1NR04809K
crossref_primary_10_1002_adfm_202104260
crossref_primary_10_1016_j_jallcom_2020_154076
Cites_doi 10.1016/j.apmt.2015.09.001
10.1038/ncomms5214
10.1103/PhysRevB.96.165305
10.1021/jp403976d
10.1038/nmat4064
10.1021/nn302422x
10.1021/jp2076325
10.1126/science.aab4097
10.1021/acs.chemmater.7b04149
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.48.13115
10.1088/1361-6528/aa6f01
10.1103/PhysRevLett.77.3865
10.1021/jp4076355
10.1021/acsnano.6b05746
10.1021/jacs.6b13238
10.1021/nl3040042
10.1103/PhysRevB.50.17953
10.1021/acsami.7b10892
10.1002/adma.201401802
10.1038/nnano.2014.222
10.1038/nature24043
10.1021/nl4007479
10.1103/PhysRevB.59.1758
10.1038/nnano.2014.64
10.1038/nmat3633
10.1021/acs.nanolett.7b02311
10.1039/C5CS00151J
10.1038/s41598-017-14928-2
10.1038/nmat3700
10.1016/0039-6028(94)00731-4
10.1021/acsnano.7b08149
10.1088/2053-1583/2/3/035013
10.1016/0927-0256(96)00008-0
10.1038/ncomms10671
10.1021/ja506261t
10.1021/acs.chemmater.8b01239
10.1021/nn200105j
10.1038/srep18116
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.8b04979
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12088
ExternalDocumentID 30525432
10_1021_acsnano_8b04979
c592016530
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-85765ec94a3f7166244fb9136bbb547539f72498c947121a9bbc6b73add1eb573
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 12:33:17 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Tue Jul 01 01:34:22 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords phase transition
1T WS2
transition-metal dichalcogenides
heterojunctions
chemical vapor deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-85765ec94a3f7166244fb9136bbb547539f72498c947121a9bbc6b73add1eb573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9095-7647
0000-0002-9437-055X
0000-0003-4909-0310
0000-0002-3968-7239
PMID 30525432
PQID 2155150810
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2155150810
pubmed_primary_30525432
crossref_citationtrail_10_1021_acsnano_8b04979
crossref_primary_10_1021_acsnano_8b04979
acs_journals_10_1021_acsnano_8b04979
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-26
PublicationDateYYYYMMDD 2018-12-26
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1016/j.apmt.2015.09.001
– ident: ref1/cit1
  doi: 10.1038/ncomms5214
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.96.165305
– ident: ref28/cit28
  doi: 10.1021/jp403976d
– ident: ref29/cit29
  doi: 10.1038/nmat4064
– ident: ref26/cit26
  doi: 10.1021/nn302422x
– ident: ref7/cit7
  doi: 10.1021/jp2076325
– ident: ref31/cit31
  doi: 10.1126/science.aab4097
– ident: ref25/cit25
  doi: 10.1021/acs.chemmater.7b04149
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.54.11169
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.48.13115
– ident: ref15/cit15
  doi: 10.1088/1361-6528/aa6f01
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref6/cit6
  doi: 10.1021/jp4076355
– ident: ref13/cit13
  doi: 10.1021/acsnano.6b05746
– ident: ref21/cit21
  doi: 10.1021/jacs.6b13238
– ident: ref27/cit27
  doi: 10.1021/nl3040042
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.50.17953
– ident: ref4/cit4
  doi: 10.1021/acsami.7b10892
– ident: ref9/cit9
  doi: 10.1002/adma.201401802
– ident: ref30/cit30
  doi: 10.1038/nnano.2014.222
– ident: ref11/cit11
  doi: 10.1038/nature24043
– ident: ref23/cit23
  doi: 10.1021/nl4007479
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.59.1758
– ident: ref8/cit8
  doi: 10.1038/nnano.2014.64
– ident: ref24/cit24
  doi: 10.1038/nmat3633
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.7b02311
– ident: ref5/cit5
  doi: 10.1039/C5CS00151J
– ident: ref16/cit16
  doi: 10.1038/s41598-017-14928-2
– ident: ref18/cit18
  doi: 10.1038/nmat3700
– ident: ref39/cit39
  doi: 10.1016/0039-6028(94)00731-4
– ident: ref10/cit10
  doi: 10.1021/acsnano.7b08149
– ident: ref20/cit20
  doi: 10.1088/2053-1583/2/3/035013
– ident: ref34/cit34
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref2/cit2
  doi: 10.1038/ncomms10671
– ident: ref12/cit12
  doi: 10.1021/ja506261t
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.8b01239
– ident: ref22/cit22
  doi: 10.1021/nn200105j
– ident: ref19/cit19
  doi: 10.1038/srep18116
SSID ssj0057876
Score 2.5600097
Snippet Transition-metal dichalcogenides in the 1T phase have been a subject of increasing interest, which is partly due to their fascinating physical properties and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12080
Title Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures
URI http://dx.doi.org/10.1021/acsnano.8b04979
https://www.ncbi.nlm.nih.gov/pubmed/30525432
https://www.proquest.com/docview/2155150810
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBgX8omI3HgklLbiZNwq8ouwYUW9RZ5bEdUVClS0gtfzzhJy1JVcI5txZ4Zz3uy_YaQs5YwqQrAeMaEwnOFtz0lIu2FvolAB9zXzD1OfnySdz3_oR_0v8Sif5_gc3ahdJ6pbNSMAMFsGC-SZS4j5nhWu_M82XSd38nqABkJMqKIqYrPzAAuDen8Zxqagy3LHHOzXt3OyktpQne15K05LqCpP2aFG__-_Q2yViNN2q5cY5Ms2GyLrH7TH9wmLwg1YWgp69IuBj0aPKNXg3w8TAfGUgx35L0IyanKDL0vcvqASbD000t6i_S9eC2_tAv3spk-l0q0Y6TvO6R3c93t3Hl1oQW0SxwXXoSkI7A69pVIkT9JTPkpxExIAAh8JDRxGiJNi7BFyDhTMYCWEArcG5mFIBS7ZCkbZXaf0FhZXyGIiQzOF0CCMUGLa9wXteLKyAY5wxVJ6kDJk_IMnLOkXqakXqYGaU7Mk-harNzVzBjO73A-7fBe6XTMb3o6sXeCseQOSFRmR-M84Q4_ImJlrQbZqxxhOphwBf98wQ_-N4FDsoLQKnIXX7g8IktoAnuM8KWAk9JxPwFZderU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB1BOJQeWlpKCYXWlThw2RCv95MbCtAQEqSKpMpt5bG9IiLaVNrNhV_P2NmktFUkuO7alu0Zz7zR2G8AjttC5zJE7WkdC88W3vakSJQXBzpBFfqB4vZx8uA26o6C3jgcb0B7-RaGJlHSSKVL4v9hF-Cn9K2QxayVIGHaON2ELceDYsFQ525pe636RYs8MsXJBCZWZD7_DWC9kSr_9kZrIKZzNVfv4edqku6GyUNrXmFLPf7D3_iaVezAuxp3svOFonyADVN8hLfP2Ah34RcBT5waxodsSCaAxF-wi0k5n-YTbRgdfoqCCaAzWWh2XZWsRy7Rae0Z-0HBfHXv_pxX9p0zu3O8tHMK5j_B6Opy2Ol6ddkFklKaVl5CIUhoVBpIkVM0FREAyDHlIkLEMKDwJs1jCtoSahFzn8sUUUUYC7KU3GAYiz1oFLPC7ANLpQkkQZpE03oRI9Q6bPuKrKSSvtRRE45pR7L62JSZy4j7PKu3Kau3qQmtpZQyVVOX2woa0_UdTlYdfi9YO9Y3_b4Ue0Yny6ZLZGFm8zLzLZok_MrbTfi80IfVYMKW_wuEf_CyBXyDN93hoJ_1r29vvsA2ga7EXonxo0NokDjMEQGbCr86XX4CGGvzPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB48QPTB-6hnBB982dps9vRN1GrrgWArvi2ZJIti2Qq7ffHXO9luiwcFfd1NQpKZTL5hMt8AHDWETqWP2tE6FI4tvO1IESkn9HSEync9xW1y8t19cN312s_-c5UUZnNhaBI5jZSXQXx7qt91WjEM8BP6nsmsX4-QcG0YT8OsbwngLCA6fxzZX6uCwTCWTL4yAYoxoc-vAeyNpPLvN9IEmFleN80l6I4nWr4yeasPCqyrjx8cjv9dyTIsVviTnQ0VZgWmTLYKC19YCdfgiQAo9gzjHdYhU0BqkLGL13zQS1-1YWQEyBsmoM5kplmryFmbrsZSe0_ZFTn1xUv556yw-c7sseSnHZBTvw7d5mXn_Nqpyi-QtOK4cCJyRXyjYk-KlLyqgIBAijEXASL6Hrk5cRqS8xZRi5C7XMaIKsBQkMXkBv1QbMBM1s_MFrBYGk8StIk0rRcxQK39hqvIWirpSh3U4Ih2JKmOT56UkXGXJ9U2JdU21aA-klSiKgpzW0mjN7nD8bjD-5C9Y3LTw5HoEzphNmwiM9Mf5IlrUSXhWN6oweZQJ8aDCVsG0BPu9t8WcABzDxfN5LZ1f7MD84S9Ivsyxg12YYakYfYI3xS4X6rzJ-t89bk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+1T+Tungsten+Disulfide+Monolayer+and+Its+Junctions%3A+Growth+and+Atomic+Structures&rft.jtitle=ACS+nano&rft.au=Lin%2C+Yung-Chang&rft.au=Yeh%2C+Chao-Hui&rft.au=Lin%2C+Ho-Chun&rft.au=Siao%2C+Ming-Deng&rft.date=2018-12-26&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=12&rft.issue=12&rft.spage=12080&rft.epage=12088&rft_id=info:doi/10.1021%2Facsnano.8b04979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_8b04979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon