Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations

Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 145; pp. 39 - 49
Main Authors Carey, Austin M., Paige, Ginger B., Carr, Bradley J., Dogan, Mine
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2017
Subjects
Online AccessGet full text
ISSN0926-9851
1879-1859
DOI10.1016/j.jappgeo.2017.08.002

Cover

Abstract Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events. •Artifacts develop from time-lapse inversion of rainfall simulation resistivity data.•Artifacts are classified as regions not representative of true vadose zone dynamics.•Forward modeling can be used to investigate the development of these artifacts.•Electrode configuration and moisture condition affect inversion results.•An optimal electrode configuration is identified based on forward modeling results.
AbstractList Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events. •Artifacts develop from time-lapse inversion of rainfall simulation resistivity data.•Artifacts are classified as regions not representative of true vadose zone dynamics.•Forward modeling can be used to investigate the development of these artifacts.•Electrode configuration and moisture condition affect inversion results.•An optimal electrode configuration is identified based on forward modeling results.
Author Dogan, Mine
Carr, Bradley J.
Carey, Austin M.
Paige, Ginger B.
Author_xml – sequence: 1
  givenname: Austin M.
  surname: Carey
  fullname: Carey, Austin M.
  email: acarey3@uwyo.edu
  organization: University of Wyoming, Wyoming Center for Environmental Hydrology and Geophysics and Department of Ecosystem Science and Management, 1000 E. University Ave., Dep. 3354, Laramie, WY 82072, USA
– sequence: 2
  givenname: Ginger B.
  surname: Paige
  fullname: Paige, Ginger B.
  email: gpaige@uwyo.edu
  organization: University of Wyoming, Wyoming Center for Environmental Hydrology and Geophysics and Department of Ecosystem Science and Management, 1000 E. University Ave., Dep. 3354, Laramie, WY 82072, USA
– sequence: 3
  givenname: Bradley J.
  surname: Carr
  fullname: Carr, Bradley J.
  email: bcarr1@uwyo.edu
  organization: University of Wyoming, Wyoming Center for Environmental Hydrology and Geophysics and Department of Geology and Geophysics, 1000 E. University Ave., Dep. 3006, Laramie, WY 82072, USA
– sequence: 4
  givenname: Mine
  surname: Dogan
  fullname: Dogan, Mine
  email: mdogand@clemson.edu
  organization: Clemson University, Department of Environmental Engineering and Earth Sciences, 342 Computer Court, Anderson, SC 29625, USA
BookMark eNqFkMFq3DAQhkXZQjdpH6GgF7Aj2StbpodSliYpBHJJz2KQR9tZZMtI2i37DH3pyElOvQQdJIb5_hl9V2wzhxkZ-ypFLYXsbo71EZblgKFuhOxroWshmg9sK3U_VFKrYcO2Ymi6atBKfmJXKR2FELIVuy37dxviX4gjn8KInuYDz4HTfMaU6QAZX94xUZg5xEwObE48Yjr5vDa7GCaeacLKw5KQo0ebI1nwaxOVkDPlS8mcwiHC8ufCx1NcwQg0O_CeJ5pOHnIZkD6zj6WU8Mvbfc1-3_582t9XD493v_Y_HipoB50r3TcKtRudHpxqlQJld00HnZNNi7ty7E4otOCsGiT2iKoHkNp2YtD9aGV7zb695toYUorojKX8skIua3kjhVm9mqN582pWr0ZoU7wWWv1HL5EmiJd3ue-vHJavnQmjSZZwtjhSLNLMGOidhGcNdZ4f
CitedBy_id crossref_primary_10_3390_su14010397
crossref_primary_10_3178_hrl_16_18
crossref_primary_10_1016_j_geoderma_2020_114431
crossref_primary_10_3390_w12020506
crossref_primary_10_3390_geosciences11020069
crossref_primary_10_3390_rs14153592
crossref_primary_10_1016_j_pce_2020_102930
crossref_primary_10_3390_geosciences15010033
crossref_primary_10_1016_j_jappgeo_2019_05_008
crossref_primary_10_3390_rs16183498
crossref_primary_10_3390_app11073143
crossref_primary_10_1016_j_jsg_2019_103933
crossref_primary_10_1007_s10064_023_03206_3
crossref_primary_10_1088_1755_1315_660_1_012067
crossref_primary_10_1016_j_jappgeo_2021_104463
crossref_primary_10_2136_vzj2018_07_0138
crossref_primary_10_1016_j_geoderma_2019_113953
crossref_primary_10_1007_s11356_019_04962_0
crossref_primary_10_1007_s12517_020_05903_9
crossref_primary_10_1080_20909977_2020_1868659
crossref_primary_10_1016_j_jhydrol_2024_132313
crossref_primary_10_1029_2023WR036319
crossref_primary_10_1016_j_jhydrol_2024_130777
crossref_primary_10_1061_JSWBAY_0001003
crossref_primary_10_1007_s13201_020_01347_4
crossref_primary_10_1016_j_earscirev_2024_104719
crossref_primary_10_1093_gji_ggaa513
crossref_primary_10_1144_SP482_11
crossref_primary_10_3390_wevj11010019
crossref_primary_10_1007_s13538_021_01043_x
crossref_primary_10_1002_hyp_13461
crossref_primary_10_1007_s10712_022_09731_2
crossref_primary_10_1029_2021WR031073
crossref_primary_10_1016_j_jappgeo_2021_104411
crossref_primary_10_1002_hyp_13361
crossref_primary_10_3390_hydrology6020036
Cites_doi 10.1016/S0341-8162(03)00038-9
10.1111/j.1745-6584.1989.tb01973.x
10.1029/2008GL034690
10.1111/j.1745-6584.2008.00432.x
10.1016/j.crte.2009.07.005
10.1016/S0926-9851(02)00124-6
10.1119/1.1378013
10.1016/S0022-1694(02)00156-7
10.2136/vzj2003.4160
10.2136/vzj2009.0073
10.1190/1.1442303
10.13031/2013.15691
10.1002/hyp.6963
10.1155/2013/608037
10.1016/S0933-3630(89)80002-9
10.1029/2007WR006755
10.4137/ASWR.S12306
10.1002/hyp.6608
10.2136/vzj2008.0052
10.1016/j.jhydrol.2004.04.005
10.1071/EG03182
10.1016/j.jappgeo.2009.08.004
10.1016/j.wasman.2009.10.002
10.1029/2011JC007509
10.1016/j.still.2004.10.004
10.1016/j.rama.2016.06.007
10.2136/vzj2004.1060
10.1002/hyp.7275
10.4000/archeosciences.1692
10.1190/1.2210055
10.1002/2014RG000465
10.1093/petroj/40.12.1771
10.1190/1.2732994
10.2136/sssaj2014.02.0062
10.1111/j.1365-2478.2004.00423.x
10.1016/j.still.2012.05.016
10.1016/j.jappgeo.2013.02.017
10.1016/j.jappgeo.2009.03.008
10.1016/S0022-1694(02)00146-4
10.1046/j.1365-246x.1999.00906.x
10.1007/1-4020-3102-5_5
10.1190/1.1444545
10.2136/sssaj2007.0278
10.1111/j.1936-704X.2013.03163.x
10.1016/j.jappgeo.2012.02.009
10.1002/hyp.7983
10.2136/sssaj2008.0361
10.1190/geo2011-0313.1
10.1016/j.jhydrol.2008.08.027
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2017.08.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1859
EndPage 49
ExternalDocumentID 10_1016_j_jappgeo_2017_08_002
S0926985117307310
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-a398t-8725e8fdf89f5355a5c426a6f123e4e4ec405ecafc591e7ee57aa18c60987dc13
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Thu Apr 24 22:56:50 EDT 2025
Wed Oct 01 03:54:50 EDT 2025
Fri Feb 23 02:26:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rainfall simulation
Artifacts
Electrical resistivity tomography
Infiltration
Vadose zone
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a398t-8725e8fdf89f5355a5c426a6f123e4e4ec405ecafc591e7ee57aa18c60987dc13
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jappgeo_2017_08_002
crossref_primary_10_1016_j_jappgeo_2017_08_002
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2017_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle Journal of applied geophysics
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Oldenburg, Li (bb0220) 1999; 64
French, Binley (bb0110) 2004; 297
Jayawickreme, Van Dam, Hyndman (bb0150) 2008; 35
Mojica, Díaz, Ho, Ogden, Pinzón, Fábrega, Vega, Hendrickx (bb0190) 2013; 6
Furman, Ferré, Warrick (bb0130) 2003; 2
Loke, Chambers, Rucker, Kuras, Wilkinson (bb0180) 2013; 93
Paige, Stone, Smith, Kennedy (bb0225) 2003; 20
Pellicer, Zarroca, Gibson (bb0235) 2012; 82
Carey, Paige (bb0045) 2016; 69
Binley, Cassiani, Middleton, Winship (bb0035) 2002; 267
Nyquist, Freyer, Toran (bb0205) 2008; 46
Dimova, Swarzenski, Dulaiova, Glenn (bb0095) 2012; 117
Nimmo, Perkins, Schmidt, Miller, Stock, Singha (bb0195) 2009; 8
Koch, Wenninger, Uhlenbrook, Bonell (bb0160) 2009; 23
Robert, Caterina, Deceuster, Kaufmann, Nguyen (bb0245) 2012; 77
Loke, Acworth, Dahlin (bb0175) 2003; 34
Bowyer-Bower, Burt (bb0040) 1989; 2
Heinse, Link (bb0135) 2013; 152
Parsekian, Singha, Minsley, Holbrook, Slater (bb0230) 2015; 53
Travelletti, Saihac, Malet, Grandjean, Ponton (bb0285) 2012; 26
Robinson, Binley, Cook, Day-Lewis, Ferré, Grauch, Knight, Knoll, Lakshmi, Miller, Nyquist, Pellerin, Singha, Slater (bb0250) 2008; 22
Lovell, Jackson, Harvey, Williams, Flint, Williamson, Gunn (bb0185) 1998
Oberdörster, Vanderborght, Kemna, Vereecken (bb0210) 2010; 9
Binley, Kemna (bb0030) 2005
Archie (bb0015) 1942; 146
Clément, Descloitres, Günther, Oxarango, Morra, Laurent, Gourc (bb0065) 2010; 30
Okpoli (bb0215) 2013
Advanced Geosciences (bb0005) 2009
Schwartz, Schreiber, Yan (bb0260) 2008; 362
Descloitres, Laurent, Sekhar, Legchenko, Braun, Mohan Kumar, Subramanian (bb0085) 2008; 22
Ward (bb0295) 1990
de Franco, Biella, Tosi, Teatini, Lozej, Chiozzotto, Giada, Rizzetto, Claude, Mayer, Bassan, Gasparetto-Stori (bb0105) 2009; 69
Koestel, Kemna, Javaux, Binley, Vereecken (bb0165) 2008; 44
Herman (bb0140) 2001; 69
Iserloh, Fister, Seeger, Willger, Riles (bb0145) 2012; 124
Kelleners, Paige, Gray (bb0155) 2009; 73
Snieder, Trampert (bb0275) 1999
Rings, Hauck (bb0240) 2009; 68
Clément, Descoîtres, Gunther, Oxarango (bb0060) 2009; 33
Loke (bb0170) 2001
ASTM G57-06 (bb0020) 2006
French, Hardbattle, Binley, Winship, Jakobsen (bb0115) 2002; 267
Al Hagrey, Schubert-Klempnauer, Wachsmuth, Michaelsen, Meissner (bb0010) 1999; 138
Ferré, Hinnell, Blainey (bb0100) 2006; 25
Weisberg (bb0300) 2005
Vereecken, Hubbard, Binley, Ferré (bb0290) 2004; 3
Dahlin, Zhou (bb0075) 2004; 52
Samouëlian, Cousin, Tabbagh, Bruand, Richard (bb0255) 2005; 83
Slater, Binley, Versteeg, Cassiani, Birken, Sandbery (bb0270) 2002; 49
Frost, Frost, Chamberlain, Edwards (bb0125) 1999; 40
Frohlich, Parke (bb0120) 1989; 27
Nyquist, Peake, Roth (bb0200) 2007; 72
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (bb0280) 2013
Dietrich, Weinzettel, Varni (bb0090) 2014; 78
Carrière, Chalikakis, Danquigny, Clément, Emblanch (bb0050) 2015
Descloitres, Ribolzi, Le Troguer (bb0080) 2003; 53
Constable, Parker, Constable (bb0070) 1987; 52
Clément, Descloitres, Günther, Ribolzi, Legchenko (bb0055) 2009; 341
Batlle-Aguilar, Schneider, Pessel, Tucholka, Coquet, Vachier (bb0025) 2009; 73
Seidel, Lange (bb0265) 2007
Loke (10.1016/j.jappgeo.2017.08.002_bb0180) 2013; 93
Lovell (10.1016/j.jappgeo.2017.08.002_bb0185) 1998
Robinson (10.1016/j.jappgeo.2017.08.002_bb0250) 2008; 22
Herman (10.1016/j.jappgeo.2017.08.002_bb0140) 2001; 69
Iserloh (10.1016/j.jappgeo.2017.08.002_bb0145) 2012; 124
Heinse (10.1016/j.jappgeo.2017.08.002_bb0135) 2013; 152
Snieder (10.1016/j.jappgeo.2017.08.002_bb0275) 1999
Oldenburg (10.1016/j.jappgeo.2017.08.002_bb0220) 1999; 64
Slater (10.1016/j.jappgeo.2017.08.002_bb0270) 2002; 49
Batlle-Aguilar (10.1016/j.jappgeo.2017.08.002_bb0025) 2009; 73
ASTM G57-06 (10.1016/j.jappgeo.2017.08.002_bb0020) 2006
Vereecken (10.1016/j.jappgeo.2017.08.002_bb0290) 2004; 3
Rings (10.1016/j.jappgeo.2017.08.002_bb0240) 2009; 68
Dietrich (10.1016/j.jappgeo.2017.08.002_bb0090) 2014; 78
Okpoli (10.1016/j.jappgeo.2017.08.002_bb0215) 2013
Pellicer (10.1016/j.jappgeo.2017.08.002_bb0235) 2012; 82
Descloitres (10.1016/j.jappgeo.2017.08.002_bb0080) 2003; 53
Clément (10.1016/j.jappgeo.2017.08.002_bb0065) 2010; 30
Paige (10.1016/j.jappgeo.2017.08.002_bb0225) 2003; 20
Bowyer-Bower (10.1016/j.jappgeo.2017.08.002_bb0040) 1989; 2
French (10.1016/j.jappgeo.2017.08.002_bb0115) 2002; 267
Al Hagrey (10.1016/j.jappgeo.2017.08.002_bb0010) 1999; 138
Frost (10.1016/j.jappgeo.2017.08.002_bb0125) 1999; 40
Travelletti (10.1016/j.jappgeo.2017.08.002_bb0285) 2012; 26
Clément (10.1016/j.jappgeo.2017.08.002_bb0055) 2009; 341
Dimova (10.1016/j.jappgeo.2017.08.002_bb0095) 2012; 117
Oberdörster (10.1016/j.jappgeo.2017.08.002_bb0210) 2010; 9
Advanced Geosciences (10.1016/j.jappgeo.2017.08.002_bb0005) 2009
Jayawickreme (10.1016/j.jappgeo.2017.08.002_bb0150) 2008; 35
Mojica (10.1016/j.jappgeo.2017.08.002_bb0190) 2013; 6
Binley (10.1016/j.jappgeo.2017.08.002_bb0030) 2005
Descloitres (10.1016/j.jappgeo.2017.08.002_bb0085) 2008; 22
Carey (10.1016/j.jappgeo.2017.08.002_bb0045) 2016; 69
Archie (10.1016/j.jappgeo.2017.08.002_bb0015) 1942; 146
Frohlich (10.1016/j.jappgeo.2017.08.002_bb0120) 1989; 27
Loke (10.1016/j.jappgeo.2017.08.002_bb0170) 2001
Clément (10.1016/j.jappgeo.2017.08.002_bb0060) 2009; 33
Constable (10.1016/j.jappgeo.2017.08.002_bb0070) 1987; 52
Koch (10.1016/j.jappgeo.2017.08.002_bb0160) 2009; 23
Parsekian (10.1016/j.jappgeo.2017.08.002_bb0230) 2015; 53
Weisberg (10.1016/j.jappgeo.2017.08.002_bb0300) 2005
Nimmo (10.1016/j.jappgeo.2017.08.002_bb0195) 2009; 8
Schwartz (10.1016/j.jappgeo.2017.08.002_bb0260) 2008; 362
Robert (10.1016/j.jappgeo.2017.08.002_bb0245) 2012; 77
Binley (10.1016/j.jappgeo.2017.08.002_bb0035) 2002; 267
Samouëlian (10.1016/j.jappgeo.2017.08.002_bb0255) 2005; 83
Dahlin (10.1016/j.jappgeo.2017.08.002_bb0075) 2004; 52
de Franco (10.1016/j.jappgeo.2017.08.002_bb0105) 2009; 69
Koestel (10.1016/j.jappgeo.2017.08.002_bb0165) 2008; 44
Nyquist (10.1016/j.jappgeo.2017.08.002_bb0200) 2007; 72
Furman (10.1016/j.jappgeo.2017.08.002_bb0130) 2003; 2
Ward (10.1016/j.jappgeo.2017.08.002_bb0295) 1990
Carrière (10.1016/j.jappgeo.2017.08.002_bb0050) 2015
Ferré (10.1016/j.jappgeo.2017.08.002_bb0100) 2006; 25
French (10.1016/j.jappgeo.2017.08.002_bb0110) 2004; 297
Nyquist (10.1016/j.jappgeo.2017.08.002_bb0205) 2008; 46
Seidel (10.1016/j.jappgeo.2017.08.002_bb0265) 2007
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (10.1016/j.jappgeo.2017.08.002_bb0280)
Kelleners (10.1016/j.jappgeo.2017.08.002_bb0155) 2009; 73
Loke (10.1016/j.jappgeo.2017.08.002_bb0175) 2003; 34
References_xml – start-page: 10
  year: 1998
  ident: bb0185
  article-title: Electrical resistivity measurements on unconsolidated core
  publication-title: Society of Core Analysts (SCA 98)
– volume: 46
  start-page: 561
  year: 2008
  end-page: 569
  ident: bb0205
  article-title: Stream bottom resistivity tomography to mp ground water discharge
  publication-title: Ground Water
– start-page: 62
  year: 2001
  ident: bb0170
  article-title: Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys
– volume: 72
  start-page: 139
  year: 2007
  end-page: 144
  ident: bb0200
  article-title: Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain
  publication-title: Geophysics
– volume: 22
  start-page: 384
  year: 2008
  end-page: 394
  ident: bb0085
  article-title: Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding
  publication-title: Hydrol. Process.
– volume: 267
  start-page: 147
  year: 2002
  end-page: 159
  ident: bb0035
  article-title: Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging
  publication-title: J. Hydrol.
– start-page: 1
  year: 2013
  end-page: 12
  ident: bb0215
  article-title: Sensitivity and resolution capacity of electrode configurations
  publication-title: Int. J. Geophys.
– volume: 23
  start-page: 1501
  year: 2009
  end-page: 1513
  ident: bb0160
  article-title: Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany
  publication-title: Hydrol. Process.
– volume: 341
  start-page: 886
  year: 2009
  end-page: 898
  ident: bb0055
  article-title: Influence of shallow infiltration on time-lapse ERT: experience of advanced interpretation
  publication-title: C.R. Geosci.
– volume: 53
  start-page: 229
  year: 2003
  end-page: 253
  ident: bb0080
  article-title: Study of infiltration in a Sahelian gully erosion area using time-lapse resistivity mapping
  publication-title: Catena
– volume: 117
  year: 2012
  ident: bb0095
  article-title: Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems
  publication-title: J. Geophys. Res.
– volume: 34
  start-page: 182
  year: 2003
  end-page: 187
  ident: bb0175
  article-title: A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys
  publication-title: Explor. Geophys.
– volume: 22
  start-page: 3604
  year: 2008
  end-page: 3635
  ident: bb0250
  article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods
  publication-title: Hydrol. Process.
– volume: 8
  year: 2009
  ident: bb0195
  article-title: Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. Field experiments evaluating plant-relevant soil water behavior
  publication-title: Vadose Zone J.
– volume: 69
  start-page: 481
  year: 2016
  end-page: 490
  ident: bb0045
  article-title: Ecological site-scale hydrologic response in a semi-arid rangeland watershed
  publication-title: Rangel. Ecol. Manag.
– volume: 2
  start-page: 1
  year: 1989
  end-page: 16
  ident: bb0040
  article-title: Rainfall simulators for investigating soil response to rainfall
  publication-title: Soil Technol.
– volume: 73
  start-page: 1626
  year: 2009
  end-page: 1637
  ident: bb0155
  article-title: Measurement of the dielectric properties of Wyoming soils using electromagnetic sensors
  publication-title: Soil Sci. Soc. Am. J.
– volume: 52
  start-page: 289
  year: 1987
  end-page: 300
  ident: bb0070
  article-title: Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
– volume: 152
  start-page: 22
  year: 2013
  end-page: 31
  ident: bb0135
  article-title: Vadose zone processes: a compendium for teaching interdisciplinary modeling
  publication-title: J. Contemp. Water Res. and Educ.
– volume: 53
  start-page: 1
  year: 2015
  end-page: 26
  ident: bb0230
  article-title: Multiscale geophysical imaging of the critical zone
  publication-title: Rev. Geophys.
– volume: 40
  start-page: 1771
  year: 1999
  end-page: 1802
  ident: bb0125
  article-title: Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced rapakivi-type anorogenic granite
  publication-title: J. Petrol.
– year: 2005
  ident: bb0030
  article-title: DC resistivity and induced polarization methods. p. 192-156
  publication-title: Hydrogeophysics. Water Sci. Technol. Libr., vol. 50
– year: 2013
  ident: bb0280
  article-title: Web soil survey
– year: 2009
  ident: bb0005
  article-title: EarthImager 2D, Resistivity and IP Inversion Software, Version 2.4.0. Instruction Manual
– volume: 20
  start-page: 25
  year: 2003
  end-page: 31
  ident: bb0225
  article-title: The walnut gulch rainfall simulator: a computer-controlled variable intensity rainfall simulator
  publication-title: Appl. Eng. Agric.
– volume: 52
  start-page: 379
  year: 2004
  end-page: 398
  ident: bb0075
  article-title: A numerical comparison of 2D resistivity imaging with 10 electrode arrays
  publication-title: Geophys. Prospect.
– volume: 35
  year: 2008
  ident: bb0150
  article-title: Subsurface imaging of vegetation, climate, and root zone moisture interactions
  publication-title: Geophys. Res. Lett.
– year: 2006
  ident: bb0020
  article-title: Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-electrode Method
– volume: 30
  start-page: 452
  year: 2010
  end-page: 464
  ident: bb0065
  article-title: Improvement of electrical resistivity tomography for leachate injection monitoring
  publication-title: Waste Manag.
– volume: 297
  start-page: 174
  year: 2004
  end-page: 186
  ident: bb0110
  article-title: Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity
  publication-title: J. Hydrol.
– volume: 27
  start-page: 524
  year: 1989
  end-page: 530
  ident: bb0120
  article-title: The electrical resistivity of the vadose zone – field survey
  publication-title: Ground Water
– volume: 68
  start-page: 404
  year: 2009
  end-page: 416
  ident: bb0240
  article-title: Reliability of resistivity quantification for shallow subsurface water processes
  publication-title: J. Appl. Geophys.
– start-page: 147
  year: 1990
  end-page: 189
  ident: bb0295
  article-title: Resistivity and induced polarization methods
  publication-title: Geotechnical and Environmental Geophysics
– volume: 25
  start-page: 720
  year: 2006
  end-page: 723
  ident: bb0100
  article-title: Inferring hydraulic properties using surface-based electrical resistivity during infiltration
  publication-title: Lead. Edge
– volume: 64
  start-page: 403
  year: 1999
  end-page: 416
  ident: bb0220
  article-title: Estimating depth of investigation in dc resistivity and IP surveys
  publication-title: Geophysics
– volume: 146
  start-page: 54
  year: 1942
  end-page: 62
  ident: bb0015
  article-title: The electrical resistivity log as an aid in determining some reservoir characteristics
  publication-title: Trans. Am. Inst. Min. Metall. Pet. Eng.
– volume: 9
  start-page: 350
  year: 2010
  end-page: 361
  ident: bb0210
  article-title: Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography
  publication-title: Vadose Zone J.
– start-page: 115
  year: 2005
  end-page: 147
  ident: bb0300
  article-title: Polynomials and factors
  publication-title: Applied Linear Regression
– volume: 78
  start-page: 1153
  year: 2014
  end-page: 1167
  ident: bb0090
  article-title: Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity tomography
  publication-title: Soil Sci. Soc. Am. J.
– volume: 267
  start-page: 273
  year: 2002
  end-page: 284
  ident: bb0115
  article-title: Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography
  publication-title: J. Hydrol.
– volume: 33
  start-page: 275
  year: 2009
  end-page: 278
  ident: bb0060
  article-title: Comparison of three arrays in time-lapse ERT: simulation of a leachate injection experiment
  publication-title: ArchéoSciences
– start-page: 119
  year: 1999
  end-page: 191
  ident: bb0275
  article-title: Inverse problems in geophysics
  publication-title: Wavefield Inversion
– volume: 83
  start-page: 173
  year: 2005
  end-page: 193
  ident: bb0255
  article-title: Electrical resistivity survey in soil science: a review
  publication-title: Soil Tillage Res.
– volume: 6
  start-page: 131
  year: 2013
  end-page: 139
  ident: bb0190
  article-title: Study of seasonal rainfall infiltration via time-lapse surface electrical resistivity tomography: case study of Gamboa Area, Panama Canal Watershed
  publication-title: Air, Soil and Water Res.
– volume: 82
  start-page: 46
  year: 2012
  end-page: 58
  ident: bb0235
  article-title: Time-lapse resistivity analysis of quaternary sediments in the midlands of Ireland
  publication-title: J. Appl. Geophys.
– volume: 73
  start-page: 510
  year: 2009
  end-page: 520
  ident: bb0025
  article-title: Axisymetrical infiltration in soil imaged by noninvasive electrical resistivimetry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 77
  start-page: B55
  year: 2012
  end-page: B67
  ident: bb0245
  article-title: A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones
  publication-title: Geophysics
– volume: 362
  start-page: 234
  year: 2008
  end-page: 246
  ident: bb0260
  article-title: Quantifying field-scale soil moisture using electrical resistivity imaging
  publication-title: J. Hydrol.
– start-page: 45
  year: 2015
  end-page: 55
  ident: bb0050
  article-title: Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event
  publication-title: Hydrogeological and Environmental Investigations in Karst Systems
– volume: 124
  start-page: 131
  year: 2012
  end-page: 137
  ident: bb0145
  article-title: A small portable rainfall simulator for reproducible experiments on soil erosion
  publication-title: Soil Tillage Res.
– volume: 69
  start-page: 117
  year: 2009
  end-page: 130
  ident: bb0105
  article-title: Monitoring the saltwater intrusion by time lapse electrical resistivity tomography
  publication-title: J. Appl. Geophys.
– volume: 69
  start-page: 943
  year: 2001
  end-page: 952
  ident: bb0140
  article-title: An introduction to electrical resistivity in geophysics
  publication-title: Am. J. Phys.
– volume: 44
  year: 2008
  ident: bb0165
  article-title: Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR
  publication-title: Water Resour. Res.
– volume: 138
  start-page: 643
  year: 1999
  end-page: 654
  ident: bb0010
  article-title: Preferential flow: first results of a full-scale flow model
  publication-title: Geophys. J. Int.
– volume: 93
  start-page: 135
  year: 2013
  end-page: 156
  ident: bb0180
  article-title: Recent developments in the direct-current geoelectrical imaging method
  publication-title: J. Appl. Geophys.
– volume: 49
  start-page: 211
  year: 2002
  end-page: 229
  ident: bb0270
  article-title: A 3D ERT study of solute transport in a large experimental tank
  publication-title: J. Appl. Geophys.
– volume: 26
  start-page: 2106
  year: 2012
  end-page: 2119
  ident: bb0285
  article-title: Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography
  publication-title: Hydrol. Process.
– start-page: 205
  year: 2007
  end-page: 237
  ident: bb0265
  article-title: Direct current resistivity methods
  publication-title: Environmental Geology: Handbook of Field Methods and Case Studies
– volume: 2
  start-page: 416
  year: 2003
  end-page: 423
  ident: bb0130
  article-title: A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling
  publication-title: Vadose Zone J.
– volume: 3
  start-page: 1060
  year: 2004
  end-page: 1062
  ident: bb0290
  article-title: Hydrogeophysics: an introduction from the guest editors
  publication-title: Vadose Zone J.
– volume: 53
  start-page: 229
  year: 2003
  ident: 10.1016/j.jappgeo.2017.08.002_bb0080
  article-title: Study of infiltration in a Sahelian gully erosion area using time-lapse resistivity mapping
  publication-title: Catena
  doi: 10.1016/S0341-8162(03)00038-9
– volume: 27
  start-page: 524
  year: 1989
  ident: 10.1016/j.jappgeo.2017.08.002_bb0120
  article-title: The electrical resistivity of the vadose zone – field survey
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1989.tb01973.x
– volume: 146
  start-page: 54
  year: 1942
  ident: 10.1016/j.jappgeo.2017.08.002_bb0015
  article-title: The electrical resistivity log as an aid in determining some reservoir characteristics
  publication-title: Trans. Am. Inst. Min. Metall. Pet. Eng.
– start-page: 10
  year: 1998
  ident: 10.1016/j.jappgeo.2017.08.002_bb0185
  article-title: Electrical resistivity measurements on unconsolidated core
– volume: 35
  year: 2008
  ident: 10.1016/j.jappgeo.2017.08.002_bb0150
  article-title: Subsurface imaging of vegetation, climate, and root zone moisture interactions
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL034690
– volume: 46
  start-page: 561
  year: 2008
  ident: 10.1016/j.jappgeo.2017.08.002_bb0205
  article-title: Stream bottom resistivity tomography to mp ground water discharge
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2008.00432.x
– volume: 341
  start-page: 886
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0055
  article-title: Influence of shallow infiltration on time-lapse ERT: experience of advanced interpretation
  publication-title: C.R. Geosci.
  doi: 10.1016/j.crte.2009.07.005
– volume: 49
  start-page: 211
  year: 2002
  ident: 10.1016/j.jappgeo.2017.08.002_bb0270
  article-title: A 3D ERT study of solute transport in a large experimental tank
  publication-title: J. Appl. Geophys.
  doi: 10.1016/S0926-9851(02)00124-6
– volume: 69
  start-page: 943
  year: 2001
  ident: 10.1016/j.jappgeo.2017.08.002_bb0140
  article-title: An introduction to electrical resistivity in geophysics
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1378013
– volume: 267
  start-page: 273
  year: 2002
  ident: 10.1016/j.jappgeo.2017.08.002_bb0115
  article-title: Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00156-7
– volume: 2
  start-page: 416
  year: 2003
  ident: 10.1016/j.jappgeo.2017.08.002_bb0130
  article-title: A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2003.4160
– volume: 9
  start-page: 350
  year: 2010
  ident: 10.1016/j.jappgeo.2017.08.002_bb0210
  article-title: Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2009.0073
– volume: 52
  start-page: 289
  year: 1987
  ident: 10.1016/j.jappgeo.2017.08.002_bb0070
  article-title: Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
  doi: 10.1190/1.1442303
– year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0005
– volume: 20
  start-page: 25
  year: 2003
  ident: 10.1016/j.jappgeo.2017.08.002_bb0225
  article-title: The walnut gulch rainfall simulator: a computer-controlled variable intensity rainfall simulator
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.15691
– volume: 22
  start-page: 3604
  year: 2008
  ident: 10.1016/j.jappgeo.2017.08.002_bb0250
  article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6963
– start-page: 1
  year: 2013
  ident: 10.1016/j.jappgeo.2017.08.002_bb0215
  article-title: Sensitivity and resolution capacity of electrode configurations
  publication-title: Int. J. Geophys.
  doi: 10.1155/2013/608037
– volume: 2
  start-page: 1
  year: 1989
  ident: 10.1016/j.jappgeo.2017.08.002_bb0040
  article-title: Rainfall simulators for investigating soil response to rainfall
  publication-title: Soil Technol.
  doi: 10.1016/S0933-3630(89)80002-9
– volume: 44
  year: 2008
  ident: 10.1016/j.jappgeo.2017.08.002_bb0165
  article-title: Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006755
– volume: 6
  start-page: 131
  year: 2013
  ident: 10.1016/j.jappgeo.2017.08.002_bb0190
  article-title: Study of seasonal rainfall infiltration via time-lapse surface electrical resistivity tomography: case study of Gamboa Area, Panama Canal Watershed
  publication-title: Air, Soil and Water Res.
  doi: 10.4137/ASWR.S12306
– start-page: 62
  year: 2001
  ident: 10.1016/j.jappgeo.2017.08.002_bb0170
– volume: 22
  start-page: 384
  year: 2008
  ident: 10.1016/j.jappgeo.2017.08.002_bb0085
  article-title: Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6608
– volume: 8
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0195
  article-title: Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. Field experiments evaluating plant-relevant soil water behavior
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2008.0052
– volume: 297
  start-page: 174
  year: 2004
  ident: 10.1016/j.jappgeo.2017.08.002_bb0110
  article-title: Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.04.005
– start-page: 205
  year: 2007
  ident: 10.1016/j.jappgeo.2017.08.002_bb0265
  article-title: Direct current resistivity methods
– volume: 34
  start-page: 182
  year: 2003
  ident: 10.1016/j.jappgeo.2017.08.002_bb0175
  article-title: A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys
  publication-title: Explor. Geophys.
  doi: 10.1071/EG03182
– volume: 69
  start-page: 117
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0105
  article-title: Monitoring the saltwater intrusion by time lapse electrical resistivity tomography
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2009.08.004
– volume: 30
  start-page: 452
  year: 2010
  ident: 10.1016/j.jappgeo.2017.08.002_bb0065
  article-title: Improvement of electrical resistivity tomography for leachate injection monitoring
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2009.10.002
– volume: 117
  year: 2012
  ident: 10.1016/j.jappgeo.2017.08.002_bb0095
  article-title: Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JC007509
– volume: 83
  start-page: 173
  year: 2005
  ident: 10.1016/j.jappgeo.2017.08.002_bb0255
  article-title: Electrical resistivity survey in soil science: a review
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.10.004
– ident: 10.1016/j.jappgeo.2017.08.002_bb0280
– volume: 69
  start-page: 481
  year: 2016
  ident: 10.1016/j.jappgeo.2017.08.002_bb0045
  article-title: Ecological site-scale hydrologic response in a semi-arid rangeland watershed
  publication-title: Rangel. Ecol. Manag.
  doi: 10.1016/j.rama.2016.06.007
– volume: 3
  start-page: 1060
  year: 2004
  ident: 10.1016/j.jappgeo.2017.08.002_bb0290
  article-title: Hydrogeophysics: an introduction from the guest editors
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.1060
– volume: 23
  start-page: 1501
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0160
  article-title: Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7275
– volume: 33
  start-page: 275
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0060
  article-title: Comparison of three arrays in time-lapse ERT: simulation of a leachate injection experiment
  publication-title: ArchéoSciences
  doi: 10.4000/archeosciences.1692
– volume: 25
  start-page: 720
  year: 2006
  ident: 10.1016/j.jappgeo.2017.08.002_bb0100
  article-title: Inferring hydraulic properties using surface-based electrical resistivity during infiltration
  publication-title: Lead. Edge
  doi: 10.1190/1.2210055
– volume: 53
  start-page: 1
  year: 2015
  ident: 10.1016/j.jappgeo.2017.08.002_bb0230
  article-title: Multiscale geophysical imaging of the critical zone
  publication-title: Rev. Geophys.
  doi: 10.1002/2014RG000465
– year: 2006
  ident: 10.1016/j.jappgeo.2017.08.002_bb0020
– volume: 40
  start-page: 1771
  year: 1999
  ident: 10.1016/j.jappgeo.2017.08.002_bb0125
  article-title: Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced rapakivi-type anorogenic granite
  publication-title: J. Petrol.
  doi: 10.1093/petroj/40.12.1771
– volume: 72
  start-page: 139
  year: 2007
  ident: 10.1016/j.jappgeo.2017.08.002_bb0200
  article-title: Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain
  publication-title: Geophysics
  doi: 10.1190/1.2732994
– volume: 78
  start-page: 1153
  year: 2014
  ident: 10.1016/j.jappgeo.2017.08.002_bb0090
  article-title: Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity tomography
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.02.0062
– volume: 52
  start-page: 379
  year: 2004
  ident: 10.1016/j.jappgeo.2017.08.002_bb0075
  article-title: A numerical comparison of 2D resistivity imaging with 10 electrode arrays
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2004.00423.x
– volume: 124
  start-page: 131
  year: 2012
  ident: 10.1016/j.jappgeo.2017.08.002_bb0145
  article-title: A small portable rainfall simulator for reproducible experiments on soil erosion
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.05.016
– volume: 93
  start-page: 135
  year: 2013
  ident: 10.1016/j.jappgeo.2017.08.002_bb0180
  article-title: Recent developments in the direct-current geoelectrical imaging method
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2013.02.017
– volume: 68
  start-page: 404
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0240
  article-title: Reliability of resistivity quantification for shallow subsurface water processes
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2009.03.008
– volume: 267
  start-page: 147
  year: 2002
  ident: 10.1016/j.jappgeo.2017.08.002_bb0035
  article-title: Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00146-4
– start-page: 147
  year: 1990
  ident: 10.1016/j.jappgeo.2017.08.002_bb0295
  article-title: Resistivity and induced polarization methods
– start-page: 119
  year: 1999
  ident: 10.1016/j.jappgeo.2017.08.002_bb0275
  article-title: Inverse problems in geophysics
– volume: 138
  start-page: 643
  year: 1999
  ident: 10.1016/j.jappgeo.2017.08.002_bb0010
  article-title: Preferential flow: first results of a full-scale flow model
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.1999.00906.x
– start-page: 45
  year: 2015
  ident: 10.1016/j.jappgeo.2017.08.002_bb0050
  article-title: Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event
– year: 2005
  ident: 10.1016/j.jappgeo.2017.08.002_bb0030
  article-title: DC resistivity and induced polarization methods. p. 192-156
  doi: 10.1007/1-4020-3102-5_5
– volume: 64
  start-page: 403
  year: 1999
  ident: 10.1016/j.jappgeo.2017.08.002_bb0220
  article-title: Estimating depth of investigation in dc resistivity and IP surveys
  publication-title: Geophysics
  doi: 10.1190/1.1444545
– volume: 73
  start-page: 510
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0025
  article-title: Axisymetrical infiltration in soil imaged by noninvasive electrical resistivimetry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0278
– volume: 152
  start-page: 22
  year: 2013
  ident: 10.1016/j.jappgeo.2017.08.002_bb0135
  article-title: Vadose zone processes: a compendium for teaching interdisciplinary modeling
  publication-title: J. Contemp. Water Res. and Educ.
  doi: 10.1111/j.1936-704X.2013.03163.x
– volume: 82
  start-page: 46
  year: 2012
  ident: 10.1016/j.jappgeo.2017.08.002_bb0235
  article-title: Time-lapse resistivity analysis of quaternary sediments in the midlands of Ireland
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2012.02.009
– volume: 26
  start-page: 2106
  year: 2012
  ident: 10.1016/j.jappgeo.2017.08.002_bb0285
  article-title: Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7983
– volume: 73
  start-page: 1626
  year: 2009
  ident: 10.1016/j.jappgeo.2017.08.002_bb0155
  article-title: Measurement of the dielectric properties of Wyoming soils using electromagnetic sensors
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0361
– volume: 77
  start-page: B55
  year: 2012
  ident: 10.1016/j.jappgeo.2017.08.002_bb0245
  article-title: A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones
  publication-title: Geophysics
  doi: 10.1190/geo2011-0313.1
– start-page: 115
  year: 2005
  ident: 10.1016/j.jappgeo.2017.08.002_bb0300
  article-title: Polynomials and factors
– volume: 362
  start-page: 234
  year: 2008
  ident: 10.1016/j.jappgeo.2017.08.002_bb0260
  article-title: Quantifying field-scale soil moisture using electrical resistivity imaging
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.08.027
SSID ssj0001304
Score 2.3417327
Snippet Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Electrical resistivity tomography
Infiltration
Rainfall simulation
Vadose zone
Title Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations
URI https://dx.doi.org/10.1016/j.jappgeo.2017.08.002
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001304
  issn: 0926-9851
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001304
  issn: 0926-9851
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001304
  issn: 0926-9851
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001304
  issn: 0926-9851
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001304
  issn: 0926-9851
  databaseCode: AKRWK
  dateStart: 19930414
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zM-mz145Q0LHJvGpmrsRZv0RpZl19D0QQpe_QP-aWdgaWtiNDFcYDNLYGeYmSXzzUfInZRMgeVkBgQ7Zvg85Ab3WGr4IlVekDqOVLhRfB6z0cR_nAbTDhm0WBgsq9S-v_HptbfWI5ZeTavIc-vFjl0WY8IQop3WMCvfD5HFwPzYlnmAj65bSIGwgdJbFI81M2e8KN5qDKATmk1V5c_xaSfmDI_IoU4Wab95nmPSkcsTcrDTQvCUfA5Xayx8pTWlDQzRakXzTfMMWZ_Xv8QovhbiGEoKW2ysIwRhRJdQ5Jc35rwoJW1YcVBxKITfP3JLwD0XurU1bXCNFJklFJ_PaZkvNANYeUYmw_vXwcjQBAugjziqwBO6gYxUpqJYBZB48EBAwOZMQTiTPhwC0jkpuBJB7MhQyiDk3IkEs-MozITjnZPucrWUF4QKSOMiW7oZ81KfYY98uAOiVJlII5sHl8RvlzURuvs4kmDMk7bMbJZobSSojQTJMW33kpibaUXTfuOvCVGrs-SbHSUQIn6fevX_qddkH6-aIr8b0q3W7_IWkpUq7dXW2CN7_Yen0fgL0tHvHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mOAAHxFOMZw5cuz7WpO0RTUwDtl3YpN2qNE3Qpj2qdVz5A_xp7DbdhoRAQr1UqRO1sWU7lT9_hNwrxTVYTmpBsOOWLwJhiSZPLF8muskS11UaD4q9Pu8M_ecRG9VIq8LCYFml8f2lTy-8tRmxzW7a2XhsvzqRxyNMGAK0U4RZ7frMC_AE1vjY1HmAky56SIG0heIbGI89aUxElr0VIEA3aJRllT8HqK2g0z4ihyZbpA_lCx2TmpqfkIOtHoKn5LO9WGLlKy04bWCIrhZ0vO6eoYr74p8Yxe9CIENO4YyNhYQgjPASigTz1lRkuaIlLQ5qDoXQASC5BKw5M72taQlspEgtocV0SvPxzFCA5Wdk2H4ctDqWYVgAhUThClyhx1SoUx1GmkHmIZiEiC24hnimfLgk5HNKCi1Z5KpAKRYI4YaSO1EYpNJtnpOd-WKuLgiVkMeFjvJS3kx8jk3yYQWEqXKZhI5gdeJX2xpL034cWTCmcVVnNomNNmLURozsmI5XJ431tKzsv_HXhLDSWfzNkGKIEb9Pvfz_1Duy1xn0unH3qf9yRfbxSVnxd012Vst3dQOZyyq5LSzzC19R8LM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forward+modeling+to+investigate+inversion+artifacts+resulting+from+time-lapse+electrical+resistivity+tomography+during+rainfall+simulations&rft.jtitle=Journal+of+applied+geophysics&rft.au=Carey%2C+Austin+M.&rft.au=Paige%2C+Ginger+B.&rft.au=Carr%2C+Bradley+J.&rft.au=Dogan%2C+Mine&rft.date=2017-10-01&rft.issn=0926-9851&rft.volume=145&rft.spage=39&rft.epage=49&rft_id=info:doi/10.1016%2Fj.jappgeo.2017.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2017_08_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon