Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface...
Saved in:
| Published in | Journal of applied geophysics Vol. 145; pp. 39 - 49 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0926-9851 1879-1859 |
| DOI | 10.1016/j.jappgeo.2017.08.002 |
Cover
| Abstract | Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
•Artifacts develop from time-lapse inversion of rainfall simulation resistivity data.•Artifacts are classified as regions not representative of true vadose zone dynamics.•Forward modeling can be used to investigate the development of these artifacts.•Electrode configuration and moisture condition affect inversion results.•An optimal electrode configuration is identified based on forward modeling results. |
|---|---|
| AbstractList | Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
•Artifacts develop from time-lapse inversion of rainfall simulation resistivity data.•Artifacts are classified as regions not representative of true vadose zone dynamics.•Forward modeling can be used to investigate the development of these artifacts.•Electrode configuration and moisture condition affect inversion results.•An optimal electrode configuration is identified based on forward modeling results. |
| Author | Dogan, Mine Carr, Bradley J. Carey, Austin M. Paige, Ginger B. |
| Author_xml | – sequence: 1 givenname: Austin M. surname: Carey fullname: Carey, Austin M. email: acarey3@uwyo.edu organization: University of Wyoming, Wyoming Center for Environmental Hydrology and Geophysics and Department of Ecosystem Science and Management, 1000 E. University Ave., Dep. 3354, Laramie, WY 82072, USA – sequence: 2 givenname: Ginger B. surname: Paige fullname: Paige, Ginger B. email: gpaige@uwyo.edu organization: University of Wyoming, Wyoming Center for Environmental Hydrology and Geophysics and Department of Ecosystem Science and Management, 1000 E. University Ave., Dep. 3354, Laramie, WY 82072, USA – sequence: 3 givenname: Bradley J. surname: Carr fullname: Carr, Bradley J. email: bcarr1@uwyo.edu organization: University of Wyoming, Wyoming Center for Environmental Hydrology and Geophysics and Department of Geology and Geophysics, 1000 E. University Ave., Dep. 3006, Laramie, WY 82072, USA – sequence: 4 givenname: Mine surname: Dogan fullname: Dogan, Mine email: mdogand@clemson.edu organization: Clemson University, Department of Environmental Engineering and Earth Sciences, 342 Computer Court, Anderson, SC 29625, USA |
| BookMark | eNqFkMFq3DAQhkXZQjdpH6GgF7Aj2StbpodSliYpBHJJz2KQR9tZZMtI2i37DH3pyElOvQQdJIb5_hl9V2wzhxkZ-ypFLYXsbo71EZblgKFuhOxroWshmg9sK3U_VFKrYcO2Ymi6atBKfmJXKR2FELIVuy37dxviX4gjn8KInuYDz4HTfMaU6QAZX94xUZg5xEwObE48Yjr5vDa7GCaeacLKw5KQo0ebI1nwaxOVkDPlS8mcwiHC8ufCx1NcwQg0O_CeJ5pOHnIZkD6zj6WU8Mvbfc1-3_582t9XD493v_Y_HipoB50r3TcKtRudHpxqlQJld00HnZNNi7ty7E4otOCsGiT2iKoHkNp2YtD9aGV7zb695toYUorojKX8skIua3kjhVm9mqN582pWr0ZoU7wWWv1HL5EmiJd3ue-vHJavnQmjSZZwtjhSLNLMGOidhGcNdZ4f |
| CitedBy_id | crossref_primary_10_3390_su14010397 crossref_primary_10_3178_hrl_16_18 crossref_primary_10_1016_j_geoderma_2020_114431 crossref_primary_10_3390_w12020506 crossref_primary_10_3390_geosciences11020069 crossref_primary_10_3390_rs14153592 crossref_primary_10_1016_j_pce_2020_102930 crossref_primary_10_3390_geosciences15010033 crossref_primary_10_1016_j_jappgeo_2019_05_008 crossref_primary_10_3390_rs16183498 crossref_primary_10_3390_app11073143 crossref_primary_10_1016_j_jsg_2019_103933 crossref_primary_10_1007_s10064_023_03206_3 crossref_primary_10_1088_1755_1315_660_1_012067 crossref_primary_10_1016_j_jappgeo_2021_104463 crossref_primary_10_2136_vzj2018_07_0138 crossref_primary_10_1016_j_geoderma_2019_113953 crossref_primary_10_1007_s11356_019_04962_0 crossref_primary_10_1007_s12517_020_05903_9 crossref_primary_10_1080_20909977_2020_1868659 crossref_primary_10_1016_j_jhydrol_2024_132313 crossref_primary_10_1029_2023WR036319 crossref_primary_10_1016_j_jhydrol_2024_130777 crossref_primary_10_1061_JSWBAY_0001003 crossref_primary_10_1007_s13201_020_01347_4 crossref_primary_10_1016_j_earscirev_2024_104719 crossref_primary_10_1093_gji_ggaa513 crossref_primary_10_1144_SP482_11 crossref_primary_10_3390_wevj11010019 crossref_primary_10_1007_s13538_021_01043_x crossref_primary_10_1002_hyp_13461 crossref_primary_10_1007_s10712_022_09731_2 crossref_primary_10_1029_2021WR031073 crossref_primary_10_1016_j_jappgeo_2021_104411 crossref_primary_10_1002_hyp_13361 crossref_primary_10_3390_hydrology6020036 |
| Cites_doi | 10.1016/S0341-8162(03)00038-9 10.1111/j.1745-6584.1989.tb01973.x 10.1029/2008GL034690 10.1111/j.1745-6584.2008.00432.x 10.1016/j.crte.2009.07.005 10.1016/S0926-9851(02)00124-6 10.1119/1.1378013 10.1016/S0022-1694(02)00156-7 10.2136/vzj2003.4160 10.2136/vzj2009.0073 10.1190/1.1442303 10.13031/2013.15691 10.1002/hyp.6963 10.1155/2013/608037 10.1016/S0933-3630(89)80002-9 10.1029/2007WR006755 10.4137/ASWR.S12306 10.1002/hyp.6608 10.2136/vzj2008.0052 10.1016/j.jhydrol.2004.04.005 10.1071/EG03182 10.1016/j.jappgeo.2009.08.004 10.1016/j.wasman.2009.10.002 10.1029/2011JC007509 10.1016/j.still.2004.10.004 10.1016/j.rama.2016.06.007 10.2136/vzj2004.1060 10.1002/hyp.7275 10.4000/archeosciences.1692 10.1190/1.2210055 10.1002/2014RG000465 10.1093/petroj/40.12.1771 10.1190/1.2732994 10.2136/sssaj2014.02.0062 10.1111/j.1365-2478.2004.00423.x 10.1016/j.still.2012.05.016 10.1016/j.jappgeo.2013.02.017 10.1016/j.jappgeo.2009.03.008 10.1016/S0022-1694(02)00146-4 10.1046/j.1365-246x.1999.00906.x 10.1007/1-4020-3102-5_5 10.1190/1.1444545 10.2136/sssaj2007.0278 10.1111/j.1936-704X.2013.03163.x 10.1016/j.jappgeo.2012.02.009 10.1002/hyp.7983 10.2136/sssaj2008.0361 10.1190/geo2011-0313.1 10.1016/j.jhydrol.2008.08.027 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jappgeo.2017.08.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1859 |
| EndPage | 49 |
| ExternalDocumentID | 10_1016_j_jappgeo_2017_08_002 S0926985117307310 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-a398t-8725e8fdf89f5355a5c426a6f123e4e4ec405ecafc591e7ee57aa18c60987dc13 |
| IEDL.DBID | .~1 |
| ISSN | 0926-9851 |
| IngestDate | Thu Apr 24 22:56:50 EDT 2025 Wed Oct 01 03:54:50 EDT 2025 Fri Feb 23 02:26:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Rainfall simulation Artifacts Electrical resistivity tomography Infiltration Vadose zone |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a398t-8725e8fdf89f5355a5c426a6f123e4e4ec405ecafc591e7ee57aa18c60987dc13 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jappgeo_2017_08_002 crossref_primary_10_1016_j_jappgeo_2017_08_002 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2017_08_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2017 2017-10-00 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of applied geophysics |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Oldenburg, Li (bb0220) 1999; 64 French, Binley (bb0110) 2004; 297 Jayawickreme, Van Dam, Hyndman (bb0150) 2008; 35 Mojica, Díaz, Ho, Ogden, Pinzón, Fábrega, Vega, Hendrickx (bb0190) 2013; 6 Furman, Ferré, Warrick (bb0130) 2003; 2 Loke, Chambers, Rucker, Kuras, Wilkinson (bb0180) 2013; 93 Paige, Stone, Smith, Kennedy (bb0225) 2003; 20 Pellicer, Zarroca, Gibson (bb0235) 2012; 82 Carey, Paige (bb0045) 2016; 69 Binley, Cassiani, Middleton, Winship (bb0035) 2002; 267 Nyquist, Freyer, Toran (bb0205) 2008; 46 Dimova, Swarzenski, Dulaiova, Glenn (bb0095) 2012; 117 Nimmo, Perkins, Schmidt, Miller, Stock, Singha (bb0195) 2009; 8 Koch, Wenninger, Uhlenbrook, Bonell (bb0160) 2009; 23 Robert, Caterina, Deceuster, Kaufmann, Nguyen (bb0245) 2012; 77 Loke, Acworth, Dahlin (bb0175) 2003; 34 Bowyer-Bower, Burt (bb0040) 1989; 2 Heinse, Link (bb0135) 2013; 152 Parsekian, Singha, Minsley, Holbrook, Slater (bb0230) 2015; 53 Travelletti, Saihac, Malet, Grandjean, Ponton (bb0285) 2012; 26 Robinson, Binley, Cook, Day-Lewis, Ferré, Grauch, Knight, Knoll, Lakshmi, Miller, Nyquist, Pellerin, Singha, Slater (bb0250) 2008; 22 Lovell, Jackson, Harvey, Williams, Flint, Williamson, Gunn (bb0185) 1998 Oberdörster, Vanderborght, Kemna, Vereecken (bb0210) 2010; 9 Binley, Kemna (bb0030) 2005 Archie (bb0015) 1942; 146 Clément, Descloitres, Günther, Oxarango, Morra, Laurent, Gourc (bb0065) 2010; 30 Okpoli (bb0215) 2013 Advanced Geosciences (bb0005) 2009 Schwartz, Schreiber, Yan (bb0260) 2008; 362 Descloitres, Laurent, Sekhar, Legchenko, Braun, Mohan Kumar, Subramanian (bb0085) 2008; 22 Ward (bb0295) 1990 de Franco, Biella, Tosi, Teatini, Lozej, Chiozzotto, Giada, Rizzetto, Claude, Mayer, Bassan, Gasparetto-Stori (bb0105) 2009; 69 Koestel, Kemna, Javaux, Binley, Vereecken (bb0165) 2008; 44 Herman (bb0140) 2001; 69 Iserloh, Fister, Seeger, Willger, Riles (bb0145) 2012; 124 Kelleners, Paige, Gray (bb0155) 2009; 73 Snieder, Trampert (bb0275) 1999 Rings, Hauck (bb0240) 2009; 68 Clément, Descoîtres, Gunther, Oxarango (bb0060) 2009; 33 Loke (bb0170) 2001 ASTM G57-06 (bb0020) 2006 French, Hardbattle, Binley, Winship, Jakobsen (bb0115) 2002; 267 Al Hagrey, Schubert-Klempnauer, Wachsmuth, Michaelsen, Meissner (bb0010) 1999; 138 Ferré, Hinnell, Blainey (bb0100) 2006; 25 Weisberg (bb0300) 2005 Vereecken, Hubbard, Binley, Ferré (bb0290) 2004; 3 Dahlin, Zhou (bb0075) 2004; 52 Samouëlian, Cousin, Tabbagh, Bruand, Richard (bb0255) 2005; 83 Slater, Binley, Versteeg, Cassiani, Birken, Sandbery (bb0270) 2002; 49 Frost, Frost, Chamberlain, Edwards (bb0125) 1999; 40 Frohlich, Parke (bb0120) 1989; 27 Nyquist, Peake, Roth (bb0200) 2007; 72 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (bb0280) 2013 Dietrich, Weinzettel, Varni (bb0090) 2014; 78 Carrière, Chalikakis, Danquigny, Clément, Emblanch (bb0050) 2015 Descloitres, Ribolzi, Le Troguer (bb0080) 2003; 53 Constable, Parker, Constable (bb0070) 1987; 52 Clément, Descloitres, Günther, Ribolzi, Legchenko (bb0055) 2009; 341 Batlle-Aguilar, Schneider, Pessel, Tucholka, Coquet, Vachier (bb0025) 2009; 73 Seidel, Lange (bb0265) 2007 Loke (10.1016/j.jappgeo.2017.08.002_bb0180) 2013; 93 Lovell (10.1016/j.jappgeo.2017.08.002_bb0185) 1998 Robinson (10.1016/j.jappgeo.2017.08.002_bb0250) 2008; 22 Herman (10.1016/j.jappgeo.2017.08.002_bb0140) 2001; 69 Iserloh (10.1016/j.jappgeo.2017.08.002_bb0145) 2012; 124 Heinse (10.1016/j.jappgeo.2017.08.002_bb0135) 2013; 152 Snieder (10.1016/j.jappgeo.2017.08.002_bb0275) 1999 Oldenburg (10.1016/j.jappgeo.2017.08.002_bb0220) 1999; 64 Slater (10.1016/j.jappgeo.2017.08.002_bb0270) 2002; 49 Batlle-Aguilar (10.1016/j.jappgeo.2017.08.002_bb0025) 2009; 73 ASTM G57-06 (10.1016/j.jappgeo.2017.08.002_bb0020) 2006 Vereecken (10.1016/j.jappgeo.2017.08.002_bb0290) 2004; 3 Rings (10.1016/j.jappgeo.2017.08.002_bb0240) 2009; 68 Dietrich (10.1016/j.jappgeo.2017.08.002_bb0090) 2014; 78 Okpoli (10.1016/j.jappgeo.2017.08.002_bb0215) 2013 Pellicer (10.1016/j.jappgeo.2017.08.002_bb0235) 2012; 82 Descloitres (10.1016/j.jappgeo.2017.08.002_bb0080) 2003; 53 Clément (10.1016/j.jappgeo.2017.08.002_bb0065) 2010; 30 Paige (10.1016/j.jappgeo.2017.08.002_bb0225) 2003; 20 Bowyer-Bower (10.1016/j.jappgeo.2017.08.002_bb0040) 1989; 2 French (10.1016/j.jappgeo.2017.08.002_bb0115) 2002; 267 Al Hagrey (10.1016/j.jappgeo.2017.08.002_bb0010) 1999; 138 Frost (10.1016/j.jappgeo.2017.08.002_bb0125) 1999; 40 Travelletti (10.1016/j.jappgeo.2017.08.002_bb0285) 2012; 26 Clément (10.1016/j.jappgeo.2017.08.002_bb0055) 2009; 341 Dimova (10.1016/j.jappgeo.2017.08.002_bb0095) 2012; 117 Oberdörster (10.1016/j.jappgeo.2017.08.002_bb0210) 2010; 9 Advanced Geosciences (10.1016/j.jappgeo.2017.08.002_bb0005) 2009 Jayawickreme (10.1016/j.jappgeo.2017.08.002_bb0150) 2008; 35 Mojica (10.1016/j.jappgeo.2017.08.002_bb0190) 2013; 6 Binley (10.1016/j.jappgeo.2017.08.002_bb0030) 2005 Descloitres (10.1016/j.jappgeo.2017.08.002_bb0085) 2008; 22 Carey (10.1016/j.jappgeo.2017.08.002_bb0045) 2016; 69 Archie (10.1016/j.jappgeo.2017.08.002_bb0015) 1942; 146 Frohlich (10.1016/j.jappgeo.2017.08.002_bb0120) 1989; 27 Loke (10.1016/j.jappgeo.2017.08.002_bb0170) 2001 Clément (10.1016/j.jappgeo.2017.08.002_bb0060) 2009; 33 Constable (10.1016/j.jappgeo.2017.08.002_bb0070) 1987; 52 Koch (10.1016/j.jappgeo.2017.08.002_bb0160) 2009; 23 Parsekian (10.1016/j.jappgeo.2017.08.002_bb0230) 2015; 53 Weisberg (10.1016/j.jappgeo.2017.08.002_bb0300) 2005 Nimmo (10.1016/j.jappgeo.2017.08.002_bb0195) 2009; 8 Schwartz (10.1016/j.jappgeo.2017.08.002_bb0260) 2008; 362 Robert (10.1016/j.jappgeo.2017.08.002_bb0245) 2012; 77 Binley (10.1016/j.jappgeo.2017.08.002_bb0035) 2002; 267 Samouëlian (10.1016/j.jappgeo.2017.08.002_bb0255) 2005; 83 Dahlin (10.1016/j.jappgeo.2017.08.002_bb0075) 2004; 52 de Franco (10.1016/j.jappgeo.2017.08.002_bb0105) 2009; 69 Koestel (10.1016/j.jappgeo.2017.08.002_bb0165) 2008; 44 Nyquist (10.1016/j.jappgeo.2017.08.002_bb0200) 2007; 72 Furman (10.1016/j.jappgeo.2017.08.002_bb0130) 2003; 2 Ward (10.1016/j.jappgeo.2017.08.002_bb0295) 1990 Carrière (10.1016/j.jappgeo.2017.08.002_bb0050) 2015 Ferré (10.1016/j.jappgeo.2017.08.002_bb0100) 2006; 25 French (10.1016/j.jappgeo.2017.08.002_bb0110) 2004; 297 Nyquist (10.1016/j.jappgeo.2017.08.002_bb0205) 2008; 46 Seidel (10.1016/j.jappgeo.2017.08.002_bb0265) 2007 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (10.1016/j.jappgeo.2017.08.002_bb0280) Kelleners (10.1016/j.jappgeo.2017.08.002_bb0155) 2009; 73 Loke (10.1016/j.jappgeo.2017.08.002_bb0175) 2003; 34 |
| References_xml | – start-page: 10 year: 1998 ident: bb0185 article-title: Electrical resistivity measurements on unconsolidated core publication-title: Society of Core Analysts (SCA 98) – volume: 46 start-page: 561 year: 2008 end-page: 569 ident: bb0205 article-title: Stream bottom resistivity tomography to mp ground water discharge publication-title: Ground Water – start-page: 62 year: 2001 ident: bb0170 article-title: Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys – volume: 72 start-page: 139 year: 2007 end-page: 144 ident: bb0200 article-title: Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain publication-title: Geophysics – volume: 22 start-page: 384 year: 2008 end-page: 394 ident: bb0085 article-title: Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding publication-title: Hydrol. Process. – volume: 267 start-page: 147 year: 2002 end-page: 159 ident: bb0035 article-title: Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging publication-title: J. Hydrol. – start-page: 1 year: 2013 end-page: 12 ident: bb0215 article-title: Sensitivity and resolution capacity of electrode configurations publication-title: Int. J. Geophys. – volume: 23 start-page: 1501 year: 2009 end-page: 1513 ident: bb0160 article-title: Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany publication-title: Hydrol. Process. – volume: 341 start-page: 886 year: 2009 end-page: 898 ident: bb0055 article-title: Influence of shallow infiltration on time-lapse ERT: experience of advanced interpretation publication-title: C.R. Geosci. – volume: 53 start-page: 229 year: 2003 end-page: 253 ident: bb0080 article-title: Study of infiltration in a Sahelian gully erosion area using time-lapse resistivity mapping publication-title: Catena – volume: 117 year: 2012 ident: bb0095 article-title: Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems publication-title: J. Geophys. Res. – volume: 34 start-page: 182 year: 2003 end-page: 187 ident: bb0175 article-title: A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys publication-title: Explor. Geophys. – volume: 22 start-page: 3604 year: 2008 end-page: 3635 ident: bb0250 article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods publication-title: Hydrol. Process. – volume: 8 year: 2009 ident: bb0195 article-title: Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. Field experiments evaluating plant-relevant soil water behavior publication-title: Vadose Zone J. – volume: 69 start-page: 481 year: 2016 end-page: 490 ident: bb0045 article-title: Ecological site-scale hydrologic response in a semi-arid rangeland watershed publication-title: Rangel. Ecol. Manag. – volume: 2 start-page: 1 year: 1989 end-page: 16 ident: bb0040 article-title: Rainfall simulators for investigating soil response to rainfall publication-title: Soil Technol. – volume: 73 start-page: 1626 year: 2009 end-page: 1637 ident: bb0155 article-title: Measurement of the dielectric properties of Wyoming soils using electromagnetic sensors publication-title: Soil Sci. Soc. Am. J. – volume: 52 start-page: 289 year: 1987 end-page: 300 ident: bb0070 article-title: Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics – volume: 152 start-page: 22 year: 2013 end-page: 31 ident: bb0135 article-title: Vadose zone processes: a compendium for teaching interdisciplinary modeling publication-title: J. Contemp. Water Res. and Educ. – volume: 53 start-page: 1 year: 2015 end-page: 26 ident: bb0230 article-title: Multiscale geophysical imaging of the critical zone publication-title: Rev. Geophys. – volume: 40 start-page: 1771 year: 1999 end-page: 1802 ident: bb0125 article-title: Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced rapakivi-type anorogenic granite publication-title: J. Petrol. – year: 2005 ident: bb0030 article-title: DC resistivity and induced polarization methods. p. 192-156 publication-title: Hydrogeophysics. Water Sci. Technol. Libr., vol. 50 – year: 2013 ident: bb0280 article-title: Web soil survey – year: 2009 ident: bb0005 article-title: EarthImager 2D, Resistivity and IP Inversion Software, Version 2.4.0. Instruction Manual – volume: 20 start-page: 25 year: 2003 end-page: 31 ident: bb0225 article-title: The walnut gulch rainfall simulator: a computer-controlled variable intensity rainfall simulator publication-title: Appl. Eng. Agric. – volume: 52 start-page: 379 year: 2004 end-page: 398 ident: bb0075 article-title: A numerical comparison of 2D resistivity imaging with 10 electrode arrays publication-title: Geophys. Prospect. – volume: 35 year: 2008 ident: bb0150 article-title: Subsurface imaging of vegetation, climate, and root zone moisture interactions publication-title: Geophys. Res. Lett. – year: 2006 ident: bb0020 article-title: Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-electrode Method – volume: 30 start-page: 452 year: 2010 end-page: 464 ident: bb0065 article-title: Improvement of electrical resistivity tomography for leachate injection monitoring publication-title: Waste Manag. – volume: 297 start-page: 174 year: 2004 end-page: 186 ident: bb0110 article-title: Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity publication-title: J. Hydrol. – volume: 27 start-page: 524 year: 1989 end-page: 530 ident: bb0120 article-title: The electrical resistivity of the vadose zone – field survey publication-title: Ground Water – volume: 68 start-page: 404 year: 2009 end-page: 416 ident: bb0240 article-title: Reliability of resistivity quantification for shallow subsurface water processes publication-title: J. Appl. Geophys. – start-page: 147 year: 1990 end-page: 189 ident: bb0295 article-title: Resistivity and induced polarization methods publication-title: Geotechnical and Environmental Geophysics – volume: 25 start-page: 720 year: 2006 end-page: 723 ident: bb0100 article-title: Inferring hydraulic properties using surface-based electrical resistivity during infiltration publication-title: Lead. Edge – volume: 64 start-page: 403 year: 1999 end-page: 416 ident: bb0220 article-title: Estimating depth of investigation in dc resistivity and IP surveys publication-title: Geophysics – volume: 146 start-page: 54 year: 1942 end-page: 62 ident: bb0015 article-title: The electrical resistivity log as an aid in determining some reservoir characteristics publication-title: Trans. Am. Inst. Min. Metall. Pet. Eng. – volume: 9 start-page: 350 year: 2010 end-page: 361 ident: bb0210 article-title: Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography publication-title: Vadose Zone J. – start-page: 115 year: 2005 end-page: 147 ident: bb0300 article-title: Polynomials and factors publication-title: Applied Linear Regression – volume: 78 start-page: 1153 year: 2014 end-page: 1167 ident: bb0090 article-title: Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity tomography publication-title: Soil Sci. Soc. Am. J. – volume: 267 start-page: 273 year: 2002 end-page: 284 ident: bb0115 article-title: Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography publication-title: J. Hydrol. – volume: 33 start-page: 275 year: 2009 end-page: 278 ident: bb0060 article-title: Comparison of three arrays in time-lapse ERT: simulation of a leachate injection experiment publication-title: ArchéoSciences – start-page: 119 year: 1999 end-page: 191 ident: bb0275 article-title: Inverse problems in geophysics publication-title: Wavefield Inversion – volume: 83 start-page: 173 year: 2005 end-page: 193 ident: bb0255 article-title: Electrical resistivity survey in soil science: a review publication-title: Soil Tillage Res. – volume: 6 start-page: 131 year: 2013 end-page: 139 ident: bb0190 article-title: Study of seasonal rainfall infiltration via time-lapse surface electrical resistivity tomography: case study of Gamboa Area, Panama Canal Watershed publication-title: Air, Soil and Water Res. – volume: 82 start-page: 46 year: 2012 end-page: 58 ident: bb0235 article-title: Time-lapse resistivity analysis of quaternary sediments in the midlands of Ireland publication-title: J. Appl. Geophys. – volume: 73 start-page: 510 year: 2009 end-page: 520 ident: bb0025 article-title: Axisymetrical infiltration in soil imaged by noninvasive electrical resistivimetry publication-title: Soil Sci. Soc. Am. J. – volume: 77 start-page: B55 year: 2012 end-page: B67 ident: bb0245 article-title: A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones publication-title: Geophysics – volume: 362 start-page: 234 year: 2008 end-page: 246 ident: bb0260 article-title: Quantifying field-scale soil moisture using electrical resistivity imaging publication-title: J. Hydrol. – start-page: 45 year: 2015 end-page: 55 ident: bb0050 article-title: Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event publication-title: Hydrogeological and Environmental Investigations in Karst Systems – volume: 124 start-page: 131 year: 2012 end-page: 137 ident: bb0145 article-title: A small portable rainfall simulator for reproducible experiments on soil erosion publication-title: Soil Tillage Res. – volume: 69 start-page: 117 year: 2009 end-page: 130 ident: bb0105 article-title: Monitoring the saltwater intrusion by time lapse electrical resistivity tomography publication-title: J. Appl. Geophys. – volume: 69 start-page: 943 year: 2001 end-page: 952 ident: bb0140 article-title: An introduction to electrical resistivity in geophysics publication-title: Am. J. Phys. – volume: 44 year: 2008 ident: bb0165 article-title: Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR publication-title: Water Resour. Res. – volume: 138 start-page: 643 year: 1999 end-page: 654 ident: bb0010 article-title: Preferential flow: first results of a full-scale flow model publication-title: Geophys. J. Int. – volume: 93 start-page: 135 year: 2013 end-page: 156 ident: bb0180 article-title: Recent developments in the direct-current geoelectrical imaging method publication-title: J. Appl. Geophys. – volume: 49 start-page: 211 year: 2002 end-page: 229 ident: bb0270 article-title: A 3D ERT study of solute transport in a large experimental tank publication-title: J. Appl. Geophys. – volume: 26 start-page: 2106 year: 2012 end-page: 2119 ident: bb0285 article-title: Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography publication-title: Hydrol. Process. – start-page: 205 year: 2007 end-page: 237 ident: bb0265 article-title: Direct current resistivity methods publication-title: Environmental Geology: Handbook of Field Methods and Case Studies – volume: 2 start-page: 416 year: 2003 end-page: 423 ident: bb0130 article-title: A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling publication-title: Vadose Zone J. – volume: 3 start-page: 1060 year: 2004 end-page: 1062 ident: bb0290 article-title: Hydrogeophysics: an introduction from the guest editors publication-title: Vadose Zone J. – volume: 53 start-page: 229 year: 2003 ident: 10.1016/j.jappgeo.2017.08.002_bb0080 article-title: Study of infiltration in a Sahelian gully erosion area using time-lapse resistivity mapping publication-title: Catena doi: 10.1016/S0341-8162(03)00038-9 – volume: 27 start-page: 524 year: 1989 ident: 10.1016/j.jappgeo.2017.08.002_bb0120 article-title: The electrical resistivity of the vadose zone – field survey publication-title: Ground Water doi: 10.1111/j.1745-6584.1989.tb01973.x – volume: 146 start-page: 54 year: 1942 ident: 10.1016/j.jappgeo.2017.08.002_bb0015 article-title: The electrical resistivity log as an aid in determining some reservoir characteristics publication-title: Trans. Am. Inst. Min. Metall. Pet. Eng. – start-page: 10 year: 1998 ident: 10.1016/j.jappgeo.2017.08.002_bb0185 article-title: Electrical resistivity measurements on unconsolidated core – volume: 35 year: 2008 ident: 10.1016/j.jappgeo.2017.08.002_bb0150 article-title: Subsurface imaging of vegetation, climate, and root zone moisture interactions publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL034690 – volume: 46 start-page: 561 year: 2008 ident: 10.1016/j.jappgeo.2017.08.002_bb0205 article-title: Stream bottom resistivity tomography to mp ground water discharge publication-title: Ground Water doi: 10.1111/j.1745-6584.2008.00432.x – volume: 341 start-page: 886 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0055 article-title: Influence of shallow infiltration on time-lapse ERT: experience of advanced interpretation publication-title: C.R. Geosci. doi: 10.1016/j.crte.2009.07.005 – volume: 49 start-page: 211 year: 2002 ident: 10.1016/j.jappgeo.2017.08.002_bb0270 article-title: A 3D ERT study of solute transport in a large experimental tank publication-title: J. Appl. Geophys. doi: 10.1016/S0926-9851(02)00124-6 – volume: 69 start-page: 943 year: 2001 ident: 10.1016/j.jappgeo.2017.08.002_bb0140 article-title: An introduction to electrical resistivity in geophysics publication-title: Am. J. Phys. doi: 10.1119/1.1378013 – volume: 267 start-page: 273 year: 2002 ident: 10.1016/j.jappgeo.2017.08.002_bb0115 article-title: Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00156-7 – volume: 2 start-page: 416 year: 2003 ident: 10.1016/j.jappgeo.2017.08.002_bb0130 article-title: A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling publication-title: Vadose Zone J. doi: 10.2136/vzj2003.4160 – volume: 9 start-page: 350 year: 2010 ident: 10.1016/j.jappgeo.2017.08.002_bb0210 article-title: Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography publication-title: Vadose Zone J. doi: 10.2136/vzj2009.0073 – volume: 52 start-page: 289 year: 1987 ident: 10.1016/j.jappgeo.2017.08.002_bb0070 article-title: Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics doi: 10.1190/1.1442303 – year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0005 – volume: 20 start-page: 25 year: 2003 ident: 10.1016/j.jappgeo.2017.08.002_bb0225 article-title: The walnut gulch rainfall simulator: a computer-controlled variable intensity rainfall simulator publication-title: Appl. Eng. Agric. doi: 10.13031/2013.15691 – volume: 22 start-page: 3604 year: 2008 ident: 10.1016/j.jappgeo.2017.08.002_bb0250 article-title: Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods publication-title: Hydrol. Process. doi: 10.1002/hyp.6963 – start-page: 1 year: 2013 ident: 10.1016/j.jappgeo.2017.08.002_bb0215 article-title: Sensitivity and resolution capacity of electrode configurations publication-title: Int. J. Geophys. doi: 10.1155/2013/608037 – volume: 2 start-page: 1 year: 1989 ident: 10.1016/j.jappgeo.2017.08.002_bb0040 article-title: Rainfall simulators for investigating soil response to rainfall publication-title: Soil Technol. doi: 10.1016/S0933-3630(89)80002-9 – volume: 44 year: 2008 ident: 10.1016/j.jappgeo.2017.08.002_bb0165 article-title: Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR publication-title: Water Resour. Res. doi: 10.1029/2007WR006755 – volume: 6 start-page: 131 year: 2013 ident: 10.1016/j.jappgeo.2017.08.002_bb0190 article-title: Study of seasonal rainfall infiltration via time-lapse surface electrical resistivity tomography: case study of Gamboa Area, Panama Canal Watershed publication-title: Air, Soil and Water Res. doi: 10.4137/ASWR.S12306 – start-page: 62 year: 2001 ident: 10.1016/j.jappgeo.2017.08.002_bb0170 – volume: 22 start-page: 384 year: 2008 ident: 10.1016/j.jappgeo.2017.08.002_bb0085 article-title: Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding publication-title: Hydrol. Process. doi: 10.1002/hyp.6608 – volume: 8 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0195 article-title: Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. Field experiments evaluating plant-relevant soil water behavior publication-title: Vadose Zone J. doi: 10.2136/vzj2008.0052 – volume: 297 start-page: 174 year: 2004 ident: 10.1016/j.jappgeo.2017.08.002_bb0110 article-title: Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.04.005 – start-page: 205 year: 2007 ident: 10.1016/j.jappgeo.2017.08.002_bb0265 article-title: Direct current resistivity methods – volume: 34 start-page: 182 year: 2003 ident: 10.1016/j.jappgeo.2017.08.002_bb0175 article-title: A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys publication-title: Explor. Geophys. doi: 10.1071/EG03182 – volume: 69 start-page: 117 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0105 article-title: Monitoring the saltwater intrusion by time lapse electrical resistivity tomography publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2009.08.004 – volume: 30 start-page: 452 year: 2010 ident: 10.1016/j.jappgeo.2017.08.002_bb0065 article-title: Improvement of electrical resistivity tomography for leachate injection monitoring publication-title: Waste Manag. doi: 10.1016/j.wasman.2009.10.002 – volume: 117 year: 2012 ident: 10.1016/j.jappgeo.2017.08.002_bb0095 article-title: Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems publication-title: J. Geophys. Res. doi: 10.1029/2011JC007509 – volume: 83 start-page: 173 year: 2005 ident: 10.1016/j.jappgeo.2017.08.002_bb0255 article-title: Electrical resistivity survey in soil science: a review publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.10.004 – ident: 10.1016/j.jappgeo.2017.08.002_bb0280 – volume: 69 start-page: 481 year: 2016 ident: 10.1016/j.jappgeo.2017.08.002_bb0045 article-title: Ecological site-scale hydrologic response in a semi-arid rangeland watershed publication-title: Rangel. Ecol. Manag. doi: 10.1016/j.rama.2016.06.007 – volume: 3 start-page: 1060 year: 2004 ident: 10.1016/j.jappgeo.2017.08.002_bb0290 article-title: Hydrogeophysics: an introduction from the guest editors publication-title: Vadose Zone J. doi: 10.2136/vzj2004.1060 – volume: 23 start-page: 1501 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0160 article-title: Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany publication-title: Hydrol. Process. doi: 10.1002/hyp.7275 – volume: 33 start-page: 275 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0060 article-title: Comparison of three arrays in time-lapse ERT: simulation of a leachate injection experiment publication-title: ArchéoSciences doi: 10.4000/archeosciences.1692 – volume: 25 start-page: 720 year: 2006 ident: 10.1016/j.jappgeo.2017.08.002_bb0100 article-title: Inferring hydraulic properties using surface-based electrical resistivity during infiltration publication-title: Lead. Edge doi: 10.1190/1.2210055 – volume: 53 start-page: 1 year: 2015 ident: 10.1016/j.jappgeo.2017.08.002_bb0230 article-title: Multiscale geophysical imaging of the critical zone publication-title: Rev. Geophys. doi: 10.1002/2014RG000465 – year: 2006 ident: 10.1016/j.jappgeo.2017.08.002_bb0020 – volume: 40 start-page: 1771 year: 1999 ident: 10.1016/j.jappgeo.2017.08.002_bb0125 article-title: Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced rapakivi-type anorogenic granite publication-title: J. Petrol. doi: 10.1093/petroj/40.12.1771 – volume: 72 start-page: 139 year: 2007 ident: 10.1016/j.jappgeo.2017.08.002_bb0200 article-title: Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain publication-title: Geophysics doi: 10.1190/1.2732994 – volume: 78 start-page: 1153 year: 2014 ident: 10.1016/j.jappgeo.2017.08.002_bb0090 article-title: Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity tomography publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.02.0062 – volume: 52 start-page: 379 year: 2004 ident: 10.1016/j.jappgeo.2017.08.002_bb0075 article-title: A numerical comparison of 2D resistivity imaging with 10 electrode arrays publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2004.00423.x – volume: 124 start-page: 131 year: 2012 ident: 10.1016/j.jappgeo.2017.08.002_bb0145 article-title: A small portable rainfall simulator for reproducible experiments on soil erosion publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.05.016 – volume: 93 start-page: 135 year: 2013 ident: 10.1016/j.jappgeo.2017.08.002_bb0180 article-title: Recent developments in the direct-current geoelectrical imaging method publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.02.017 – volume: 68 start-page: 404 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0240 article-title: Reliability of resistivity quantification for shallow subsurface water processes publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2009.03.008 – volume: 267 start-page: 147 year: 2002 ident: 10.1016/j.jappgeo.2017.08.002_bb0035 article-title: Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00146-4 – start-page: 147 year: 1990 ident: 10.1016/j.jappgeo.2017.08.002_bb0295 article-title: Resistivity and induced polarization methods – start-page: 119 year: 1999 ident: 10.1016/j.jappgeo.2017.08.002_bb0275 article-title: Inverse problems in geophysics – volume: 138 start-page: 643 year: 1999 ident: 10.1016/j.jappgeo.2017.08.002_bb0010 article-title: Preferential flow: first results of a full-scale flow model publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.1999.00906.x – start-page: 45 year: 2015 ident: 10.1016/j.jappgeo.2017.08.002_bb0050 article-title: Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event – year: 2005 ident: 10.1016/j.jappgeo.2017.08.002_bb0030 article-title: DC resistivity and induced polarization methods. p. 192-156 doi: 10.1007/1-4020-3102-5_5 – volume: 64 start-page: 403 year: 1999 ident: 10.1016/j.jappgeo.2017.08.002_bb0220 article-title: Estimating depth of investigation in dc resistivity and IP surveys publication-title: Geophysics doi: 10.1190/1.1444545 – volume: 73 start-page: 510 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0025 article-title: Axisymetrical infiltration in soil imaged by noninvasive electrical resistivimetry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0278 – volume: 152 start-page: 22 year: 2013 ident: 10.1016/j.jappgeo.2017.08.002_bb0135 article-title: Vadose zone processes: a compendium for teaching interdisciplinary modeling publication-title: J. Contemp. Water Res. and Educ. doi: 10.1111/j.1936-704X.2013.03163.x – volume: 82 start-page: 46 year: 2012 ident: 10.1016/j.jappgeo.2017.08.002_bb0235 article-title: Time-lapse resistivity analysis of quaternary sediments in the midlands of Ireland publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2012.02.009 – volume: 26 start-page: 2106 year: 2012 ident: 10.1016/j.jappgeo.2017.08.002_bb0285 article-title: Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography publication-title: Hydrol. Process. doi: 10.1002/hyp.7983 – volume: 73 start-page: 1626 year: 2009 ident: 10.1016/j.jappgeo.2017.08.002_bb0155 article-title: Measurement of the dielectric properties of Wyoming soils using electromagnetic sensors publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0361 – volume: 77 start-page: B55 year: 2012 ident: 10.1016/j.jappgeo.2017.08.002_bb0245 article-title: A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones publication-title: Geophysics doi: 10.1190/geo2011-0313.1 – start-page: 115 year: 2005 ident: 10.1016/j.jappgeo.2017.08.002_bb0300 article-title: Polynomials and factors – volume: 362 start-page: 234 year: 2008 ident: 10.1016/j.jappgeo.2017.08.002_bb0260 article-title: Quantifying field-scale soil moisture using electrical resistivity imaging publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.08.027 |
| SSID | ssj0001304 |
| Score | 2.3417327 |
| Snippet | Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 39 |
| SubjectTerms | Electrical resistivity tomography Infiltration Rainfall simulation Vadose zone |
| Title | Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations |
| URI | https://dx.doi.org/10.1016/j.jappgeo.2017.08.002 |
| Volume | 145 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001304 issn: 0926-9851 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001304 issn: 0926-9851 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001304 issn: 0926-9851 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001304 issn: 0926-9851 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001304 issn: 0926-9851 databaseCode: AKRWK dateStart: 19930414 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zM-mz145Q0LHJvGpmrsRZv0RpZl19D0QQpe_QP-aWdgaWtiNDFcYDNLYGeYmSXzzUfInZRMgeVkBgQ7Zvg85Ab3WGr4IlVekDqOVLhRfB6z0cR_nAbTDhm0WBgsq9S-v_HptbfWI5ZeTavIc-vFjl0WY8IQop3WMCvfD5HFwPzYlnmAj65bSIGwgdJbFI81M2e8KN5qDKATmk1V5c_xaSfmDI_IoU4Wab95nmPSkcsTcrDTQvCUfA5Xayx8pTWlDQzRakXzTfMMWZ_Xv8QovhbiGEoKW2ysIwRhRJdQ5Jc35rwoJW1YcVBxKITfP3JLwD0XurU1bXCNFJklFJ_PaZkvNANYeUYmw_vXwcjQBAugjziqwBO6gYxUpqJYBZB48EBAwOZMQTiTPhwC0jkpuBJB7MhQyiDk3IkEs-MozITjnZPucrWUF4QKSOMiW7oZ81KfYY98uAOiVJlII5sHl8RvlzURuvs4kmDMk7bMbJZobSSojQTJMW33kpibaUXTfuOvCVGrs-SbHSUQIn6fevX_qddkH6-aIr8b0q3W7_IWkpUq7dXW2CN7_Yen0fgL0tHvHg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mOAAHxFOMZw5cuz7WpO0RTUwDtl3YpN2qNE3Qpj2qdVz5A_xp7DbdhoRAQr1UqRO1sWU7lT9_hNwrxTVYTmpBsOOWLwJhiSZPLF8muskS11UaD4q9Pu8M_ecRG9VIq8LCYFml8f2lTy-8tRmxzW7a2XhsvzqRxyNMGAK0U4RZ7frMC_AE1vjY1HmAky56SIG0heIbGI89aUxElr0VIEA3aJRllT8HqK2g0z4ihyZbpA_lCx2TmpqfkIOtHoKn5LO9WGLlKy04bWCIrhZ0vO6eoYr74p8Yxe9CIENO4YyNhYQgjPASigTz1lRkuaIlLQ5qDoXQASC5BKw5M72taQlspEgtocV0SvPxzFCA5Wdk2H4ctDqWYVgAhUThClyhx1SoUx1GmkHmIZiEiC24hnimfLgk5HNKCi1Z5KpAKRYI4YaSO1EYpNJtnpOd-WKuLgiVkMeFjvJS3kx8jk3yYQWEqXKZhI5gdeJX2xpL034cWTCmcVVnNomNNmLURozsmI5XJ431tKzsv_HXhLDSWfzNkGKIEb9Pvfz_1Duy1xn0unH3qf9yRfbxSVnxd012Vst3dQOZyyq5LSzzC19R8LM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forward+modeling+to+investigate+inversion+artifacts+resulting+from+time-lapse+electrical+resistivity+tomography+during+rainfall+simulations&rft.jtitle=Journal+of+applied+geophysics&rft.au=Carey%2C+Austin+M.&rft.au=Paige%2C+Ginger+B.&rft.au=Carr%2C+Bradley+J.&rft.au=Dogan%2C+Mine&rft.date=2017-10-01&rft.issn=0926-9851&rft.volume=145&rft.spage=39&rft.epage=49&rft_id=info:doi/10.1016%2Fj.jappgeo.2017.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2017_08_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |