An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction

This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data class...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 2; pp. 2541 - 2561
Main Authors Suparatulatorn, Raweerote, Liawrungrueang, Wongthawat, Mouktonglang, Thanasak, Cholamjiak, Watcharaporn
Format Journal Article
LanguageEnglish
Published AIMS Press 01.02.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025118

Cover

Abstract This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine. From the experimental results, our proposed algorithm consistently outperforms existing algorithms across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score across most of the training boxes compared to other methods. The area under the curve (AUC) values from the receiver operating characteristic (ROC) curves further validated the effectiveness of our approach, indicating superior generalization and classification performance. These results highlight the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing osteoporosis risk-prediction models through improved convergence and classification capabilities.
AbstractList This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine. From the experimental results, our proposed algorithm consistently outperforms existing algorithms across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score across most of the training boxes compared to other methods. The area under the curve (AUC) values from the receiver operating characteristic (ROC) curves further validated the effectiveness of our approach, indicating superior generalization and classification performance. These results highlight the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing osteoporosis risk-prediction models through improved convergence and classification capabilities.
Author Liawrungrueang, Wongthawat
Mouktonglang, Thanasak
Cholamjiak, Watcharaporn
Suparatulatorn, Raweerote
Author_xml – sequence: 1
  givenname: Raweerote
  surname: Suparatulatorn
  fullname: Suparatulatorn, Raweerote
– sequence: 2
  givenname: Wongthawat
  surname: Liawrungrueang
  fullname: Liawrungrueang, Wongthawat
– sequence: 3
  givenname: Thanasak
  surname: Mouktonglang
  fullname: Mouktonglang, Thanasak
– sequence: 4
  givenname: Watcharaporn
  surname: Cholamjiak
  fullname: Cholamjiak, Watcharaporn
BookMark eNp9kclOwzAQhi0EEltvPIAfgIC3NPYRVWwSEhc4RxPHbl05cbBTlitPjtNWiBMnj2f--TQz_yk67ENvELqg5IorLq47GFdXjLCSUnmATpioeDFXUh7-iY_RLKU1IYRRJlglTtD3TY_BL0N046rDNkT8DtHB6EIPHrte-03KMR5iaLzp0i7Vun6J3zaQXDFN8TlAn9y7wR0MQy4l_JFxOH-801vW1IdDGk0YQgzJpQw0rdNT7RwdWfDJzPbvGXq9u31ZPBRPz_ePi5unAriqxoKVMq_BhSFlpW3ZWqkZ16xkrdXatEoSyXgLquW2LKFpQHFiOeeUzIUlUvEz9LjjtgHW9RBdB_GrDuDqbSLEZQ1xdNqbuplTQjNbqbkSSlaqaqwRinJLBeQLZ1axY236Ab4-wPtfICX15Ec9-VHv_cj6y51e5-1TNPZ_-Q9aqZIB
Cites_doi 10.1137/S0363012998338806
10.2307/2032162
10.1016/0041-5553(64)90137-5
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.media.2020.101692
10.1186/s13660-024-02965-y
10.1007/978-1-4419-9467-7
10.1137/0716071
10.1109/IC3INA48034.2019.8949568
10.1002/cmm4.1088
10.1007/978-1-4615-5197-3_3
10.1007/s10851-014-0523-2
10.1007/s10092-018-0292-1
10.1016/j.chaos.2022.112048
10.1007/s11784-018-0526-5
10.1186/1687-1812-2013-69
10.3390/math7121175
10.1007/s10915-021-01608-7
10.1016/0022-247X(79)90234-8
ContentType Journal Article
CorporateAuthor Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
Department of Orthopaedics, School of Medicine, University of Phayao, Phayao 56000, Thailand
School of Science, University of Phayao, Phayao 56000, Thailand
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
CorporateAuthor_xml – name: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
– name: Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
– name: Department of Orthopaedics, School of Medicine, University of Phayao, Phayao 56000, Thailand
– name: School of Science, University of Phayao, Phayao 56000, Thailand
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2025118
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 2561
ExternalDocumentID oai_doaj_org_article_b6101c259969498797bfe4913f14a251
10.3934/math.2025118
10_3934_math_2025118
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a397t-25847334e057cf5df8c23c252dfcced980823da9d3f55abba930f3331064f0893
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Fri Oct 03 12:46:50 EDT 2025
Mon Sep 15 10:10:06 EDT 2025
Tue Jul 01 05:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a397t-25847334e057cf5df8c23c252dfcced980823da9d3f55abba930f3331064f0893
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2025118
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b6101c259969498797bfe4913f14a251
unpaywall_primary_10_3934_math_2025118
crossref_primary_10_3934_math_2025118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 20250201
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025118-4
key-10.3934/math.2025118-3
key-10.3934/math.2025118-2
key-10.3934/math.2025118-1
key-10.3934/math.2025118-20
key-10.3934/math.2025118-9
key-10.3934/math.2025118-8
key-10.3934/math.2025118-12
key-10.3934/math.2025118-7
key-10.3934/math.2025118-13
key-10.3934/math.2025118-6
key-10.3934/math.2025118-10
key-10.3934/math.2025118-21
key-10.3934/math.2025118-5
key-10.3934/math.2025118-11
key-10.3934/math.2025118-22
key-10.3934/math.2025118-16
key-10.3934/math.2025118-17
key-10.3934/math.2025118-14
key-10.3934/math.2025118-15
key-10.3934/math.2025118-18
key-10.3934/math.2025118-19
References_xml – ident: key-10.3934/math.2025118-17
– ident: key-10.3934/math.2025118-6
  doi: 10.1137/S0363012998338806
– ident: key-10.3934/math.2025118-2
  doi: 10.2307/2032162
– ident: key-10.3934/math.2025118-14
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.2025118-19
– ident: key-10.3934/math.2025118-20
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: key-10.3934/math.2025118-22
  doi: 10.1016/j.media.2020.101692
– ident: key-10.3934/math.2025118-15
  doi: 10.1186/s13660-024-02965-y
– ident: key-10.3934/math.2025118-16
  doi: 10.1007/978-1-4419-9467-7
– ident: key-10.3934/math.2025118-4
  doi: 10.1137/0716071
– ident: key-10.3934/math.2025118-21
  doi: 10.1109/IC3INA48034.2019.8949568
– ident: key-10.3934/math.2025118-11
  doi: 10.1002/cmm4.1088
– ident: key-10.3934/math.2025118-18
  doi: 10.1007/978-1-4615-5197-3_3
– ident: key-10.3934/math.2025118-7
  doi: 10.1007/s10851-014-0523-2
– ident: key-10.3934/math.2025118-13
  doi: 10.1007/s10092-018-0292-1
– ident: key-10.3934/math.2025118-9
  doi: 10.1016/j.chaos.2022.112048
– ident: key-10.3934/math.2025118-8
  doi: 10.1007/s11784-018-0526-5
– ident: key-10.3934/math.2025118-1
– ident: key-10.3934/math.2025118-3
  doi: 10.1186/1687-1812-2013-69
– ident: key-10.3934/math.2025118-10
  doi: 10.3390/math7121175
– ident: key-10.3934/math.2025118-12
  doi: 10.1007/s10915-021-01608-7
– ident: key-10.3934/math.2025118-5
  doi: 10.1016/0022-247X(79)90234-8
SSID ssj0002124274
Score 2.2839782
Snippet This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 2541
SubjectTerms fixed point problem
osteoporosis
process innovation
variational inclusion problem
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF-iAeIrykgdgi5rYThOPBVFVSGWiUrfIduxSKW2BNDxWfjl3SajCAgtrHrb1XWJ_5zt_R8iFNaEfKC49zZTzhAEOJx23ngptLLHmqozxgPPovjcci7tJOGmU-sKcsEoeuAKuq2F9DwxDFREpwEGWkXZWyIC7QChWHp5mfiwbzhTOwTAhC_C3qkx3LrnoAv_D2EPJqH-sQaVUf5tsFosn9fGmsqyxvgx2yHZNDGm_GtAu2bCLPdIerVVV833y2V9QlU2X4M8_zimwTfoKnm69m0dnC5MVuPdF6yIxeXUJFyf6XKh85oGrb9_h98eUdTpXKM0wzSluxdJmIBveo3j2YwncfJnPcmgQwzl474CMB7cPN0OvrqHggQGilccwDMq5sMDLjAtTFxvGAU6WOmNsKmOMtKVKptyFodJaSe47zoH09YQDXPkhaeHgjgjtKV-jHJhjMUCfMh35KtA6DoUOgyjyO-TyG9XkqZLKSMDFQPQTRD-p0e-Qa4R8_QwKXJcXwOxJbfbkL7N3yNXaYL_2dvwfvZ2QLWyuytY-Ja3VS2HPgIys9Hn53X0BUyTecg
  priority: 102
  providerName: Directory of Open Access Journals
Title An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction
URI https://doi.org/10.3934/math.2025118
https://doaj.org/article/b6101c259969498797bfe4913f14a251
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: AMVHM
  dateStart: 20220701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4t7QH2wBtRHpUPC7csSWwn9rGgXVVIXXGgaDlFtmMvFd102STswpFfzkyTVgUk4BY5fow8TvyNZ_wNwIF3Mk4M15FNTYiEQwynA_eRkV5pyrmqFV1wnp1k07l4eypP9-Bgcxdmx3_PNRevELaRy2ANhG_AMJOIuAcwnJ-8m3ykvHEi51Gmlepi2v9o8stusybl34ebbXVhvl2Z5XJnJzm-A0cbGboAks-HbWMP3fff6Bn_JeRduN1DSTbpdH8P9nx1H_ZnWx7W-gH8mFTMLM9Wl4vm0zlDfMq-om3cn_-xReWWLZ2WsT6tTN0V0XbGvrSmXkTVqvLX-MOgIHd2bojM4axmdHjLdl3f2I7RbZEVovlVvaixQ3IA0buHMD8-ev9mGvVZFyJUWd5EKTlOORcekZwLsgzKpdylMi2Dc77UinxzpdElD1Iaa43mceAcYWImQozw5xEMSLjHwDITWyIQC6lKhClTm8cmsVZJYWWS5_EIXmy0U1x05BoFGiU0pwXNadHP6Qhek-q2dYgSe12ASij6L6ywCAQTlBMNOC20ynVugxc64QHHxm5G8HKr-L-O9uR_Kz6FW_TUxXA_g0Fz2frnCFEaO4bhZPZhOhuvTfxxv15_AlFB6NA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R5dByKPQltgXkA-0tNIntxD5uKxBCAnHoSvQU2Y5NV12yQJK-jv3lndlkV0srFW6R48fI48SfZ8bfAOx7J-PEcB3Z1IRIOMRwOnAfGemVppyrWtEF59Oz7HgsTi7kxRrsL-7CrPjvuebiPcI2chnMgfAjWM8kIu4BrI_PzkefKW-cyHmUaaW6mPZ_mtzZbeak_BvwuK2uzc_vZjpd2UmONuFwIUMXQPL1oG3sgfv1Fz3jfUJuwdMeSrJRp_tnsOar57BxuuRhrV_A71HFzPRydjtpvlwxxKfsG56Ne_sfm1Ru2pK1jPVpZequiLYzdtOaehJVs8r_wB8GBbmzK0NkDpc1I-MtW3V9YztGt0VmiOZn9aTGDskBRO9ewvjo8NPH46jPuhChyvImSslxyrnwiORckGVQLuUulWkZnPOlVuSbK40ueZDSWGs0jwPnCBMzEWKEP69gQMJtA8tMbIlALKQqEaZMbR6bxFolhZVJnsdDeLvQTnHdkWsUeCihOS1oTot-TofwgVS3rEOU2PMCVELRf2GFRSCYoJx4gNNCq1znNnihEx5wbOxmCO-Wiv_vaK8fWvENPKGnLoZ7BwbNbet3EaI0dq9foX8AqqvmPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+variational+inclusion+problems+including+quasi-nonexpansive+mappings+with+applications+in+osteoporosis+prediction&rft.jtitle=AIMS+mathematics&rft.au=Suparatulatorn%2C+Raweerote&rft.au=Liawrungrueang%2C+Wongthawat&rft.au=Mouktonglang%2C+Thanasak&rft.au=Cholamjiak%2C+Watcharaporn&rft.date=2025-02-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=2&rft.spage=2541&rft.epage=2561&rft_id=info:doi/10.3934%2Fmath.2025118&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon