Syntactic methods in pattern recognition
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrang...
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
New York
Academic Press
1974
Elsevier Science & Technology Elsevier Science |
| Edition | 1 |
| Series | Mathematics in science and engineering |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9780122695605 0122695607 |
Cover
Table of Contents:
- Front Cover -- Syntactic Methods in Pattern Recognition -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Syntactic (Structural) Approach to Pattern Recognition -- 1.2 Syntactic Pattern Recognition System -- 1.3 Preprocessing Techniques -- 1.4 Pattern Segmentation -- 1.5 Remarks on Syntactic Approach versus Decision-Theoretic Approach -- References -- Chapter 2 Introduction to Formal Languages -- 2.1 Introduction -- 2.2 Languages and Phrase-Structure Grammars -- 2.3 Finite-State Languages and Finite-State Automata -- 2.4 Context-Free Languages and Pushdown Automata -- 2.5 Turing Machines and Linear-Bounded Automata -- 2.6 Modified Grammars -- References -- Chapter 3 Languages for Pattern Description -- 3.1 Selection of Pattern Primitives -- 3.2 Pattern Grammar: Introduction -- 3.3 High Dimensional Pattern Grammars -- 3.4 The Use of Semantic Information -- References -- Chapter 4 Syntax Analysis as a Recognition Procedure -- 4.1 Introduction -- 4.2 Top-Down Parsing -- 4.3 Bottom-Up Parsing -- 4.4 LR(k) Grammars -- 4.5 An Efficient Top-Down Parser -- 4.6 Operator Precedence Grammars -- 4.7 Precedence and Extended Precedence Grammars -- 4.8 Syntax Analysis of Context-Free Programmed Languages -- References -- Chapter 5 Stochastic Languages and Stochastic Syntax Analysis -- 5.1 Basic Formulations -- 5.2 Probability Measures Associated with Linear and Context-Free Grammars -- 5.3 Languages Accepted by Stochastic Automata -- 5.4 Stochastic Programmed and Indexed Grammars -- 5.5 Stochastic Syntax Analysis for Stochastic Context-Free Languages -- 5.6 Stochastic Syntax Analysis for Context-Free Programmed Languages -- References -- Chapter 6 Stochastic Languages for Syntactic Pattern Recognition -- 6.1 Stochastic Languages for Pattern Description -- 6.2 Estimation of Production Probabilities
- 6.3 Examples of Stochastic Syntax Analysis -- References -- Chapter 7 Grammatical Inference for Syntactic Pattern Recognition -- 7.1 Introduction and Basic Definitions -- 7.2 Grammatical Inference Algorithms by Enumeration -- 7.3 Grammatical Inference Algorithms by Induction -- 7.4 Bayesian Inference of Stochastic Grammars -- 7.5 Synthesis of Stochastic Finite-State Automata -- 7.6 A Practical Grammatical Inference System -- 7.7 Approximation of Stochastic Languages -- References -- Appendix A Syntactic Recognition of Chromosome Patterns -- Appendix B PDL (Picture Description Language) -- Appendix C Syntactic Recognition of Two-Dimensional Mathematical Expressions -- Appendix D Syntactic Description of Hand-Printed FORTRAN Characters -- Appendix E Syntactic Recognition of Chinese Characters -- Appendix F Syntactic Recognition of Spoken Words -- Appendix G Plex Languages -- Appendix H Web Grammars -- Appendix I Tree Grammars for Syntactic Pattern Recognition -- Author Index -- Subject Index