Stress Chatter via Fluid Flow and Fault Slip in a Hydraulic Fracturing‐Induced Earthquake Sequence in the Montney Formation, British Columbia
Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal e...
Saved in:
| Published in | Geophysical research letters Vol. 47; no. 14 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
John Wiley & Sons, Inc
28.07.2020
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-8276 1944-8007 |
| DOI | 10.1029/2020GL087254 |
Cover
| Abstract | Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment.
Plain Language Summary
Seismicity linked to hydraulic fracturing (HF) in shale gas exploration in western Canada has increased drastically over the last decade. However, details of induced seismicity sequence evolution and triggering mechanism(s) remain unclear. In this study, we integrate local seismic monitoring and numerical stress modeling for an Mw 4.2 (ML 4.5) HF‐induced earthquake sequence in northeast British Columbia, to reveal a two‐step stress transfer process. A nascent, near‐vertical fracture network in the sedimentary layers likely developed in the fault growth and basin infill of the Dawson Creek Graben Complex and hydraulically channeled injected fluids to a thrust fault in the basement, leading to a rapidly increased fluid pressure that initiated the mainshock rupture. Static Coulomb stress change from the coseismic slip subsequently triggered the aftershocks along subparallel slip surfaces within the overlying sedimentary sequences. Our results also suggest that the relative injection volumes and/or wellbore pressures required to create HF at each stage of neighboring wells may be diagnostic of the presence of hydraulic connectivity to the basement, which tends to promote large magnitudes events.
Key Points
Source parameter inversion and numerical modeling is performed for an Mw 4.2 hydraulic fracturing‐induced earthquake sequence in northeast BC
Mainshock is triggered by rapid fluid pressure increase via a hydraulic conduit channeling fluids from injection points to a basement fault
Most aftershocks are triggered by static Coulomb stress changes resulting from mainshock coseismic slip |
|---|---|
| AbstractList | Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. Plain Language Summary Seismicity linked to hydraulic fracturing (HF) in shale gas exploration in western Canada has increased drastically over the last decade. However, details of induced seismicity sequence evolution and triggering mechanism(s) remain unclear. In this study, we integrate local seismic monitoring and numerical stress modeling for an Mw 4.2 (ML 4.5) HF‐induced earthquake sequence in northeast British Columbia, to reveal a two‐step stress transfer process. A nascent, near‐vertical fracture network in the sedimentary layers likely developed in the fault growth and basin infill of the Dawson Creek Graben Complex and hydraulically channeled injected fluids to a thrust fault in the basement, leading to a rapidly increased fluid pressure that initiated the mainshock rupture. Static Coulomb stress change from the coseismic slip subsequently triggered the aftershocks along subparallel slip surfaces within the overlying sedimentary sequences. Our results also suggest that the relative injection volumes and/or wellbore pressures required to create HF at each stage of neighboring wells may be diagnostic of the presence of hydraulic connectivity to the basement, which tends to promote large magnitudes events. Key Points Source parameter inversion and numerical modeling is performed for an Mw 4.2 hydraulic fracturing‐induced earthquake sequence in northeast BC Mainshock is triggered by rapid fluid pressure increase via a hydraulic conduit channeling fluids from injection points to a basement fault Most aftershocks are triggered by static Coulomb stress changes resulting from mainshock coseismic slip Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 M w 4.2 (M L 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼ 4.5 km in the crystalline basement 2 days following injection onset at ∼ 2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼ 1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the M w 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. Seismicity linked to hydraulic fracturing (HF) in shale gas exploration in western Canada has increased drastically over the last decade. However, details of induced seismicity sequence evolution and triggering mechanism(s) remain unclear. In this study, we integrate local seismic monitoring and numerical stress modeling for an M w 4.2 (M L 4.5) HF‐induced earthquake sequence in northeast British Columbia, to reveal a two‐step stress transfer process. A nascent, near‐vertical fracture network in the sedimentary layers likely developed in the fault growth and basin infill of the Dawson Creek Graben Complex and hydraulically channeled injected fluids to a thrust fault in the basement, leading to a rapidly increased fluid pressure that initiated the mainshock rupture. Static Coulomb stress change from the coseismic slip subsequently triggered the aftershocks along subparallel slip surfaces within the overlying sedimentary sequences. Our results also suggest that the relative injection volumes and/or wellbore pressures required to create HF at each stage of neighboring wells may be diagnostic of the presence of hydraulic connectivity to the basement, which tends to promote large magnitudes events. Source parameter inversion and numerical modeling is performed for an M w 4.2 hydraulic fracturing‐induced earthquake sequence in northeast BC Mainshock is triggered by rapid fluid pressure increase via a hydraulic conduit channeling fluids from injection points to a basement fault Most aftershocks are triggered by static Coulomb stress changes resulting from mainshock coseismic slip Abstract Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. |
| Author | Harrington, R. M. Onwuemeka, J. Verdecchia, A. Kao, H. Peña Castro, A. F. Liu, Y. Roth, M. P. Zhang, Y. |
| Author_xml | – sequence: 1 givenname: A. F. orcidid: 0000-0001-8055-1977 surname: Peña Castro fullname: Peña Castro, A. F. organization: McGill University – sequence: 2 givenname: M. P. orcidid: 0000-0001-7640-3437 surname: Roth fullname: Roth, M. P. organization: Ruhr University Bochum – sequence: 3 givenname: A. orcidid: 0000-0002-9920-0015 surname: Verdecchia fullname: Verdecchia, A. organization: McGill University – sequence: 4 givenname: J. orcidid: 0000-0002-7998-107X surname: Onwuemeka fullname: Onwuemeka, J. organization: McGill University – sequence: 5 givenname: Y. orcidid: 0000-0002-5323-8077 surname: Liu fullname: Liu, Y. email: yajing.liu@mcgill.ca organization: McGill University – sequence: 6 givenname: R. M. orcidid: 0000-0002-3538-8020 surname: Harrington fullname: Harrington, R. M. organization: Ruhr University Bochum – sequence: 7 givenname: Y. orcidid: 0000-0001-9807-4953 surname: Zhang fullname: Zhang, Y. organization: Peking University – sequence: 8 givenname: H. orcidid: 0000-0001-9150-9416 surname: Kao fullname: Kao, H. organization: Pacific Geoscience Centre, Geological Survey of Canada |
| BookMark | eNqFUU1vEzEQtVCRSAs3foAlrg0de73r9RGiJo0UhETgbHm948ZhY6deb6vc-AfwG_tL2DQIIQ5wmRk9vXlvPs7JWYgBCXnN4C0Drq44cFisoJa8FM_IhCkhpjWAPCMTADXWXFYvyHnfbwGggIJNyPd1Ttj3dLYxOWOi997QeTf4dozxgZowFmboMl13fk99oIbeHNo0Qt7SeTI2D8mH28dvP5ahHSy29NqkvLkbzFeka7wbMFg89uUN0g8x5IAHOo9pZ7KP4ZK-Tz77fkNnsRt2jTcvyXNnuh5f_coX5Mv8-vPsZrr6uFjO3q2mplBlMeVCQs2EqVA6JqRTTcErBFXVHGVdWmwMs4K5oixdA8BsW6qSoWhZxZhUvLggy5NuG81W75PfmXTQ0Xj9BMR0q8c9vO1Qi1Y5BG4bxxvRqKZWIMFVUB2VG1eOWm9OWvsUx4X7rLdxSGEcX3PBZVkVII6OlyeWTbHvE7rfrgz08X36z_eNdP4X3fr8dLScjO_-0_TgOzz800AvPq0qqFVR_AS_sK3C |
| CitedBy_id | crossref_primary_10_26443_seismica_v3i2_1435 crossref_primary_10_1016_j_epsl_2022_117555 crossref_primary_10_5194_se_12_765_2021 crossref_primary_10_1021_acs_energyfuels_1c02950 crossref_primary_10_1029_2023GL102940 crossref_primary_10_1785_0220210139 crossref_primary_10_1016_j_jseaes_2023_105697 crossref_primary_10_1016_j_tecto_2020_228640 crossref_primary_10_1038_s43017_023_00497_8 crossref_primary_10_1785_0220200464 crossref_primary_10_1785_0220220075 crossref_primary_10_1785_0220200086 crossref_primary_10_1016_j_geoen_2024_213458 crossref_primary_10_1093_gji_ggad397 crossref_primary_10_1007_s11430_022_1040_4 crossref_primary_10_1007_s10950_020_09966_9 crossref_primary_10_26443_seismica_v2i2_498 crossref_primary_10_1016_j_epsl_2023_118335 crossref_primary_10_1016_j_epsl_2023_118511 crossref_primary_10_1016_j_ijggc_2024_104102 crossref_primary_10_2118_211100_PA crossref_primary_10_1785_0220210282 crossref_primary_10_1029_2022GL099995 crossref_primary_10_1360_SSTe_2022_0321 crossref_primary_10_1785_0120220007 crossref_primary_10_1021_acs_energyfuels_4c02894 crossref_primary_10_1029_2020JB021362 crossref_primary_10_1029_2020GL090219 crossref_primary_10_1785_0220240076 crossref_primary_10_1785_0120200251 crossref_primary_10_1785_0120200350 crossref_primary_10_1785_0120230147 crossref_primary_10_2298_TSCI220828013Y crossref_primary_10_1029_2021GL093979 crossref_primary_10_1093_gji_ggad226 crossref_primary_10_1098_rsta_2023_0418 crossref_primary_10_1038_s43247_025_02151_1 crossref_primary_10_1038_s41598_022_05216_9 crossref_primary_10_1029_2020GL089366 crossref_primary_10_1038_s41598_022_15363_8 crossref_primary_10_1038_s41467_021_26961_x crossref_primary_10_1785_0120210210 crossref_primary_10_1016_j_geothermics_2023_102860 crossref_primary_10_1190_geo2020_0842_1 crossref_primary_10_2118_210287_PA |
| Cites_doi | 10.1785/0220150263 10.1126/sciadv.aau4065 10.1785/BSSA0660030639 10.1093/gji/ggx259 10.1126/science.aao0159 10.1007/978-94-015-9536-0_5 10.1093/gji/ggw327 10.1111/gfl.12089 10.1002/2015GC006167 10.1029/96JB03228 10.1029/95JB02397 10.1111/j.1468-8123.2010.00278.x 10.1785/0120160275 10.1785/BSSA05406A1875 10.1126/science.1225942 10.1190/1.1567241 10.1785/0220160188 10.1002/2016GL069800 10.1111/j.1365-246X.2007.03592.x 10.1785/BSSA0840061978 10.1016/j.jsg.2017.08.004 10.1016/j.cageo.2008.06.007 10.1002/grl.50298 10.1785/0220200086 10.1785/0220170151 10.1073/pnas.1913625117 10.1002/2016GL070421 10.1002/2015GL066948 10.1029/JB095iB05p07007 10.1029/JB075i026p04997 10.1016/S0191-8141(01)00035-9 10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2 10.1029/2018GL079288 10.1785/0120180164 10.1016/j.jsg.2009.05.002 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 10.1002/2015GL064377 10.1029/2018JB017039 10.1002/2013JB010597 10.1016/j.epsl.2012.05.014 10.1130/0091-7613(2002)030<0843:SESOGM>2.0.CO;2 10.1002/2015JB012603 10.1785/0120000006 10.1785/0120190261 10.1016/j.tecto.2018.07.007 10.1073/pnas.1715284115 10.1785/0220190182 10.1126/science.aag2583 10.1063/1.1712886 10.1785/BSSA0890030733 10.1111/j.1365-246X.2012.05694.x 10.1126/sciadv.aav7172 10.1029/2010JB007449 10.1098/rspa.1957.0133 10.1785/0120160175 10.1126/science.aaw7354 10.1126/science.aat2010 10.3133/ofr20111060 |
| ContentType | Journal Article |
| Copyright | 2020. American Geophysical Union. All Rights Reserved. Copyright John Wiley & Sons, Inc. 2020 |
| Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. – notice: Copyright John Wiley & Sons, Inc. 2020 |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
| DOI | 10.1029/2020GL087254 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_4d9fe02cbf2b4b9b89070f606fb00bf5 10_1029_2020GL087254 GRL60893 |
| Genre | article |
| GeographicLocations | British Columbia Canada Canada |
| GeographicLocations_xml | – name: British Columbia Canada – name: Canada |
| GrantInformation_xml | – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC) funderid: STPGP/494141‐2016 – fundername: Gouvernement du Canada | Natural Resources Canada (NRCan) – fundername: National Natural Science Foundation of China (NNSFC) funderid: 41822401 – fundername: Deutsche Forschungsgemeinschaft (DFG) funderid: 428868223 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M GROUPED_DOAJ |
| ID | FETCH-LOGICAL-a3953-2470814a6e7f147f9b326e09682e785ceba1c41f355fb001cd5951e4d16117923 |
| IEDL.DBID | DOA |
| ISSN | 0094-8276 |
| IngestDate | Mon Oct 13 19:21:30 EDT 2025 Thu Oct 09 07:10:32 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Thu Oct 16 04:37:53 EDT 2025 Wed Jan 22 16:32:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3953-2470814a6e7f147f9b326e09682e785ceba1c41f355fb001cd5951e4d16117923 |
| Notes | A. F. Peña Castro and M. P. Roth contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8055-1977 0000-0001-7640-3437 0000-0001-9150-9416 0000-0002-5323-8077 0000-0002-7998-107X 0000-0001-9807-4953 0000-0002-9920-0015 0000-0002-3538-8020 |
| OpenAccessLink | https://doaj.org/article/4d9fe02cbf2b4b9b89070f606fb00bf5 |
| PQID | 2427563042 |
| PQPubID | 54723 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4d9fe02cbf2b4b9b89070f606fb00bf5 proquest_journals_2427563042 crossref_primary_10_1029_2020GL087254 crossref_citationtrail_10_1029_2020GL087254 wiley_primary_10_1029_2020GL087254_GRL60893 |
| PublicationCentury | 2000 |
| PublicationDate | 28 July 2020 |
| PublicationDateYYYYMMDD | 2020-07-28 |
| PublicationDate_xml | – month: 07 year: 2020 text: 28 July 2020 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_8_1_11_1 e_1_2_8_1_36_1 e_1_2_8_1_13_1 e_1_2_8_1_34_1 e_1_2_8_1_32_1 e_1_2_8_1_30_1 e_1_2_8_1_51_1 e_1_2_8_1_9_1 e_1_2_8_2_7_1 e_1_2_8_2_9_1 e_1_2_8_1_27_1 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_22_1 e_1_2_8_1_47_1 e_1_2_8_1_24_1 e_1_2_8_1_45_1 e_1_2_8_2_3_1 e_1_2_8_1_43_1 e_1_2_8_2_5_1 e_1_2_8_1_20_1 Mahani A. B. (e_1_2_8_1_26_1) 2019; 90 e_1_2_8_1_41_1 e_1_2_8_2_10_1 e_1_2_8_2_14_1 e_1_2_8_2_12_1 e_1_2_8_1_3_1 e_1_2_8_1_7_1 e_1_2_8_1_5_1 e_1_2_8_1_19_1 Barclay J. E. (e_1_2_8_1_4_1) 1990; 38 e_1_2_8_1_15_1 e_1_2_8_1_17_1 e_1_2_8_1_38_1 e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_14_1 e_1_2_8_1_33_1 e_1_2_8_1_31_1 e_1_2_8_1_10_1 e_1_2_8_1_52_1 e_1_2_8_1_50_1 e_1_2_8_1_8_1 e_1_2_8_2_8_1 e_1_2_8_1_28_1 e_1_2_8_1_49_1 e_1_2_8_1_23_1 e_1_2_8_1_46_1 e_1_2_8_1_25_1 e_1_2_8_1_44_1 e_1_2_8_2_2_1 e_1_2_8_1_42_1 e_1_2_8_1_21_1 e_1_2_8_1_40_1 e_1_2_8_2_6_1 e_1_2_8_2_11_1 e_1_2_8_2_15_1 e_1_2_8_2_13_1 e_1_2_8_1_2_1 Boatwright J. (e_1_2_8_2_4_1) 1978; 68 e_1_2_8_1_6_1 e_1_2_8_1_16_1 e_1_2_8_1_39_1 e_1_2_8_1_18_1 e_1_2_8_1_37_1 |
| References_xml | – ident: e_1_2_8_1_2_1 doi: 10.1785/0220150263 – ident: e_1_2_8_1_8_1 doi: 10.1126/sciadv.aau4065 – ident: e_1_2_8_2_8_1 doi: 10.1785/BSSA0660030639 – ident: e_1_2_8_2_13_1 doi: 10.1093/gji/ggx259 – ident: e_1_2_8_1_21_1 – ident: e_1_2_8_1_38_1 doi: 10.1126/science.aao0159 – ident: e_1_2_8_1_25_1 doi: 10.1007/978-94-015-9536-0_5 – ident: e_1_2_8_1_35_1 doi: 10.1093/gji/ggw327 – ident: e_1_2_8_1_37_1 doi: 10.1111/gfl.12089 – ident: e_1_2_8_1_49_1 doi: 10.1002/2015GC006167 – ident: e_1_2_8_2_11_1 doi: 10.1029/96JB03228 – ident: e_1_2_8_2_2_1 doi: 10.1029/95JB02397 – ident: e_1_2_8_1_18_1 doi: 10.1111/j.1468-8123.2010.00278.x – ident: e_1_2_8_1_50_1 doi: 10.1785/0120160275 – volume: 90 start-page: 1457 issue: 4 year: 2019 ident: e_1_2_8_1_26_1 article-title: Ground motion characteristics of the 30 November 2018 injection induced earthquake sequence in northeast British Columbia, Canada publication-title: Seismological Research Letters – ident: e_1_2_8_2_6_1 doi: 10.1785/BSSA05406A1875 – ident: e_1_2_8_1_12_1 doi: 10.1126/science.1225942 – ident: e_1_2_8_2_14_1 doi: 10.1190/1.1567241 – ident: e_1_2_8_1_43_1 doi: 10.1785/0220160188 – ident: e_1_2_8_1_10_1 doi: 10.1002/2016GL069800 – ident: e_1_2_8_2_9_1 doi: 10.1111/j.1365-246X.2007.03592.x – ident: e_1_2_8_2_3_1 doi: 10.1785/BSSA0840061978 – ident: e_1_2_8_1_34_1 doi: 10.1016/j.jsg.2017.08.004 – ident: e_1_2_8_2_10_1 doi: 10.1016/j.cageo.2008.06.007 – ident: e_1_2_8_1_23_1 doi: 10.1002/grl.50298 – ident: e_1_2_8_1_36_1 doi: 10.1785/0220200086 – volume: 38 start-page: 115 issue: 1 year: 1990 ident: e_1_2_8_1_4_1 article-title: Dynamic casting and growth faulting: Dawson Creek graben complex, Carboniferous‐Permian Peace River embayment, Western Canada publication-title: Bulletin of Canadian Petroleum Geology – ident: e_1_2_8_1_9_1 doi: 10.1785/0220170151 – ident: e_1_2_8_1_24_1 doi: 10.1073/pnas.1913625117 – ident: e_1_2_8_1_11_1 doi: 10.1002/2016GL070421 – ident: e_1_2_8_1_14_1 doi: 10.1002/2015GL066948 – ident: e_1_2_8_1_28_1 doi: 10.1029/JB095iB05p07007 – ident: e_1_2_8_1_48_1 – ident: e_1_2_8_2_5_1 doi: 10.1029/JB075i026p04997 – ident: e_1_2_8_1_40_1 doi: 10.1016/S0191-8141(01)00035-9 – ident: e_1_2_8_1_42_1 doi: 10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2 – ident: e_1_2_8_1_19_1 doi: 10.1029/2018GL079288 – ident: e_1_2_8_1_45_1 doi: 10.1785/0120180164 – ident: e_1_2_8_1_30_1 doi: 10.1016/j.jsg.2009.05.002 – ident: e_1_2_8_1_7_1 doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 – ident: e_1_2_8_1_47_1 doi: 10.1002/2015GL064377 – ident: e_1_2_8_1_51_1 doi: 10.1029/2018JB017039 – ident: e_1_2_8_1_29_1 doi: 10.1002/2013JB010597 – ident: e_1_2_8_1_31_1 doi: 10.1016/j.epsl.2012.05.014 – volume: 68 start-page: 1117 issue: 4 year: 1978 ident: e_1_2_8_2_4_1 article-title: Detailed spectral analysis of two small New York State earthquakes publication-title: Bulletin of the Seismological Society of America – ident: e_1_2_8_1_32_1 doi: 10.1130/0091-7613(2002)030<0843:SESOGM>2.0.CO;2 – ident: e_1_2_8_1_52_1 doi: 10.1002/2015JB012603 – ident: e_1_2_8_1_17_1 – ident: e_1_2_8_1_44_1 doi: 10.1785/0120000006 – ident: e_1_2_8_1_46_1 doi: 10.1785/0120190261 – ident: e_1_2_8_1_16_1 doi: 10.1016/j.tecto.2018.07.007 – ident: e_1_2_8_1_20_1 doi: 10.1073/pnas.1715284115 – ident: e_1_2_8_1_22_1 doi: 10.1785/0220190182 – ident: e_1_2_8_1_3_1 doi: 10.1126/science.aag2583 – ident: e_1_2_8_1_6_1 doi: 10.1063/1.1712886 – ident: e_1_2_8_2_12_1 doi: 10.1785/BSSA0890030733 – ident: e_1_2_8_2_15_1 doi: 10.1111/j.1365-246X.2012.05694.x – ident: e_1_2_8_1_13_1 doi: 10.1126/sciadv.aav7172 – ident: e_1_2_8_1_39_1 doi: 10.1029/2010JB007449 – ident: e_1_2_8_2_7_1 doi: 10.1098/rspa.1957.0133 – ident: e_1_2_8_1_33_1 – ident: e_1_2_8_1_27_1 doi: 10.1785/0120160175 – ident: e_1_2_8_1_5_1 doi: 10.1126/science.aaw7354 – ident: e_1_2_8_1_15_1 doi: 10.1126/science.aat2010 – ident: e_1_2_8_1_41_1 doi: 10.3133/ofr20111060 |
| SSID | ssj0003031 |
| Score | 2.5166652 |
| Snippet | Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine... Abstract Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Aftershocks Chatter Coastal inlets Computational fluid dynamics Deformation Diagnostic systems Earthquakes Evolution Fluid flow Fluid pressure Fluids fracture network Geological faults Geological hazards Graben Hazard assessment Hydraulic fracturing induced seismicity Injection Modelling Monitoring Natural gas exploration Oil and gas exploration Permeability Redevelopment Sedimentary rocks Seismic activity Seismic hazard Seismicity Seismographs Sequencing Shale Shale gas Slip Stress transfer Thrust faults |
| Title | Stress Chatter via Fluid Flow and Fault Slip in a Hydraulic Fracturing‐Induced Earthquake Sequence in the Montney Formation, British Columbia |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL087254 https://www.proquest.com/docview/2427563042 https://doaj.org/article/4d9fe02cbf2b4b9b89070f606fb00bf5 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: AVUZU dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQERIXxK9YKJUPcIKIxLFj-1hWza5Q4cCyqOIS2c5YjbpKS7vbam-8ATwjT8LY8VbbA3DhElmRE1kz4_E3ycw3hLzEE9gUaEm408BnXPsqM6VzmVSag2gtiMi2_-FjNZ3z90fiaKvVV8gJG-iBB8G95a32kDNnPbPcaqswmss9wm6PBmN9ZC_Nld4EU8kHo2MeeuVpnikmq5TynjMdov18cpgryQS_cRhFzv4bQHMbrsbzpr5P7iWgSPeHBT4gt6B_SO5MYiPeNY5i6qa7eER-zGK5Bx0fR6pMetkZWi9WXYvX0ytqehyY1WJJZ4vujHY9NXS6bs_xVudoHYqkYqXir-8_QxsPBy09QKkcf1uZE6CzlGkdnkOoSNEFLHtY03pT8_iGJlokOg5-znbmMZnXB5_H0yy1WUCtaFFmjEvEBdxUIH3BpdcWIR1gaKMYSCUcWFM4XnhEJkHmhWsFwjLgLYLFItAPPiE7_WkPTwltK1m4SoEVgGGfKoxvS5t7MKI0JXqPEXm9kXfjEgd5aIWxaOK_cKabbe2MyKvr2WcD98Yf5r0LqrueExiz4w20oybZUfMvOxqR3Y3im7SNLxrELzIQqHGGK4_G8NeFNJNPhxUaY_nsf6zoObkbXh4-JDO1S3aW5yt4gQhoaffI7f0v86_zvWj0vwGTBwCr |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELYgFYJLxa8aKOADnGDF_ti73mOJugmQ9kAaVHGxbK9NV0SbkiZFufEG9Bn7JMw4TpQeQOKysqzxanfHM_7G6_mGkFewAqsEZhJYmnURK10eqcyYqBAls7zWlnu2_aPjfDBmH0_5aahzirkwK36IzYYbWob312jguCEd2AaQJBPC9rg_jEUBMc5tssNxZeqQnYMv46_jjTMGD70qmleySKRFHs6-wx3ebY-_sSp58v4biHMbt_qFp7pPdgNipAcrFT8gt2z7kNzp-4q8S2j5M5zm4hH5PfJ5H7R35jkz6WWjaDVZNDVcpz-paqGhFpM5HU2ac9q0VNHBsp5BV2NohdlSPmXx-tcV1vMwtqaHMK_OfizUd0tH4cg1jgPMSMEXzFu7pNU6-fEtDfxItIcOTzfqMRlXhye9QRTqLYB6Sp5FKSsAIDCV28IlrHClBmxnIcYRqS0EN1arxLDEAURxCLZMzQGfWVYDakyQh_AJ6bTT1u4RWudFYnJhNbcQ_4lEuTrTsbOKZyoDN9Ilb9bfW5pARo41MSbS_xRPS7mtnS55vZE-X5Fw_EXuPapuI4PU2b5jOvsmgyVKVpfOxqnRLtVMl1qU4PUcxHH4TtrxLtlfK14Ge76QAGQKZFJjKTy5nwz_fBDZ_zzMY4CCT_9L-iW5Ozg5Gsrhh-NPz8g9lMFt5FTsk858trDPAf_M9Yswx_8A_537AQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagKxAXxFNbdgEf4AQReThxfFzKpgXKClGKVlwiP8ZsRJV2uy2oN_4B_EZ-CWPXrboHkLhEljWOkoxn_I3j-YaQJ7gCywRnEloa2IgJW0Qy0zripWCQGwW5Z9t_d1IMxuzNaX4a6py6XJg1P8R2w81ZhvfXzsBhZmxgG3AkmRi2x_1hXHKMca6SPVzKY9Yhe0efxp_HW2eMHnpdNE-wqEx5Ec6-4x1e7I6_tCp58v5LiHMXt_qFp7pFbgbESI_WKr5NrkB7h1zr-4q8K2z5M5z64i75OfJ5H7R35jkz6bdG0mqybAxep9-pbLEhl5MFHU2aGW1aKulgZebY1WhauWwpn7L4-8cvV89Dg6HHOK_OzpfyK9BROHLtxiFmpOgLFi2saLVJfnxOAz8S7TmHpxp5j4yr44-9QRTqLaB6RJ5FKeMIEJgsgNuEcSsUYjvAGKdMgZe5BiUTzRKLEMU6sKVNjvgMmEHUmDgewvuk005b2CfUFDzRRQkqB4z_ykRak6nYgswzmaEb6ZJnm-9d60BG7mpiTGr_UzwV9a52uuTpVnq2JuH4i9xLp7qtjKPO9h3T-Zc6WGLNjLAQp1rZVDElVCnQ61mM49w7KZt3yeFG8XWw54sagQx3TGosxSf3k-GfD1L3PwyLGKHgg_-Sfkyuv39V1cPXJ28PyA0n4naR0_KQdBbzJTxE-LNQj8IU_wO_QPqQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+Chatter+via+Fluid+Flow+and+Fault+Slip+in+a+Hydraulic+Fracturing%E2%80%90Induced+Earthquake+Sequence+in+the+Montney+Formation%2C+British+Columbia&rft.jtitle=Geophysical+research+letters&rft.au=Pe%C3%B1a+Castro%2C+A.+F.&rft.au=Roth%2C+M.+P.&rft.au=Verdecchia%2C+A.&rft.au=Onwuemeka%2C+J.&rft.date=2020-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020GL087254&rft.externalDBID=10.1029%252F2020GL087254&rft.externalDocID=GRL60893 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |