Stress Chatter via Fluid Flow and Fault Slip in a Hydraulic Fracturing‐Induced Earthquake Sequence in the Montney Formation, British Columbia

Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal e...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 47; no. 14
Main Authors Peña Castro, A. F., Roth, M. P., Verdecchia, A., Onwuemeka, J., Liu, Y., Harrington, R. M., Zhang, Y., Kao, H.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.07.2020
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2020GL087254

Cover

Abstract Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. Plain Language Summary Seismicity linked to hydraulic fracturing (HF) in shale gas exploration in western Canada has increased drastically over the last decade. However, details of induced seismicity sequence evolution and triggering mechanism(s) remain unclear. In this study, we integrate local seismic monitoring and numerical stress modeling for an Mw 4.2 (ML 4.5) HF‐induced earthquake sequence in northeast British Columbia, to reveal a two‐step stress transfer process. A nascent, near‐vertical fracture network in the sedimentary layers likely developed in the fault growth and basin infill of the Dawson Creek Graben Complex and hydraulically channeled injected fluids to a thrust fault in the basement, leading to a rapidly increased fluid pressure that initiated the mainshock rupture. Static Coulomb stress change from the coseismic slip subsequently triggered the aftershocks along subparallel slip surfaces within the overlying sedimentary sequences. Our results also suggest that the relative injection volumes and/or wellbore pressures required to create HF at each stage of neighboring wells may be diagnostic of the presence of hydraulic connectivity to the basement, which tends to promote large magnitudes events. Key Points Source parameter inversion and numerical modeling is performed for an Mw 4.2 hydraulic fracturing‐induced earthquake sequence in northeast BC Mainshock is triggered by rapid fluid pressure increase via a hydraulic conduit channeling fluids from injection points to a basement fault Most aftershocks are triggered by static Coulomb stress changes resulting from mainshock coseismic slip
AbstractList Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment.
Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. Plain Language Summary Seismicity linked to hydraulic fracturing (HF) in shale gas exploration in western Canada has increased drastically over the last decade. However, details of induced seismicity sequence evolution and triggering mechanism(s) remain unclear. In this study, we integrate local seismic monitoring and numerical stress modeling for an Mw 4.2 (ML 4.5) HF‐induced earthquake sequence in northeast British Columbia, to reveal a two‐step stress transfer process. A nascent, near‐vertical fracture network in the sedimentary layers likely developed in the fault growth and basin infill of the Dawson Creek Graben Complex and hydraulically channeled injected fluids to a thrust fault in the basement, leading to a rapidly increased fluid pressure that initiated the mainshock rupture. Static Coulomb stress change from the coseismic slip subsequently triggered the aftershocks along subparallel slip surfaces within the overlying sedimentary sequences. Our results also suggest that the relative injection volumes and/or wellbore pressures required to create HF at each stage of neighboring wells may be diagnostic of the presence of hydraulic connectivity to the basement, which tends to promote large magnitudes events. Key Points Source parameter inversion and numerical modeling is performed for an Mw 4.2 hydraulic fracturing‐induced earthquake sequence in northeast BC Mainshock is triggered by rapid fluid pressure increase via a hydraulic conduit channeling fluids from injection points to a basement fault Most aftershocks are triggered by static Coulomb stress changes resulting from mainshock coseismic slip
Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 M w 4.2 (M L 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼ 4.5 km in the crystalline basement 2 days following injection onset at ∼ 2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼ 1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the M w 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment. Seismicity linked to hydraulic fracturing (HF) in shale gas exploration in western Canada has increased drastically over the last decade. However, details of induced seismicity sequence evolution and triggering mechanism(s) remain unclear. In this study, we integrate local seismic monitoring and numerical stress modeling for an M w 4.2 (M L 4.5) HF‐induced earthquake sequence in northeast British Columbia, to reveal a two‐step stress transfer process. A nascent, near‐vertical fracture network in the sedimentary layers likely developed in the fault growth and basin infill of the Dawson Creek Graben Complex and hydraulically channeled injected fluids to a thrust fault in the basement, leading to a rapidly increased fluid pressure that initiated the mainshock rupture. Static Coulomb stress change from the coseismic slip subsequently triggered the aftershocks along subparallel slip surfaces within the overlying sedimentary sequences. Our results also suggest that the relative injection volumes and/or wellbore pressures required to create HF at each stage of neighboring wells may be diagnostic of the presence of hydraulic connectivity to the basement, which tends to promote large magnitudes events. Source parameter inversion and numerical modeling is performed for an M w 4.2 hydraulic fracturing‐induced earthquake sequence in northeast BC Mainshock is triggered by rapid fluid pressure increase via a hydraulic conduit channeling fluids from injection points to a basement fault Most aftershocks are triggered by static Coulomb stress changes resulting from mainshock coseismic slip
Abstract Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine observations from a local seismograph array in the Montney Formation, northeast British Columbia, and stress modeling to examine the spatiotemporal evolution of the 30 November 2018 Mw 4.2 (ML 4.5) hydraulic fracturing‐induced earthquake sequence. The isolated occurrence of the mainshock at a depth of ∼4.5 km in the crystalline basement 2 days following injection onset at ∼2.5 km depth suggests direct triggering by rapid fluid pressure increase via a high‐permeability conduit. Most aftershocks are in the top 2 km sedimentary layers, with focal mechanisms indicating discrete slip along subvertical surfaces in an ∼1 km wide deformation zone. Aftershock distribution is consistent with static stress triggering from the Mw 4.2 coseismic slip. Our analysis suggests that complex hydraulic and stress transfer between fracture networks needs to be considered in induced seismic hazard assessment.
Author Harrington, R. M.
Onwuemeka, J.
Verdecchia, A.
Kao, H.
Peña Castro, A. F.
Liu, Y.
Roth, M. P.
Zhang, Y.
Author_xml – sequence: 1
  givenname: A. F.
  orcidid: 0000-0001-8055-1977
  surname: Peña Castro
  fullname: Peña Castro, A. F.
  organization: McGill University
– sequence: 2
  givenname: M. P.
  orcidid: 0000-0001-7640-3437
  surname: Roth
  fullname: Roth, M. P.
  organization: Ruhr University Bochum
– sequence: 3
  givenname: A.
  orcidid: 0000-0002-9920-0015
  surname: Verdecchia
  fullname: Verdecchia, A.
  organization: McGill University
– sequence: 4
  givenname: J.
  orcidid: 0000-0002-7998-107X
  surname: Onwuemeka
  fullname: Onwuemeka, J.
  organization: McGill University
– sequence: 5
  givenname: Y.
  orcidid: 0000-0002-5323-8077
  surname: Liu
  fullname: Liu, Y.
  email: yajing.liu@mcgill.ca
  organization: McGill University
– sequence: 6
  givenname: R. M.
  orcidid: 0000-0002-3538-8020
  surname: Harrington
  fullname: Harrington, R. M.
  organization: Ruhr University Bochum
– sequence: 7
  givenname: Y.
  orcidid: 0000-0001-9807-4953
  surname: Zhang
  fullname: Zhang, Y.
  organization: Peking University
– sequence: 8
  givenname: H.
  orcidid: 0000-0001-9150-9416
  surname: Kao
  fullname: Kao, H.
  organization: Pacific Geoscience Centre, Geological Survey of Canada
BookMark eNqFUU1vEzEQtVCRSAs3foAlrg0de73r9RGiJo0UhETgbHm948ZhY6deb6vc-AfwG_tL2DQIIQ5wmRk9vXlvPs7JWYgBCXnN4C0Drq44cFisoJa8FM_IhCkhpjWAPCMTADXWXFYvyHnfbwGggIJNyPd1Ttj3dLYxOWOi997QeTf4dozxgZowFmboMl13fk99oIbeHNo0Qt7SeTI2D8mH28dvP5ahHSy29NqkvLkbzFeka7wbMFg89uUN0g8x5IAHOo9pZ7KP4ZK-Tz77fkNnsRt2jTcvyXNnuh5f_coX5Mv8-vPsZrr6uFjO3q2mplBlMeVCQs2EqVA6JqRTTcErBFXVHGVdWmwMs4K5oixdA8BsW6qSoWhZxZhUvLggy5NuG81W75PfmXTQ0Xj9BMR0q8c9vO1Qi1Y5BG4bxxvRqKZWIMFVUB2VG1eOWm9OWvsUx4X7rLdxSGEcX3PBZVkVII6OlyeWTbHvE7rfrgz08X36z_eNdP4X3fr8dLScjO_-0_TgOzz800AvPq0qqFVR_AS_sK3C
CitedBy_id crossref_primary_10_26443_seismica_v3i2_1435
crossref_primary_10_1016_j_epsl_2022_117555
crossref_primary_10_5194_se_12_765_2021
crossref_primary_10_1021_acs_energyfuels_1c02950
crossref_primary_10_1029_2023GL102940
crossref_primary_10_1785_0220210139
crossref_primary_10_1016_j_jseaes_2023_105697
crossref_primary_10_1016_j_tecto_2020_228640
crossref_primary_10_1038_s43017_023_00497_8
crossref_primary_10_1785_0220200464
crossref_primary_10_1785_0220220075
crossref_primary_10_1785_0220200086
crossref_primary_10_1016_j_geoen_2024_213458
crossref_primary_10_1093_gji_ggad397
crossref_primary_10_1007_s11430_022_1040_4
crossref_primary_10_1007_s10950_020_09966_9
crossref_primary_10_26443_seismica_v2i2_498
crossref_primary_10_1016_j_epsl_2023_118335
crossref_primary_10_1016_j_epsl_2023_118511
crossref_primary_10_1016_j_ijggc_2024_104102
crossref_primary_10_2118_211100_PA
crossref_primary_10_1785_0220210282
crossref_primary_10_1029_2022GL099995
crossref_primary_10_1360_SSTe_2022_0321
crossref_primary_10_1785_0120220007
crossref_primary_10_1021_acs_energyfuels_4c02894
crossref_primary_10_1029_2020JB021362
crossref_primary_10_1029_2020GL090219
crossref_primary_10_1785_0220240076
crossref_primary_10_1785_0120200251
crossref_primary_10_1785_0120200350
crossref_primary_10_1785_0120230147
crossref_primary_10_2298_TSCI220828013Y
crossref_primary_10_1029_2021GL093979
crossref_primary_10_1093_gji_ggad226
crossref_primary_10_1098_rsta_2023_0418
crossref_primary_10_1038_s43247_025_02151_1
crossref_primary_10_1038_s41598_022_05216_9
crossref_primary_10_1029_2020GL089366
crossref_primary_10_1038_s41598_022_15363_8
crossref_primary_10_1038_s41467_021_26961_x
crossref_primary_10_1785_0120210210
crossref_primary_10_1016_j_geothermics_2023_102860
crossref_primary_10_1190_geo2020_0842_1
crossref_primary_10_2118_210287_PA
Cites_doi 10.1785/0220150263
10.1126/sciadv.aau4065
10.1785/BSSA0660030639
10.1093/gji/ggx259
10.1126/science.aao0159
10.1007/978-94-015-9536-0_5
10.1093/gji/ggw327
10.1111/gfl.12089
10.1002/2015GC006167
10.1029/96JB03228
10.1029/95JB02397
10.1111/j.1468-8123.2010.00278.x
10.1785/0120160275
10.1785/BSSA05406A1875
10.1126/science.1225942
10.1190/1.1567241
10.1785/0220160188
10.1002/2016GL069800
10.1111/j.1365-246X.2007.03592.x
10.1785/BSSA0840061978
10.1016/j.jsg.2017.08.004
10.1016/j.cageo.2008.06.007
10.1002/grl.50298
10.1785/0220200086
10.1785/0220170151
10.1073/pnas.1913625117
10.1002/2016GL070421
10.1002/2015GL066948
10.1029/JB095iB05p07007
10.1029/JB075i026p04997
10.1016/S0191-8141(01)00035-9
10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2
10.1029/2018GL079288
10.1785/0120180164
10.1016/j.jsg.2009.05.002
10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
10.1002/2015GL064377
10.1029/2018JB017039
10.1002/2013JB010597
10.1016/j.epsl.2012.05.014
10.1130/0091-7613(2002)030<0843:SESOGM>2.0.CO;2
10.1002/2015JB012603
10.1785/0120000006
10.1785/0120190261
10.1016/j.tecto.2018.07.007
10.1073/pnas.1715284115
10.1785/0220190182
10.1126/science.aag2583
10.1063/1.1712886
10.1785/BSSA0890030733
10.1111/j.1365-246X.2012.05694.x
10.1126/sciadv.aav7172
10.1029/2010JB007449
10.1098/rspa.1957.0133
10.1785/0120160175
10.1126/science.aaw7354
10.1126/science.aat2010
10.3133/ofr20111060
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright John Wiley & Sons, Inc. 2020
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
– notice: Copyright John Wiley & Sons, Inc. 2020
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2020GL087254
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4d9fe02cbf2b4b9b89070f606fb00bf5
10_1029_2020GL087254
GRL60893
Genre article
GeographicLocations British Columbia Canada
Canada
GeographicLocations_xml – name: British Columbia Canada
– name: Canada
GrantInformation_xml – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC)
  funderid: STPGP/494141‐2016
– fundername: Gouvernement du Canada | Natural Resources Canada (NRCan)
– fundername: National Natural Science Foundation of China (NNSFC)
  funderid: 41822401
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: 428868223
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
GROUPED_DOAJ
ID FETCH-LOGICAL-a3953-2470814a6e7f147f9b326e09682e785ceba1c41f355fb001cd5951e4d16117923
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Mon Oct 13 19:21:30 EDT 2025
Thu Oct 09 07:10:32 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Thu Oct 16 04:37:53 EDT 2025
Wed Jan 22 16:32:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3953-2470814a6e7f147f9b326e09682e785ceba1c41f355fb001cd5951e4d16117923
Notes A. F. Peña Castro and M. P. Roth contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8055-1977
0000-0001-7640-3437
0000-0001-9150-9416
0000-0002-5323-8077
0000-0002-7998-107X
0000-0001-9807-4953
0000-0002-9920-0015
0000-0002-3538-8020
OpenAccessLink https://doaj.org/article/4d9fe02cbf2b4b9b89070f606fb00bf5
PQID 2427563042
PQPubID 54723
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4d9fe02cbf2b4b9b89070f606fb00bf5
proquest_journals_2427563042
crossref_primary_10_1029_2020GL087254
crossref_citationtrail_10_1029_2020GL087254
wiley_primary_10_1029_2020GL087254_GRL60893
PublicationCentury 2000
PublicationDate 28 July 2020
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 28 July 2020
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_1_11_1
e_1_2_8_1_36_1
e_1_2_8_1_13_1
e_1_2_8_1_34_1
e_1_2_8_1_32_1
e_1_2_8_1_30_1
e_1_2_8_1_51_1
e_1_2_8_1_9_1
e_1_2_8_2_7_1
e_1_2_8_2_9_1
e_1_2_8_1_27_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_22_1
e_1_2_8_1_47_1
e_1_2_8_1_24_1
e_1_2_8_1_45_1
e_1_2_8_2_3_1
e_1_2_8_1_43_1
e_1_2_8_2_5_1
e_1_2_8_1_20_1
Mahani A. B. (e_1_2_8_1_26_1) 2019; 90
e_1_2_8_1_41_1
e_1_2_8_2_10_1
e_1_2_8_2_14_1
e_1_2_8_2_12_1
e_1_2_8_1_3_1
e_1_2_8_1_7_1
e_1_2_8_1_5_1
e_1_2_8_1_19_1
Barclay J. E. (e_1_2_8_1_4_1) 1990; 38
e_1_2_8_1_15_1
e_1_2_8_1_17_1
e_1_2_8_1_38_1
e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_14_1
e_1_2_8_1_33_1
e_1_2_8_1_31_1
e_1_2_8_1_10_1
e_1_2_8_1_52_1
e_1_2_8_1_50_1
e_1_2_8_1_8_1
e_1_2_8_2_8_1
e_1_2_8_1_28_1
e_1_2_8_1_49_1
e_1_2_8_1_23_1
e_1_2_8_1_46_1
e_1_2_8_1_25_1
e_1_2_8_1_44_1
e_1_2_8_2_2_1
e_1_2_8_1_42_1
e_1_2_8_1_21_1
e_1_2_8_1_40_1
e_1_2_8_2_6_1
e_1_2_8_2_11_1
e_1_2_8_2_15_1
e_1_2_8_2_13_1
e_1_2_8_1_2_1
Boatwright J. (e_1_2_8_2_4_1) 1978; 68
e_1_2_8_1_6_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
e_1_2_8_1_18_1
e_1_2_8_1_37_1
References_xml – ident: e_1_2_8_1_2_1
  doi: 10.1785/0220150263
– ident: e_1_2_8_1_8_1
  doi: 10.1126/sciadv.aau4065
– ident: e_1_2_8_2_8_1
  doi: 10.1785/BSSA0660030639
– ident: e_1_2_8_2_13_1
  doi: 10.1093/gji/ggx259
– ident: e_1_2_8_1_21_1
– ident: e_1_2_8_1_38_1
  doi: 10.1126/science.aao0159
– ident: e_1_2_8_1_25_1
  doi: 10.1007/978-94-015-9536-0_5
– ident: e_1_2_8_1_35_1
  doi: 10.1093/gji/ggw327
– ident: e_1_2_8_1_37_1
  doi: 10.1111/gfl.12089
– ident: e_1_2_8_1_49_1
  doi: 10.1002/2015GC006167
– ident: e_1_2_8_2_11_1
  doi: 10.1029/96JB03228
– ident: e_1_2_8_2_2_1
  doi: 10.1029/95JB02397
– ident: e_1_2_8_1_18_1
  doi: 10.1111/j.1468-8123.2010.00278.x
– ident: e_1_2_8_1_50_1
  doi: 10.1785/0120160275
– volume: 90
  start-page: 1457
  issue: 4
  year: 2019
  ident: e_1_2_8_1_26_1
  article-title: Ground motion characteristics of the 30 November 2018 injection induced earthquake sequence in northeast British Columbia, Canada
  publication-title: Seismological Research Letters
– ident: e_1_2_8_2_6_1
  doi: 10.1785/BSSA05406A1875
– ident: e_1_2_8_1_12_1
  doi: 10.1126/science.1225942
– ident: e_1_2_8_2_14_1
  doi: 10.1190/1.1567241
– ident: e_1_2_8_1_43_1
  doi: 10.1785/0220160188
– ident: e_1_2_8_1_10_1
  doi: 10.1002/2016GL069800
– ident: e_1_2_8_2_9_1
  doi: 10.1111/j.1365-246X.2007.03592.x
– ident: e_1_2_8_2_3_1
  doi: 10.1785/BSSA0840061978
– ident: e_1_2_8_1_34_1
  doi: 10.1016/j.jsg.2017.08.004
– ident: e_1_2_8_2_10_1
  doi: 10.1016/j.cageo.2008.06.007
– ident: e_1_2_8_1_23_1
  doi: 10.1002/grl.50298
– ident: e_1_2_8_1_36_1
  doi: 10.1785/0220200086
– volume: 38
  start-page: 115
  issue: 1
  year: 1990
  ident: e_1_2_8_1_4_1
  article-title: Dynamic casting and growth faulting: Dawson Creek graben complex, Carboniferous‐Permian Peace River embayment, Western Canada
  publication-title: Bulletin of Canadian Petroleum Geology
– ident: e_1_2_8_1_9_1
  doi: 10.1785/0220170151
– ident: e_1_2_8_1_24_1
  doi: 10.1073/pnas.1913625117
– ident: e_1_2_8_1_11_1
  doi: 10.1002/2016GL070421
– ident: e_1_2_8_1_14_1
  doi: 10.1002/2015GL066948
– ident: e_1_2_8_1_28_1
  doi: 10.1029/JB095iB05p07007
– ident: e_1_2_8_1_48_1
– ident: e_1_2_8_2_5_1
  doi: 10.1029/JB075i026p04997
– ident: e_1_2_8_1_40_1
  doi: 10.1016/S0191-8141(01)00035-9
– ident: e_1_2_8_1_42_1
  doi: 10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2
– ident: e_1_2_8_1_19_1
  doi: 10.1029/2018GL079288
– ident: e_1_2_8_1_45_1
  doi: 10.1785/0120180164
– ident: e_1_2_8_1_30_1
  doi: 10.1016/j.jsg.2009.05.002
– ident: e_1_2_8_1_7_1
  doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
– ident: e_1_2_8_1_47_1
  doi: 10.1002/2015GL064377
– ident: e_1_2_8_1_51_1
  doi: 10.1029/2018JB017039
– ident: e_1_2_8_1_29_1
  doi: 10.1002/2013JB010597
– ident: e_1_2_8_1_31_1
  doi: 10.1016/j.epsl.2012.05.014
– volume: 68
  start-page: 1117
  issue: 4
  year: 1978
  ident: e_1_2_8_2_4_1
  article-title: Detailed spectral analysis of two small New York State earthquakes
  publication-title: Bulletin of the Seismological Society of America
– ident: e_1_2_8_1_32_1
  doi: 10.1130/0091-7613(2002)030<0843:SESOGM>2.0.CO;2
– ident: e_1_2_8_1_52_1
  doi: 10.1002/2015JB012603
– ident: e_1_2_8_1_17_1
– ident: e_1_2_8_1_44_1
  doi: 10.1785/0120000006
– ident: e_1_2_8_1_46_1
  doi: 10.1785/0120190261
– ident: e_1_2_8_1_16_1
  doi: 10.1016/j.tecto.2018.07.007
– ident: e_1_2_8_1_20_1
  doi: 10.1073/pnas.1715284115
– ident: e_1_2_8_1_22_1
  doi: 10.1785/0220190182
– ident: e_1_2_8_1_3_1
  doi: 10.1126/science.aag2583
– ident: e_1_2_8_1_6_1
  doi: 10.1063/1.1712886
– ident: e_1_2_8_2_12_1
  doi: 10.1785/BSSA0890030733
– ident: e_1_2_8_2_15_1
  doi: 10.1111/j.1365-246X.2012.05694.x
– ident: e_1_2_8_1_13_1
  doi: 10.1126/sciadv.aav7172
– ident: e_1_2_8_1_39_1
  doi: 10.1029/2010JB007449
– ident: e_1_2_8_2_7_1
  doi: 10.1098/rspa.1957.0133
– ident: e_1_2_8_1_33_1
– ident: e_1_2_8_1_27_1
  doi: 10.1785/0120160175
– ident: e_1_2_8_1_5_1
  doi: 10.1126/science.aaw7354
– ident: e_1_2_8_1_15_1
  doi: 10.1126/science.aat2010
– ident: e_1_2_8_1_41_1
  doi: 10.3133/ofr20111060
SSID ssj0003031
Score 2.5166652
Snippet Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine...
Abstract Source processes of injection‐induced earthquakes involve complex fluid‐rock interaction often elusive to regional seismic monitoring. Here we combine...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aftershocks
Chatter
Coastal inlets
Computational fluid dynamics
Deformation
Diagnostic systems
Earthquakes
Evolution
Fluid flow
Fluid pressure
Fluids
fracture network
Geological faults
Geological hazards
Graben
Hazard assessment
Hydraulic fracturing
induced seismicity
Injection
Modelling
Monitoring
Natural gas exploration
Oil and gas exploration
Permeability
Redevelopment
Sedimentary rocks
Seismic activity
Seismic hazard
Seismicity
Seismographs
Sequencing
Shale
Shale gas
Slip
Stress transfer
Thrust faults
Title Stress Chatter via Fluid Flow and Fault Slip in a Hydraulic Fracturing‐Induced Earthquake Sequence in the Montney Formation, British Columbia
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL087254
https://www.proquest.com/docview/2427563042
https://doaj.org/article/4d9fe02cbf2b4b9b89070f606fb00bf5
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: AVUZU
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQERIXxK9YKJUPcIKIxLFj-1hWza5Q4cCyqOIS2c5YjbpKS7vbam-8ATwjT8LY8VbbA3DhElmRE1kz4_E3ycw3hLzEE9gUaEm408BnXPsqM6VzmVSag2gtiMi2_-FjNZ3z90fiaKvVV8gJG-iBB8G95a32kDNnPbPcaqswmss9wm6PBmN9ZC_Nld4EU8kHo2MeeuVpnikmq5TynjMdov18cpgryQS_cRhFzv4bQHMbrsbzpr5P7iWgSPeHBT4gt6B_SO5MYiPeNY5i6qa7eER-zGK5Bx0fR6pMetkZWi9WXYvX0ytqehyY1WJJZ4vujHY9NXS6bs_xVudoHYqkYqXir-8_QxsPBy09QKkcf1uZE6CzlGkdnkOoSNEFLHtY03pT8_iGJlokOg5-znbmMZnXB5_H0yy1WUCtaFFmjEvEBdxUIH3BpdcWIR1gaKMYSCUcWFM4XnhEJkHmhWsFwjLgLYLFItAPPiE7_WkPTwltK1m4SoEVgGGfKoxvS5t7MKI0JXqPEXm9kXfjEgd5aIWxaOK_cKabbe2MyKvr2WcD98Yf5r0LqrueExiz4w20oybZUfMvOxqR3Y3im7SNLxrELzIQqHGGK4_G8NeFNJNPhxUaY_nsf6zoObkbXh4-JDO1S3aW5yt4gQhoaffI7f0v86_zvWj0vwGTBwCr
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELYgFYJLxa8aKOADnGDF_ti73mOJugmQ9kAaVHGxbK9NV0SbkiZFufEG9Bn7JMw4TpQeQOKysqzxanfHM_7G6_mGkFewAqsEZhJYmnURK10eqcyYqBAls7zWlnu2_aPjfDBmH0_5aahzirkwK36IzYYbWob312jguCEd2AaQJBPC9rg_jEUBMc5tssNxZeqQnYMv46_jjTMGD70qmleySKRFHs6-wx3ebY-_sSp58v4biHMbt_qFp7pPdgNipAcrFT8gt2z7kNzp-4q8S2j5M5zm4hH5PfJ5H7R35jkz6WWjaDVZNDVcpz-paqGhFpM5HU2ac9q0VNHBsp5BV2NohdlSPmXx-tcV1vMwtqaHMK_OfizUd0tH4cg1jgPMSMEXzFu7pNU6-fEtDfxItIcOTzfqMRlXhye9QRTqLYB6Sp5FKSsAIDCV28IlrHClBmxnIcYRqS0EN1arxLDEAURxCLZMzQGfWVYDakyQh_AJ6bTT1u4RWudFYnJhNbcQ_4lEuTrTsbOKZyoDN9Ilb9bfW5pARo41MSbS_xRPS7mtnS55vZE-X5Fw_EXuPapuI4PU2b5jOvsmgyVKVpfOxqnRLtVMl1qU4PUcxHH4TtrxLtlfK14Ge76QAGQKZFJjKTy5nwz_fBDZ_zzMY4CCT_9L-iW5Ozg5Gsrhh-NPz8g9lMFt5FTsk858trDPAf_M9Yswx_8A_537AQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagKxAXxFNbdgEf4AQReThxfFzKpgXKClGKVlwiP8ZsRJV2uy2oN_4B_EZ-CWPXrboHkLhEljWOkoxn_I3j-YaQJ7gCywRnEloa2IgJW0Qy0zripWCQGwW5Z9t_d1IMxuzNaX4a6py6XJg1P8R2w81ZhvfXzsBhZmxgG3AkmRi2x_1hXHKMca6SPVzKY9Yhe0efxp_HW2eMHnpdNE-wqEx5Ec6-4x1e7I6_tCp58v5LiHMXt_qFp7pFbgbESI_WKr5NrkB7h1zr-4q8K2z5M5z64i75OfJ5H7R35jkz6bdG0mqybAxep9-pbLEhl5MFHU2aGW1aKulgZebY1WhauWwpn7L4-8cvV89Dg6HHOK_OzpfyK9BROHLtxiFmpOgLFi2saLVJfnxOAz8S7TmHpxp5j4yr44-9QRTqLaB6RJ5FKeMIEJgsgNuEcSsUYjvAGKdMgZe5BiUTzRKLEMU6sKVNjvgMmEHUmDgewvuk005b2CfUFDzRRQkqB4z_ykRak6nYgswzmaEb6ZJnm-9d60BG7mpiTGr_UzwV9a52uuTpVnq2JuH4i9xLp7qtjKPO9h3T-Zc6WGLNjLAQp1rZVDElVCnQ61mM49w7KZt3yeFG8XWw54sagQx3TGosxSf3k-GfD1L3PwyLGKHgg_-Sfkyuv39V1cPXJ28PyA0n4naR0_KQdBbzJTxE-LNQj8IU_wO_QPqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+Chatter+via+Fluid+Flow+and+Fault+Slip+in+a+Hydraulic+Fracturing%E2%80%90Induced+Earthquake+Sequence+in+the+Montney+Formation%2C+British+Columbia&rft.jtitle=Geophysical+research+letters&rft.au=Pe%C3%B1a+Castro%2C+A.+F.&rft.au=Roth%2C+M.+P.&rft.au=Verdecchia%2C+A.&rft.au=Onwuemeka%2C+J.&rft.date=2020-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020GL087254&rft.externalDBID=10.1029%252F2020GL087254&rft.externalDocID=GRL60893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon