A Generic Model of Global Earthquake Rupture Characteristics Revealed by Machine Learning

Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture characteristics? Here, we use a machine learning algo...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 49; no. 8
Main Author Li, Zefeng
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.04.2022
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2021GL096464

Cover

Abstract Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture characteristics? Here, we use a machine learning algorithm to derive a generic model of global earthquake source time functions. The model indicates that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Despite the standard long‐tail and near‐symmetric moment release processes, the model reveals two special rupture types: runaway earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release patterns imposes a limit on magnitude predictability in earthquake early warning. Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes. Plain Language Summary Over the past decades, seismologists have observed great variability in the rupture processes of many large earthquakes. However, some recent studies suggest that the average rupture behavior could be unexpectedly simple. Can the average behavior be representative of most earthquakes? To what extent do large earthquakes share common rupture characteristics? Here, we use machine learning to derive a panoptic picture, that is, a generic model of source time functions, for global earthquakes. The model shows that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Besides, it reveals two special rupture types: runaway earthquakes with weak initial phases, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes, which affects how well we can predict earthquake magnitude in earthquake early warning. Key Points A generic model of characteristic source time functions is derived from global earthquake observations using machine learning The model presents a panoptic view of the similarity and the diversity in the rupture processes of large earthquakes The diversity of moment release patterns, together with absolute duration variability, limits magnitude predictability in early warning
AbstractList Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture characteristics? Here, we use a machine learning algorithm to derive a generic model of global earthquake source time functions. The model indicates that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Despite the standard long‐tail and near‐symmetric moment release processes, the model reveals two special rupture types: runaway earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release patterns imposes a limit on magnitude predictability in earthquake early warning. Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes.
Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture characteristics? Here, we use a machine learning algorithm to derive a generic model of global earthquake source time functions. The model indicates that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Despite the standard long‐tail and near‐symmetric moment release processes, the model reveals two special rupture types: runaway earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release patterns imposes a limit on magnitude predictability in earthquake early warning. Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes. Over the past decades, seismologists have observed great variability in the rupture processes of many large earthquakes. However, some recent studies suggest that the average rupture behavior could be unexpectedly simple. Can the average behavior be representative of most earthquakes? To what extent do large earthquakes share common rupture characteristics? Here, we use machine learning to derive a panoptic picture, that is, a generic model of source time functions, for global earthquakes. The model shows that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Besides, it reveals two special rupture types: runaway earthquakes with weak initial phases, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes, which affects how well we can predict earthquake magnitude in earthquake early warning. A generic model of characteristic source time functions is derived from global earthquake observations using machine learning The model presents a panoptic view of the similarity and the diversity in the rupture processes of large earthquakes The diversity of moment release patterns, together with absolute duration variability, limits magnitude predictability in early warning
Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture characteristics? Here, we use a machine learning algorithm to derive a generic model of global earthquake source time functions. The model indicates that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Despite the standard long‐tail and near‐symmetric moment release processes, the model reveals two special rupture types: runaway earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release patterns imposes a limit on magnitude predictability in earthquake early warning. Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes. Plain Language Summary Over the past decades, seismologists have observed great variability in the rupture processes of many large earthquakes. However, some recent studies suggest that the average rupture behavior could be unexpectedly simple. Can the average behavior be representative of most earthquakes? To what extent do large earthquakes share common rupture characteristics? Here, we use machine learning to derive a panoptic picture, that is, a generic model of source time functions, for global earthquakes. The model shows that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Besides, it reveals two special rupture types: runaway earthquakes with weak initial phases, and complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). Our results present a panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes, which affects how well we can predict earthquake magnitude in earthquake early warning. Key Points A generic model of characteristic source time functions is derived from global earthquake observations using machine learning The model presents a panoptic view of the similarity and the diversity in the rupture processes of large earthquakes The diversity of moment release patterns, together with absolute duration variability, limits magnitude predictability in early warning
Author Li, Zefeng
Author_xml – sequence: 1
  givenname: Zefeng
  orcidid: 0000-0003-4405-8872
  surname: Li
  fullname: Li, Zefeng
  email: zefengli@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNp9kEFLw0AQhRepYFu9-QMWvFqd3Ww2ybGUGoUUoejBU5huZu3WmLSbROm_N9IeRNDTzOH73oM3YoOqroixSwE3AmRyK0GKNINEK61O2FAkSk1igGjAhgBJ_8tIn7FR02wAIIBADNnLlKdUkXeGL-qCSl5bnpb1Cks-R9-udx2-EV9227bzxGdr9GjaHm9aZxq-pA_Ckgq-2vMFmrWriGeEvnLV6zk7tVg2dHG8Y_Z8N3-a3U-yx_RhNs0mGCQhTAJjRGy1FUomJgwRFdqC0EqNBRkhVlZYwlih0UFcGFWYGDFKorA3IgFhMGZXh9ytr3cdNW2-qTtf9ZW51GEYRnEMSU_JA2V83TSebG5ci62rq9ajK3MB-feE-c8Je-n6l7T17h39_i_82PHpStr_y-bpMtMKNARf8cuCNg
CitedBy_id crossref_primary_10_3389_fphy_2023_1070010
crossref_primary_10_1093_gji_ggac215
crossref_primary_10_1109_TGRS_2022_3230829
crossref_primary_10_56741_jnest_v2i03_393
crossref_primary_10_1073_pnas_2219573120
crossref_primary_10_1093_gji_ggad068
crossref_primary_10_1109_JSEN_2024_3354857
crossref_primary_10_1016_j_jseaes_2023_105610
crossref_primary_10_1016_j_eqrea_2022_100197
Cites_doi 10.1016/j.cageo.2021.104762
10.1016/j.pepi.2016.05.012
10.1016/j.pepi.2020.106584
10.1038/ncomms3606
10.1002/2015JB012426
10.1029/2019JB018045
10.1126/sciadv.aao4915
10.1029/JB075i026p04997
10.1785/0120200285
10.1190/geo2021-0138.1
10.1109/LGRS.2017.2766130
10.1029/2006GL028005
10.1038/s41586-019-1784-0
10.1038/s41467-018-06168-3
10.1002/2015GL065336
10.1126/science.aaz0109
10.1038/s41586-019-1508-5
10.1126/science.1112260
10.1038/nature06521
10.1785/0220200403
10.1126/science.1224030
10.1126/science.aan5643
10.1029/2003JB002762
10.1029/2005JB003979
10.1029/2000JB900468
10.1126/sciadv.aav2032
10.1785/gssrl.68.3.386
10.1785/bssa05406a1811
10.1126/science.1167476
10.1029/2018GL080687
10.1016/j.epsl.2013.05.024
10.1126/science.265.5173.771
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2021GL096464
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2021GL096464
GRL64060
Genre article
GrantInformation_xml – fundername: University of Science and Technology of China
  funderid: KY2080000079
– fundername: The National Key R&D Program of China
  funderid: 2021YFC3000700
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
AFPKN
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3950-3cc18f6f1429c55aa4afdeaf26adec11bf1fea84ac638dc4dc8aa7975f1471053
ISSN 0094-8276
IngestDate Fri Jul 25 12:26:43 EDT 2025
Wed Oct 01 02:25:04 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Sun Jul 06 04:45:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3950-3cc18f6f1429c55aa4afdeaf26adec11bf1fea84ac638dc4dc8aa7975f1471053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4405-8872
PQID 2655578809
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_2655578809
crossref_citationtrail_10_1029_2021GL096464
crossref_primary_10_1029_2021GL096464
wiley_primary_10_1029_2021GL096464_GRL64060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 April 2022
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 04
  year: 2022
  text: 28 April 2022
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 87
2013; 4
2019; 5
2006; 33
1997; 68
2019; 124
2019; 366
1970; 75
2016; 121
2004; 109
2017; 357
2006; 111
2020; 309
2001; 106
2021; 92
2018; 9
1994; 265
2018; 4
2017; 14
2019; 46
2015; 42
1964; 54
2005; 308
2017
2019; 576
2014; 19
2021; 152
2021; 111
2013; 374
2016; 257
2008; 451
2012; 337
2019; 573
2009; 324
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Kingma D. P. (e_1_2_9_17_1) 2014
Kingma D. P. (e_1_2_9_16_1) 2017
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 265
  start-page: 771
  issue: 5173
  year: 1994
  end-page: 774
  article-title: The temporal distribution of seismic radiation during deep earthquake rupture
  publication-title: Science
– volume: 5
  issue: 5
  year: 2019
  article-title: Characterizing large earthquakes before rupture is complete
  publication-title: Science Advances
– volume: 366
  start-page: 346
  issue: 6463
  year: 2019
  end-page: 351
  article-title: Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence
  publication-title: Science
– volume: 14
  start-page: 2395
  issue: 12
  year: 2017
  end-page: 2397
  article-title: Prediction of subsurface NMR T2 distributions in a Shale petroleum system using variational autoencoder‐based neural networks
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 111
  year: 2006
  article-title: Comprehensive analysis of earthquake source spectra in southern California
  publication-title: Journal of Geophysical Research
– volume: 576
  start-page: 96
  issue: 7785
  year: 2019
  end-page: 101
  article-title: Upper‐plate rigidity determines depth‐varying rupture behaviour of megathrust earthquakes
  publication-title: Nature
– volume: 33
  year: 2006
  article-title: The 17 July 2006 Java tsunami earthquake
  publication-title: Geophysical Research Letters
– volume: 324
  start-page: 226
  issue: 5924
  year: 2009
  end-page: 229
  article-title: A great earthquake rupture across a rapidly evolving three‐plate boundary
  publication-title: Science
– volume: 152
  year: 2021
  article-title: Deep generative models in inversion: The impact of the generator’s nonlinearity and development of a new approach based on a variational autoencoder
  publication-title: Computers & Geosciences
– volume: 106
  start-page: 11137
  issue: B6
  year: 2001
  end-page: 11150
  article-title: Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions
  publication-title: Journal of Geophysical Research
– volume: 308
  start-page: 1133
  issue: 5725
  year: 2005
  end-page: 1139
  article-title: Rupture process of the 2004 Sumatra‐Andaman earthquake
  publication-title: Science
– volume: 87
  start-page: 1
  year: 2021
  end-page: 65
  article-title: Uncertainty quantification in stochastic inversion with dimensionality reduction using variational autoencoder
  publication-title: Geophysics
– volume: 42
  start-page: 7467
  issue: 18
  year: 2015
  end-page: 7475
  article-title: Dynamics of the 2015 M7.8 Nepal earthquake
  publication-title: Geophysical Research Letters
– volume: 54
  start-page: 1811
  issue: 6A
  year: 1964
  end-page: 1841
  article-title: Total energy and energy spectral density of elastic wave radiation from propagating faults
  publication-title: Bulletin of the Seismological Society of America
– volume: 19
  year: 2014
  article-title: Auto‐encoding variational bayes
– volume: 309
  year: 2020
  article-title: Crustal model in eastern Qinghai‐Tibet plateau and Western Yangtze craton based on conditional variational autoencoder
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 9
  issue: 1
  year: 2018
  article-title: Hierarchical rupture growth evidenced by the initial seismic waveforms
  publication-title: Nature Communications
– volume: 357
  start-page: 1277
  issue: 6357
  year: 2017
  end-page: 1281
  article-title: The hidden simplicity of subduction megathrust earthquakes
  publication-title: Science
– volume: 451
  start-page: 561
  issue: 7178
  year: 2008
  end-page: 565
  article-title: A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands
  publication-title: Nature
– volume: 374
  start-page: 92
  year: 2013
  end-page: 100
  article-title: Using centroid time‐delays to characterize source durations and identify earthquakes with unique characteristics
  publication-title: Earth and Planetary Science Letters
– volume: 337
  start-page: 724
  issue: 6095
  year: 2012
  end-page: 726
  article-title: Earthquake in a maze: Compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake
  publication-title: Science
– volume: 4
  issue: 1
  year: 2013
  article-title: Source time function properties indicate a strain drop independent of earthquake depth and magnitude
  publication-title: Nature Communications
– volume: 257
  start-page: 149
  year: 2016
  end-page: 157
  article-title: A new database of source time functions (STFs) extracted from the SCARDEC method
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 121
  start-page: 826
  year: 2016
  end-page: 844
  article-title: Rupture characteristics of major and great ( ≥7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 92
  start-page: 2343
  issue: 4
  year: 2021
  end-page: 2353
  article-title: Source time function clustering reveals patterns in earthquake dynamics
  publication-title: Seismological Research Letters
– volume: 109
  year: 2004
  article-title: Deep earthquake rupture histories determined by global stacking of broadband P waveforms
  publication-title: Journal of Geophysical Research
– volume: 111
  start-page: 1563
  issue: 3
  year: 2021
  end-page: 1576
  article-title: Exploring the dimensionality of ground‐motion data by applying autoencoder techniques
  publication-title: Bulletin of the Seismological Society of America
– volume: 68
  start-page: 386
  issue: 3
  year: 1997
  end-page: 400
  article-title: Source time functions
  publication-title: Seismological Research Letters
– volume: 573
  start-page: 112
  issue: 7772
  year: 2019
  end-page: 116
  article-title: Frequent observations of identical onsets of large and small earthquakes
  publication-title: Nature
– year: 2017
– volume: 46
  start-page: 2458
  issue: 5
  year: 2019
  end-page: 2466
  article-title: Energetic onset of earthquakes
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 8942
  year: 2019
  end-page: 8952
  article-title: How does seismic rupture accelerate? Observational insights from earthquake source time functions
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 4
  issue: 3
  year: 2018
  article-title: Global variations of large megathrust earthquake rupture characteristics
  publication-title: Science Advances
– volume: 75
  start-page: 4997
  issue: 26
  year: 1970
  end-page: 5009
  article-title: Tectonic stress and the spectra of seismic shear waves from earthquakes
  publication-title: Journal of Geophysical Research
– ident: e_1_2_9_20_1
  doi: 10.1016/j.cageo.2021.104762
– ident: e_1_2_9_32_1
  doi: 10.1016/j.pepi.2016.05.012
– ident: e_1_2_9_6_1
  doi: 10.1016/j.pepi.2020.106584
– ident: e_1_2_9_31_1
  doi: 10.1038/ncomms3606
– ident: e_1_2_9_34_1
  doi: 10.1002/2015JB012426
– ident: e_1_2_9_26_1
  doi: 10.1029/2019JB018045
– ident: e_1_2_9_33_1
  doi: 10.1126/sciadv.aao4915
– ident: e_1_2_9_5_1
  doi: 10.1029/JB075i026p04997
– ident: e_1_2_9_9_1
  doi: 10.1785/0120200285
– ident: e_1_2_9_19_1
  doi: 10.1190/geo2021-0138.1
– ident: e_1_2_9_18_1
  doi: 10.1109/LGRS.2017.2766130
– ident: e_1_2_9_4_1
  doi: 10.1029/2006GL028005
– ident: e_1_2_9_28_1
  doi: 10.1038/s41586-019-1784-0
– ident: e_1_2_9_24_1
  doi: 10.1038/s41467-018-06168-3
– year: 2014
  ident: e_1_2_9_17_1
– volume-title: Adam: A method for stochastic optimization
  year: 2017
  ident: e_1_2_9_16_1
– ident: e_1_2_9_8_1
  doi: 10.1002/2015GL065336
– ident: e_1_2_9_27_1
  doi: 10.1126/science.aaz0109
– ident: e_1_2_9_15_1
  doi: 10.1038/s41586-019-1508-5
– ident: e_1_2_9_2_1
  doi: 10.1126/science.1112260
– ident: e_1_2_9_3_1
  doi: 10.1038/nature06521
– ident: e_1_2_9_35_1
  doi: 10.1785/0220200403
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1224030
– ident: e_1_2_9_21_1
  doi: 10.1126/science.aan5643
– ident: e_1_2_9_25_1
  doi: 10.1029/2003JB002762
– ident: e_1_2_9_29_1
  doi: 10.1029/2005JB003979
– ident: e_1_2_9_13_1
  doi: 10.1029/2000JB900468
– ident: e_1_2_9_22_1
  doi: 10.1126/sciadv.aav2032
– ident: e_1_2_9_30_1
  doi: 10.1785/gssrl.68.3.386
– ident: e_1_2_9_12_1
  doi: 10.1785/bssa05406a1811
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1167476
– ident: e_1_2_9_7_1
  doi: 10.1029/2018GL080687
– ident: e_1_2_9_10_1
  doi: 10.1016/j.epsl.2013.05.024
– ident: e_1_2_9_14_1
  doi: 10.1126/science.265.5173.771
SSID ssj0003031
Score 2.4866035
Snippet Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest that the average rupture behavior...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Earthquake magnitude
Earthquake prediction
earthquake process
Earthquakes
Learning algorithms
Learning behaviour
Machine learning
Modelling
Origins
Rupture
Rupturing
Seismic activity
Similarity
source time function
Time functions
Variability
Title A Generic Model of Global Earthquake Rupture Characteristics Revealed by Machine Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL096464
https://www.proquest.com/docview/2655578809
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: AVUZU
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELWgCGkvCNhdLZ_yAU5VIHHtfBwrBEWocKjoCrhEjjPeIlBboEWCX8_EdtJSdRFwiSLLjq08Z_wm9rwhZI8jKc9ZQ3mNImyZB0p4cQC-50uNFlNKDbJwFM8vwtMuP7sSV5OUfia6ZJQdqNe5cSXfQRXLENciSvYLyFYPxQK8R3zxigjj9VMYN61q9K0yKc0Mq7Qa_vVjrN17GMs7qHfGQ7NLcDQjzdyB54IkGgJ6bo5UQqm2-m-asrZgMCzBdNJAvfq9iQKq-HjbnAm4AQ2urfuPgC6oz8u4bGcbE-7FLHLC1NYcJhzLfJuXtrSXVmLUzYt4rhn2WaFiir0ErTb6SNwKlb9Xu55ZhaqzgWZXnCXpdOtFsoQDY36NLDX_dm-61VqLC7DNiejG7kIbsP3hdPv3pGPiSUz7I4ZQXK6SFecJ0KaFdY0sQH-dLLdMpuUXvDNnc9XTT3LdpA5mamCmA00tzHQCM3Uw0xmYaQkzzV6og5mWMP8i3ZPjy6NTz2XE8GQjEbhgKhXEOtQBsgglhJRc6hykZqHMQQVBpgP8uGIuFZrVXPFcxVJGSSSwBVJJ0fhNav1BH_4Qmusoy6TIhQDGI51nIHSx5co0QCGauEHq5StLlZOLL7KW3KfzANog-1XtoZVJ-U-97fLtp-5DekpZKAQuHLGfYKcGkQ-fkbY67RB5qL_5yU63yI_JhN8mtdHjGHaQSo6yXTef3gA4sG7T
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UYvRifEYUtQc9mY27pd3HkRAeKnAgYNDLptuHGgmggAn_3uluQTho4m0P024y7cx8bWe-QeiKAiiXpCSckilbpp5gTugp13G5Bo_JuVbcHBRbbb_Ro_d91rd9Tk0tTMYPsbxwM5aR-mtj4OZC2rINGJJMOLZ79SZAcOrTTZRnJjLlUL782HvuLZ0xeOisaV5EnZAEvs19hxluV8evR6UfqLkKWNOIU9tDuxYq4nK2tvtoQw0P0FY9bcU7h680eVNMDtFTGafs0W8Cm9ZmAzzSOOPyx1XYGa8fM_6ucGc2Nq8FuLJO0Yw76suARYmTOW6lqZUKW9bVlyPUq1W7lYZjWyY4vBQx8KhCeKH2tQdhRjDGOeVaKq6Jz6USnpdoD7QfUi7A7qSgUoScB1HAYARgDVY6RrnhaKhOEJY6SBLOJGOK0EDLRDFt3uSIVsqw6hXQzUJlsbB84qatxSBO37VJFK8quICul9LjjEfjF7niQvuxtaZJTHzGwLOEbgQ_TVfkzznieqfpA1BxT_8lfYm2G91WM27etR_O0A4xdQ4udUhYRLnp50ydA_qYJhd2h30DCzfPug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UovFifEYUtQc9mY27pd3HkSAPFYghYtDLptuHGgmggAn_3uluQTxo4m0P0zaZdma-7ky_QeiMAiiXpCScknm2TD3BnNBTruNyDR6Tc624uSi22n6jS296rGf7nJq3MBk_xOKHm7GM1F8bA1cjqS3bgCHJhGu7V28CBKc-XUV5COUuzaF8-aH71F04Y_DQWdO8iDohCXxb-w4zXC6P_xmVvqHmMmBNI05tC21aqIjL2d5uoxU12EFr9bQV7wy-0uJNMd5Fj2Wcske_Cmxam_XxUOOMyx9X4WS8vE_5m8Kd6chkC3DlJ0Uz7qhPAxYlTma4lZZWKmxZV5_3ULdWva80HNsyweGliIFHFcILta89CDOCMc4p11JxTXwulfC8RHug_ZByAXYnBZUi5DyIAgYjAGuw0j7KDYYDdYCw1EGScCYZU4QGWiaKaZOTI1opw6pXQBdzlcXC8ombthb9OM1rkyheVnABnS-kRxmPxi9yxbn2Y2tN45j4jIFnCd0IFk135M854nqn6QNQcQ__JX2K1u-uanHzun17hDaIeebgUoeERZSbfEzVMYCPSXJiD9gXAMrPSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generic+Model+of+Global+Earthquake+Rupture+Characteristics+Revealed+by+Machine+Learning&rft.jtitle=Geophysical+research+letters&rft.au=Li%2C+Zefeng&rft.date=2022-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=8&rft_id=info:doi/10.1029%2F2021GL096464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021GL096464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon