Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose–response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose–response model for ERA of per- and p...
Saved in:
Published in | Environmental science & technology Vol. 58; no. 21; pp. 9314 - 9327 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/acs.est.4c00686 |
Cover
Abstract | Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose–response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose–response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose–response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations. |
---|---|
AbstractList | Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations. Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations. |
Author | Sun, Tao Wu, Huifeng Li, Fei Ji, Chenglong |
AuthorAffiliation | Chinese Academy of Sciences (CAS) CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC) Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Center for Ocean Mega-Science University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences (CAS) – name: Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory – name: Center for Ocean Mega-Science – name: University of Chinese Academy of Sciences – name: CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC) – name: Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS |
Author_xml | – sequence: 1 givenname: Tao surname: Sun fullname: Sun, Tao organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Chenglong surname: Ji fullname: Ji, Chenglong organization: Chinese Academy of Sciences (CAS) – sequence: 3 givenname: Fei orcidid: 0000-0001-7386-0835 surname: Li fullname: Li, Fei organization: Chinese Academy of Sciences (CAS) – sequence: 4 givenname: Huifeng orcidid: 0000-0002-4042-8103 surname: Wu fullname: Wu, Huifeng email: hfwu@yic.ac.cn organization: Chinese Academy of Sciences (CAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38709515$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1r3DAQhkVJaTZpz70VQS-B4s3IsmyrtyWkyUKgod1Cb0aW5UWJLG009mH_SX9utR_NIdD2IAQzzzszGr1n5MQHbwh5z2DOIGeXSuPc4DgvNEBZl6_IjIkcMlELdkJmAIxnkpc_T8kZ4gMA5BzqN-SU1xVIwcSM_FrZwdAl0m92Y2gfIl2puDaj9Wt6b2JGle_ofXDb3k0hBuUet45-n1ocldcGs6XvJm06ehviYNDiZ3rjQqscXTxNarQ6JUbcpLMvtBw2zuoUDx73za51cGGdQi4NgI90gWgQB-PHt-R1rxyad8f7nPz4cr26us3uvt4srxZ3meKyGDMBbd-3ea6YKvtOtdBKLU3RmRpMJWpgJUjQsoBSCsH7qtKl4owp6PqdpObn5OJQdxPD05R22QwWtXFOeRMmbDgTvBayqsT_URCsyMu04oR-fIE-hCn69JBElbySQuZVoj4cqakdTNdsoh1U3DZ_vicBlwdAx4AYTf-MMGh2BmiSAZpd-aMBkkK8UGg77hc-RmXdP3SfDrpd4nnWv9G_Ae_4xgM |
CitedBy_id | crossref_primary_10_1016_j_tplants_2024_11_019 crossref_primary_10_3390_ani15040610 crossref_primary_10_1016_j_jhazmat_2024_136115 crossref_primary_10_1016_j_jhazmat_2024_136205 |
Cites_doi | 10.1038/s41545-023-00274-6 10.1038/s42256-019-0138-9 10.1016/j.envpol.2013.04.031 10.1021/acs.est.1c02125 10.1016/j.envint.2019.105044 10.1021/acs.est.6b00140 10.1002/etc.3474 10.1016/j.envpol.2016.10.089 10.1016/j.scitotenv.2018.08.264 10.1007/s11676-021-01312-0 10.1021/tx300110u 10.1016/j.chemosphere.2011.06.046 10.1002/etc.4869 10.1016/j.scitotenv.2020.143072 10.1016/j.scitotenv.2018.09.163 10.1016/j.envint.2023.107977 10.1016/j.scitotenv.2021.149255 10.1002/etc.4667 10.1016/j.chemosphere.2023.140583 10.1016/j.etap.2021.103652 10.1016/j.coesh.2022.100378 10.1016/j.chemosphere.2019.125348 10.1002/etc.5733 10.1111/j.1749-6632.2010.05193.x 10.1021/acs.est.2c02896 10.1016/j.envpol.2021.118103 10.1016/j.jhazmat.2021.126689 10.1038/s41467-022-32464-0 10.1016/j.arr.2023.102028 10.1016/j.wse.2015.01.001 10.1080/02757540.2015.1116524 10.1016/j.jhazmat.2022.129355 10.1021/acs.est.3c02826 10.1021/acs.est.7b04673 10.3390/ijms19102871 10.1094/PHYTO-08-20-0364-R 10.1111/j.1461-0248.2010.01531.x 10.1016/j.watres.2023.120062 10.1016/j.cotox.2022.01.001 10.1002/etc.4684 10.1016/j.electacta.2012.04.145 10.1021/acs.est.1c00965 10.1016/j.envint.2018.06.017 10.1016/j.yrtph.2011.06.003 10.1016/j.scitotenv.2020.138637 10.1016/j.scitotenv.2019.02.418 10.1016/j.scitotenv.2022.159629 10.1016/j.scitotenv.2022.153295 10.1016/j.chemosphere.2020.127340 10.1021/acs.est.1c06896 10.1002/iub.2529 10.1016/j.aquatox.2016.03.026 10.1021/acs.est.2c03669 10.1016/j.jclepro.2022.131360 10.1002/ieam.4415 10.2203/dose-response.06-008.cedergreen 10.1039/D0EM00291G 10.1016/j.scitotenv.2023.166022 10.1021/acs.est.2c02763 10.1111/j.1600-0587.2012.07348.x 10.1016/j.jhazmat.2022.129667 10.1021/es401115q 10.1016/j.fsi.2018.08.050 10.1021/acs.est.3c01118 10.1016/j.envpol.2016.06.031 10.1021/acs.est.0c00201 10.1016/j.envpol.2020.115908 10.1016/j.scitotenv.2020.139186 10.1021/acs.est.2c07185 10.1007/s00244-021-00837-z 10.1016/j.envres.2022.113582 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1016/j.ecoenv.2021.112733 10.1016/j.scitotenv.2013.09.094 10.1016/j.jhazmat.2021.127870 10.1021/acs.est.5b02651 10.1016/j.watres.2022.118233 10.1126/science.abg9065 10.1016/j.envpol.2018.09.120 10.1113/JP275072 10.1038/ncomms11666 10.1016/j.envres.2018.12.020 10.1002/ieam.1841 10.1016/j.jhazmat.2019.121434 10.1016/j.cbi.2019.108844 10.1016/j.tox.2019.152249 10.1002/etc.3218 10.1002/etc.4640 10.1016/j.cct.2015.09.002 10.1146/annurev.pharmtox.43.100901.140223 10.1016/j.arr.2020.101019 10.1016/j.scitotenv.2020.144577 10.1038/s41514-017-0013-z 10.1007/s10844-021-00693-2 10.1016/j.envpol.2018.10.007 10.1016/j.envint.2022.107367 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Copyright American Chemical Society May 28, 2024 |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society May 28, 2024 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.4c00686 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Biotechnology Research Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 9327 |
ExternalDocumentID | 38709515 10_1021_acs_est_4c00686 h4360708 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGHSJ AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH AAYXX ABBLG ABLBI ADUKH AGXLV CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-50bffb22a1a6fdab0b9c9e4de80e758016090c94069553f77c6a311a0dfa1a683 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 08:39:02 EDT 2025 Fri Jul 11 00:29:32 EDT 2025 Mon Jun 30 04:56:02 EDT 2025 Thu Apr 03 07:04:01 EDT 2025 Tue Jul 01 02:56:13 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Wed May 29 03:14:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | subthreshold effect risk assessment hormesis biological plasticity per- and polyfluoroalkyl substances (PFAS) |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-50bffb22a1a6fdab0b9c9e4de80e758016090c94069553f77c6a311a0dfa1a683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7386-0835 0000-0002-4042-8103 |
PMID | 38709515 |
PQID | 3063795927 |
PQPubID | 45412 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3153859775 proquest_miscellaneous_3051426308 proquest_journals_3063795927 pubmed_primary_38709515 crossref_primary_10_1021_acs_est_4c00686 crossref_citationtrail_10_1021_acs_est_4c00686 acs_journals_10_1021_acs_est_4c00686 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240528 |
PublicationDateYYYYMMDD | 2024-05-28 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240528 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 Higgins J. P. T. (ref23/cit23) 2023 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1038/s41545-023-00274-6 – ident: ref30/cit30 doi: 10.1038/s42256-019-0138-9 – ident: ref31/cit31 – ident: ref65/cit65 doi: 10.1016/j.envpol.2013.04.031 – ident: ref8/cit8 doi: 10.1021/acs.est.1c02125 – ident: ref18/cit18 doi: 10.1016/j.envint.2019.105044 – ident: ref9/cit9 doi: 10.1021/acs.est.6b00140 – ident: ref61/cit61 doi: 10.1002/etc.3474 – ident: ref82/cit82 doi: 10.1016/j.envpol.2016.10.089 – ident: ref58/cit58 doi: 10.1016/j.scitotenv.2018.08.264 – ident: ref57/cit57 doi: 10.1007/s11676-021-01312-0 – ident: ref90/cit90 doi: 10.1021/tx300110u – ident: ref71/cit71 doi: 10.1016/j.chemosphere.2011.06.046 – ident: ref13/cit13 doi: 10.1002/etc.4869 – ident: ref27/cit27 – ident: ref55/cit55 doi: 10.1016/j.scitotenv.2020.143072 – ident: ref77/cit77 doi: 10.1016/j.scitotenv.2018.09.163 – ident: ref95/cit95 doi: 10.1016/j.envint.2023.107977 – ident: ref34/cit34 doi: 10.1016/j.scitotenv.2021.149255 – ident: ref98/cit98 doi: 10.1002/etc.4667 – ident: ref101/cit101 doi: 10.1016/j.chemosphere.2023.140583 – ident: ref37/cit37 – ident: ref70/cit70 doi: 10.1016/j.etap.2021.103652 – ident: ref42/cit42 doi: 10.1016/j.coesh.2022.100378 – ident: ref60/cit60 doi: 10.1016/j.chemosphere.2019.125348 – ident: ref99/cit99 doi: 10.1002/etc.5733 – ident: ref47/cit47 doi: 10.1111/j.1749-6632.2010.05193.x – ident: ref17/cit17 doi: 10.1021/acs.est.2c02896 – ident: ref78/cit78 doi: 10.1016/j.envpol.2021.118103 – ident: ref91/cit91 doi: 10.1016/j.jhazmat.2021.126689 – ident: ref29/cit29 doi: 10.1038/s41467-022-32464-0 – ident: ref41/cit41 doi: 10.1016/j.arr.2023.102028 – ident: ref88/cit88 doi: 10.1016/j.wse.2015.01.001 – ident: ref68/cit68 doi: 10.1080/02757540.2015.1116524 – ident: ref87/cit87 doi: 10.1016/j.jhazmat.2022.129355 – ident: ref83/cit83 doi: 10.1021/acs.est.3c02826 – ident: ref100/cit100 doi: 10.1021/acs.est.7b04673 – ident: ref50/cit50 doi: 10.3390/ijms19102871 – ident: ref53/cit53 doi: 10.1094/PHYTO-08-20-0364-R – ident: ref76/cit76 doi: 10.1111/j.1461-0248.2010.01531.x – volume-title: Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 year: 2023 ident: ref23/cit23 – ident: ref19/cit19 doi: 10.1016/j.watres.2023.120062 – ident: ref49/cit49 doi: 10.1016/j.cotox.2022.01.001 – ident: ref69/cit69 doi: 10.1002/etc.4684 – ident: ref74/cit74 doi: 10.1016/j.electacta.2012.04.145 – ident: ref79/cit79 doi: 10.1021/acs.est.1c00965 – ident: ref38/cit38 doi: 10.1016/j.envint.2018.06.017 – ident: ref43/cit43 doi: 10.1016/j.yrtph.2011.06.003 – ident: ref44/cit44 doi: 10.1016/j.scitotenv.2020.138637 – ident: ref66/cit66 doi: 10.1016/j.scitotenv.2019.02.418 – ident: ref85/cit85 doi: 10.1016/j.scitotenv.2022.159629 – ident: ref20/cit20 doi: 10.1016/j.scitotenv.2022.153295 – ident: ref93/cit93 doi: 10.1016/j.chemosphere.2020.127340 – ident: ref1/cit1 doi: 10.1021/acs.est.1c06896 – ident: ref15/cit15 doi: 10.1002/iub.2529 – ident: ref75/cit75 doi: 10.1016/j.aquatox.2016.03.026 – ident: ref11/cit11 doi: 10.1021/acs.est.2c03669 – ident: ref32/cit32 doi: 10.1016/j.jclepro.2022.131360 – ident: ref94/cit94 doi: 10.1002/ieam.4415 – ident: ref52/cit52 doi: 10.2203/dose-response.06-008.cedergreen – ident: ref2/cit2 doi: 10.1039/D0EM00291G – ident: ref84/cit84 doi: 10.1016/j.scitotenv.2023.166022 – ident: ref86/cit86 doi: 10.1021/acs.est.2c02763 – ident: ref46/cit46 doi: 10.1111/j.1600-0587.2012.07348.x – ident: ref59/cit59 doi: 10.1016/j.jhazmat.2022.129667 – ident: ref51/cit51 doi: 10.1021/es401115q – ident: ref67/cit67 doi: 10.1016/j.fsi.2018.08.050 – ident: ref96/cit96 doi: 10.1021/acs.est.3c01118 – ident: ref39/cit39 doi: 10.1016/j.envpol.2016.06.031 – ident: ref73/cit73 doi: 10.1021/acs.est.0c00201 – ident: ref10/cit10 doi: 10.1016/j.envpol.2020.115908 – ident: ref7/cit7 doi: 10.1016/j.scitotenv.2020.139186 – ident: ref12/cit12 doi: 10.1021/acs.est.2c07185 – ident: ref63/cit63 doi: 10.1007/s00244-021-00837-z – ident: ref97/cit97 doi: 10.1016/j.envres.2022.113582 – ident: ref26/cit26 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – ident: ref89/cit89 doi: 10.1016/j.ecoenv.2021.112733 – ident: ref62/cit62 doi: 10.1016/j.scitotenv.2013.09.094 – ident: ref24/cit24 doi: 10.1016/j.jhazmat.2021.127870 – ident: ref36/cit36 doi: 10.1021/acs.est.5b02651 – ident: ref4/cit4 doi: 10.1016/j.watres.2022.118233 – ident: ref3/cit3 doi: 10.1126/science.abg9065 – ident: ref92/cit92 doi: 10.1016/j.envpol.2018.09.120 – ident: ref6/cit6 – ident: ref48/cit48 doi: 10.1113/JP275072 – ident: ref25/cit25 doi: 10.1038/ncomms11666 – ident: ref45/cit45 doi: 10.1016/j.envres.2018.12.020 – ident: ref35/cit35 doi: 10.1002/ieam.1841 – ident: ref21/cit21 doi: 10.1016/j.jhazmat.2019.121434 – ident: ref22/cit22 doi: 10.1016/j.cbi.2019.108844 – ident: ref16/cit16 doi: 10.1016/j.tox.2019.152249 – ident: ref40/cit40 doi: 10.1002/etc.3218 – ident: ref80/cit80 doi: 10.1002/etc.4640 – ident: ref28/cit28 doi: 10.1016/j.cct.2015.09.002 – ident: ref14/cit14 doi: 10.1146/annurev.pharmtox.43.100901.140223 – ident: ref56/cit56 doi: 10.1016/j.arr.2020.101019 – ident: ref72/cit72 doi: 10.1016/j.scitotenv.2020.144577 – ident: ref81/cit81 doi: 10.1038/s41514-017-0013-z – ident: ref33/cit33 doi: 10.1007/s10844-021-00693-2 – ident: ref54/cit54 doi: 10.1016/j.envpol.2018.10.007 – ident: ref64/cit64 doi: 10.1016/j.envint.2022.107367 |
SSID | ssj0002308 |
Score | 2.478018 |
Snippet | Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose–response relationship characterized by low-dose... Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9314 |
SubjectTerms | Algorithms Amplitudes Ecological risk assessment environmental assessment Environmental risk Hormesis Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Perfluoroalkyl & polyfluoroalkyl substances Perfluorochemicals Perfluorooctane sulfonic acid Perfluorooctanoic acid plasticity Probability distribution risk Risk assessment species technology |
Title | Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment |
URI | http://dx.doi.org/10.1021/acs.est.4c00686 https://www.ncbi.nlm.nih.gov/pubmed/38709515 https://www.proquest.com/docview/3063795927 https://www.proquest.com/docview/3051426308 https://www.proquest.com/docview/3153859775 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELWgXOBAodCybUFG6oGLQ2I7TtLbqtpqiwSqoJX2FtmOI1W7Sso6eyhfwucyk2SzhWqBU6LYk4zs8fg5Hr8h5MRkRSRiqZkSsmDSZREzLtUM7CUp4AYgPf7Q__xFTa_lp1k825BF_7mDz6OP2voAHGQgbXuc4TF5wuGCBjw--zY4XUDS6TpZQSbUbGDxefACnIas_30a2oIt2znmfLeLzvItNSGGlsyDVWMC--MhceO_1X9BnvdIk44703hJHrlqjzy7xz-4R_Ynm2NuULUf5_4V-YknQ-iFp19vbh0FXEuv2ohxkKKXbsmorgp6WS_uysWqXtZ6Mb8DcfBBDRqRZ5gQxLqCTgERO3_jT2mXW4COvyO1uIWCBtbTjW9fdHEvqr392MSuXTIo4Od0PNCHvibX55OrsynrczgwLTLZsDg0ZWk415FWZaFNaDKbOQlmEDpYqiC_XRbaDM_fxrEok8QqLaJIh0WJIqnYJztVXbk3hCaJygpltDHSydgpowD7KJ3GJomsSt2InEBj5_0Y9Hm7vc6jHB9CD-R9D4xIsO753PY86JiOY7Fd4MMgcNtRgGyverw2pY0esCgTmNGdJyPyfiiGUYxbM7py9QrrAHDlCoz4L3VwckK6wHhEDjozHfQR4HYBK8eH_9cGR-QpB3CGURA8PSY7zXLl3gK4asy7dlj9ArwRITY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4a4wAc-DEYdAww0g5c0iVx4iS7VVOnFrZpQCf1FtmOI02tklGnh_GX8OfyXpqk21AR3KLEz3lJPtufY7_vARyoJPN4GEhH8CBzApN4jjKxdBAvUYYHSOnph_7ZuRhdBp-n4XQL3DYWBp2wWJOtF_HX6gLeIZ3DfrIf6Dqq4QE8RCriEY4Hx9-7vhcJddzmLEi4mHZiPn9UQKORtndHow0Usx5qTp7B187JeofJrL-sVF__vKff-D9P8RyeNryTDVZAeQFbptiBJ7fUCHdgd7gOesOiTau3L-EXxYmwsWXfrq4NQ5bLJvX-cbRiF2bhMFlk7KKc3-TzZbko5Xx2g-boXEWQsg6lB9EmYyPkx8Ze2SO2yjTABj9IaFzjhQpn15WtKxrf2uNe32yo2w4aHbAzNujERF_B5clwcjxymowOjuRJUDmhq_Jc-b70pMgzqVyV6MQECArX4MSF1O4SVycUjRuGPI8iLST3POlmOZnEfBe2i7Iwb4BFkUgyoaRSgQlCI5RAJiRkHKrI0yI2PTjAl502LdKm9WK776V0Er9A2nyBHvRbAKS6UUWn5BzzzQafOoPrlSDI5qL7LaLWfuAUjVN-dz_qwcfuMrZpWqiRhSmXVAZprC8Qy38pQ0MViQeGPXi9QmvnD8dOGJlzuPdv7-ADPBpNzk7T0_H5l7fw2EfaRvsj_HgftqvF0rxD2lWp93VL-w0_rimX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BIiE48FhYKCxgpD1wScnLTsKtWlq1PFYVbKXeIr8irVolpU4Pyy_h5zKTptkFVAS3KvG40-Qb-3Pt-QbgRGUmiHgsPRHFxottFnjKptJDvCQGPyClpz_0P5-J8Sz-MOfzNimMcmHQCYc9uWYTn6J6ZYpWYSB4S9dxrOzHuslsuAm3iI4QlgenX7vxF0l1uqtbkEVi3gn6_NEBzUja_Toj7aGZzXQzug-zztHmlMmiv6lVX3__TcPxf3_JA7jX8k822ALmIdyw5SHcvaZKeAhHw6vkN2zaRr97BD8oX4RNHPtysbIM2S47b86RoxWb2rXHZGnYtFpeFstNta7kcnGJ5uhgTdByHpUJ0dawMfJk6y7cO7atOMAG30hwXOONGlfZtWs6mlw769582VDvBmp0wC3YoBMVfQyz0fD8dOy1lR08GWVx7XFfFYUKQxlIURipfJXpzMYIDt_iAoZU7zJfZ5SVy3lUJIkWMgoC6ZuCTNLoCA7KqrRPgSWJyIxQUqnYxtwKJZARCZlylQRapLYHJ_iw8zYyXd5suodBThfxDeTtG-hBfweCXLfq6FSkY7nf4E1nsNoKg-xverxD1ZUfuFSLqM57mPTgdXcbY5s2bGRpqw21QTobCsTzX9rQlEUigrwHT7aI7fyJcDBGBs2f_dszeAW3p-9H-afJ2cfncCdE9kbHJML0GA7q9ca-QPZVq5dNsP0EtX0sGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Is+Ripe+for+Targeting+Per-+and+Polyfluoroalkyl+Substances-Induced+Hormesis%3A+Global+Aquatic+Hotspots+and+Implications+for+Ecological+Risk+Assessment&rft.jtitle=Environmental+science+%26+technology&rft.au=Sun%2C+Tao&rft.au=Ji%2C+Chenglong&rft.au=Li%2C+Fei&rft.au=Wu%2C+Huifeng&rft.date=2024-05-28&rft.issn=1520-5851&rft.volume=58&rft.issue=21+p.9314-9327&rft.spage=9314&rft.epage=9327&rft_id=info:doi/10.1021%2Facs.est.4c00686&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |