Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment

Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose–response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose–response model for ERA of per- and p...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 58; no. 21; pp. 9314 - 9327
Main Authors Sun, Tao, Ji, Chenglong, Li, Fei, Wu, Huifeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.05.2024
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/acs.est.4c00686

Cover

Abstract Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose–response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose–response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose–response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
AbstractList Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Author Sun, Tao
Wu, Huifeng
Li, Fei
Ji, Chenglong
AuthorAffiliation Chinese Academy of Sciences (CAS)
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC)
Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS
Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory
Center for Ocean Mega-Science
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Chinese Academy of Sciences (CAS)
– name: Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory
– name: Center for Ocean Mega-Science
– name: University of Chinese Academy of Sciences
– name: CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC)
– name: Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS
Author_xml – sequence: 1
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Chenglong
  surname: Ji
  fullname: Ji, Chenglong
  organization: Chinese Academy of Sciences (CAS)
– sequence: 3
  givenname: Fei
  orcidid: 0000-0001-7386-0835
  surname: Li
  fullname: Li, Fei
  organization: Chinese Academy of Sciences (CAS)
– sequence: 4
  givenname: Huifeng
  orcidid: 0000-0002-4042-8103
  surname: Wu
  fullname: Wu, Huifeng
  email: hfwu@yic.ac.cn
  organization: Chinese Academy of Sciences (CAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38709515$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1r3DAQhkVJaTZpz70VQS-B4s3IsmyrtyWkyUKgod1Cb0aW5UWJLG009mH_SX9utR_NIdD2IAQzzzszGr1n5MQHbwh5z2DOIGeXSuPc4DgvNEBZl6_IjIkcMlELdkJmAIxnkpc_T8kZ4gMA5BzqN-SU1xVIwcSM_FrZwdAl0m92Y2gfIl2puDaj9Wt6b2JGle_ofXDb3k0hBuUet45-n1ocldcGs6XvJm06ehviYNDiZ3rjQqscXTxNarQ6JUbcpLMvtBw2zuoUDx73za51cGGdQi4NgI90gWgQB-PHt-R1rxyad8f7nPz4cr26us3uvt4srxZ3meKyGDMBbd-3ea6YKvtOtdBKLU3RmRpMJWpgJUjQsoBSCsH7qtKl4owp6PqdpObn5OJQdxPD05R22QwWtXFOeRMmbDgTvBayqsT_URCsyMu04oR-fIE-hCn69JBElbySQuZVoj4cqakdTNdsoh1U3DZ_vicBlwdAx4AYTf-MMGh2BmiSAZpd-aMBkkK8UGg77hc-RmXdP3SfDrpd4nnWv9G_Ae_4xgM
CitedBy_id crossref_primary_10_1016_j_tplants_2024_11_019
crossref_primary_10_3390_ani15040610
crossref_primary_10_1016_j_jhazmat_2024_136115
crossref_primary_10_1016_j_jhazmat_2024_136205
Cites_doi 10.1038/s41545-023-00274-6
10.1038/s42256-019-0138-9
10.1016/j.envpol.2013.04.031
10.1021/acs.est.1c02125
10.1016/j.envint.2019.105044
10.1021/acs.est.6b00140
10.1002/etc.3474
10.1016/j.envpol.2016.10.089
10.1016/j.scitotenv.2018.08.264
10.1007/s11676-021-01312-0
10.1021/tx300110u
10.1016/j.chemosphere.2011.06.046
10.1002/etc.4869
10.1016/j.scitotenv.2020.143072
10.1016/j.scitotenv.2018.09.163
10.1016/j.envint.2023.107977
10.1016/j.scitotenv.2021.149255
10.1002/etc.4667
10.1016/j.chemosphere.2023.140583
10.1016/j.etap.2021.103652
10.1016/j.coesh.2022.100378
10.1016/j.chemosphere.2019.125348
10.1002/etc.5733
10.1111/j.1749-6632.2010.05193.x
10.1021/acs.est.2c02896
10.1016/j.envpol.2021.118103
10.1016/j.jhazmat.2021.126689
10.1038/s41467-022-32464-0
10.1016/j.arr.2023.102028
10.1016/j.wse.2015.01.001
10.1080/02757540.2015.1116524
10.1016/j.jhazmat.2022.129355
10.1021/acs.est.3c02826
10.1021/acs.est.7b04673
10.3390/ijms19102871
10.1094/PHYTO-08-20-0364-R
10.1111/j.1461-0248.2010.01531.x
10.1016/j.watres.2023.120062
10.1016/j.cotox.2022.01.001
10.1002/etc.4684
10.1016/j.electacta.2012.04.145
10.1021/acs.est.1c00965
10.1016/j.envint.2018.06.017
10.1016/j.yrtph.2011.06.003
10.1016/j.scitotenv.2020.138637
10.1016/j.scitotenv.2019.02.418
10.1016/j.scitotenv.2022.159629
10.1016/j.scitotenv.2022.153295
10.1016/j.chemosphere.2020.127340
10.1021/acs.est.1c06896
10.1002/iub.2529
10.1016/j.aquatox.2016.03.026
10.1021/acs.est.2c03669
10.1016/j.jclepro.2022.131360
10.1002/ieam.4415
10.2203/dose-response.06-008.cedergreen
10.1039/D0EM00291G
10.1016/j.scitotenv.2023.166022
10.1021/acs.est.2c02763
10.1111/j.1600-0587.2012.07348.x
10.1016/j.jhazmat.2022.129667
10.1021/es401115q
10.1016/j.fsi.2018.08.050
10.1021/acs.est.3c01118
10.1016/j.envpol.2016.06.031
10.1021/acs.est.0c00201
10.1016/j.envpol.2020.115908
10.1016/j.scitotenv.2020.139186
10.1021/acs.est.2c07185
10.1007/s00244-021-00837-z
10.1016/j.envres.2022.113582
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1016/j.ecoenv.2021.112733
10.1016/j.scitotenv.2013.09.094
10.1016/j.jhazmat.2021.127870
10.1021/acs.est.5b02651
10.1016/j.watres.2022.118233
10.1126/science.abg9065
10.1016/j.envpol.2018.09.120
10.1113/JP275072
10.1038/ncomms11666
10.1016/j.envres.2018.12.020
10.1002/ieam.1841
10.1016/j.jhazmat.2019.121434
10.1016/j.cbi.2019.108844
10.1016/j.tox.2019.152249
10.1002/etc.3218
10.1002/etc.4640
10.1016/j.cct.2015.09.002
10.1146/annurev.pharmtox.43.100901.140223
10.1016/j.arr.2020.101019
10.1016/j.scitotenv.2020.144577
10.1038/s41514-017-0013-z
10.1007/s10844-021-00693-2
10.1016/j.envpol.2018.10.007
10.1016/j.envint.2022.107367
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society May 28, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society May 28, 2024
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.4c00686
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Biotechnology Research Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 9327
ExternalDocumentID 38709515
10_1021_acs_est_4c00686
h4360708
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGHSJ
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
AAYXX
ABBLG
ABLBI
ADUKH
AGXLV
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a394t-50bffb22a1a6fdab0b9c9e4de80e758016090c94069553f77c6a311a0dfa1a683
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 08:39:02 EDT 2025
Fri Jul 11 00:29:32 EDT 2025
Mon Jun 30 04:56:02 EDT 2025
Thu Apr 03 07:04:01 EDT 2025
Tue Jul 01 02:56:13 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Wed May 29 03:14:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords subthreshold effect
risk assessment
hormesis
biological plasticity
per- and polyfluoroalkyl substances (PFAS)
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-50bffb22a1a6fdab0b9c9e4de80e758016090c94069553f77c6a311a0dfa1a683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7386-0835
0000-0002-4042-8103
PMID 38709515
PQID 3063795927
PQPubID 45412
PageCount 14
ParticipantIDs proquest_miscellaneous_3153859775
proquest_miscellaneous_3051426308
proquest_journals_3063795927
pubmed_primary_38709515
crossref_primary_10_1021_acs_est_4c00686
crossref_citationtrail_10_1021_acs_est_4c00686
acs_journals_10_1021_acs_est_4c00686
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240528
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 20240528
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
Higgins J. P. T. (ref23/cit23) 2023
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1038/s41545-023-00274-6
– ident: ref30/cit30
  doi: 10.1038/s42256-019-0138-9
– ident: ref31/cit31
– ident: ref65/cit65
  doi: 10.1016/j.envpol.2013.04.031
– ident: ref8/cit8
  doi: 10.1021/acs.est.1c02125
– ident: ref18/cit18
  doi: 10.1016/j.envint.2019.105044
– ident: ref9/cit9
  doi: 10.1021/acs.est.6b00140
– ident: ref61/cit61
  doi: 10.1002/etc.3474
– ident: ref82/cit82
  doi: 10.1016/j.envpol.2016.10.089
– ident: ref58/cit58
  doi: 10.1016/j.scitotenv.2018.08.264
– ident: ref57/cit57
  doi: 10.1007/s11676-021-01312-0
– ident: ref90/cit90
  doi: 10.1021/tx300110u
– ident: ref71/cit71
  doi: 10.1016/j.chemosphere.2011.06.046
– ident: ref13/cit13
  doi: 10.1002/etc.4869
– ident: ref27/cit27
– ident: ref55/cit55
  doi: 10.1016/j.scitotenv.2020.143072
– ident: ref77/cit77
  doi: 10.1016/j.scitotenv.2018.09.163
– ident: ref95/cit95
  doi: 10.1016/j.envint.2023.107977
– ident: ref34/cit34
  doi: 10.1016/j.scitotenv.2021.149255
– ident: ref98/cit98
  doi: 10.1002/etc.4667
– ident: ref101/cit101
  doi: 10.1016/j.chemosphere.2023.140583
– ident: ref37/cit37
– ident: ref70/cit70
  doi: 10.1016/j.etap.2021.103652
– ident: ref42/cit42
  doi: 10.1016/j.coesh.2022.100378
– ident: ref60/cit60
  doi: 10.1016/j.chemosphere.2019.125348
– ident: ref99/cit99
  doi: 10.1002/etc.5733
– ident: ref47/cit47
  doi: 10.1111/j.1749-6632.2010.05193.x
– ident: ref17/cit17
  doi: 10.1021/acs.est.2c02896
– ident: ref78/cit78
  doi: 10.1016/j.envpol.2021.118103
– ident: ref91/cit91
  doi: 10.1016/j.jhazmat.2021.126689
– ident: ref29/cit29
  doi: 10.1038/s41467-022-32464-0
– ident: ref41/cit41
  doi: 10.1016/j.arr.2023.102028
– ident: ref88/cit88
  doi: 10.1016/j.wse.2015.01.001
– ident: ref68/cit68
  doi: 10.1080/02757540.2015.1116524
– ident: ref87/cit87
  doi: 10.1016/j.jhazmat.2022.129355
– ident: ref83/cit83
  doi: 10.1021/acs.est.3c02826
– ident: ref100/cit100
  doi: 10.1021/acs.est.7b04673
– ident: ref50/cit50
  doi: 10.3390/ijms19102871
– ident: ref53/cit53
  doi: 10.1094/PHYTO-08-20-0364-R
– ident: ref76/cit76
  doi: 10.1111/j.1461-0248.2010.01531.x
– volume-title: Cochrane Handbook for Systematic Reviews of Interventions Version 6.4
  year: 2023
  ident: ref23/cit23
– ident: ref19/cit19
  doi: 10.1016/j.watres.2023.120062
– ident: ref49/cit49
  doi: 10.1016/j.cotox.2022.01.001
– ident: ref69/cit69
  doi: 10.1002/etc.4684
– ident: ref74/cit74
  doi: 10.1016/j.electacta.2012.04.145
– ident: ref79/cit79
  doi: 10.1021/acs.est.1c00965
– ident: ref38/cit38
  doi: 10.1016/j.envint.2018.06.017
– ident: ref43/cit43
  doi: 10.1016/j.yrtph.2011.06.003
– ident: ref44/cit44
  doi: 10.1016/j.scitotenv.2020.138637
– ident: ref66/cit66
  doi: 10.1016/j.scitotenv.2019.02.418
– ident: ref85/cit85
  doi: 10.1016/j.scitotenv.2022.159629
– ident: ref20/cit20
  doi: 10.1016/j.scitotenv.2022.153295
– ident: ref93/cit93
  doi: 10.1016/j.chemosphere.2020.127340
– ident: ref1/cit1
  doi: 10.1021/acs.est.1c06896
– ident: ref15/cit15
  doi: 10.1002/iub.2529
– ident: ref75/cit75
  doi: 10.1016/j.aquatox.2016.03.026
– ident: ref11/cit11
  doi: 10.1021/acs.est.2c03669
– ident: ref32/cit32
  doi: 10.1016/j.jclepro.2022.131360
– ident: ref94/cit94
  doi: 10.1002/ieam.4415
– ident: ref52/cit52
  doi: 10.2203/dose-response.06-008.cedergreen
– ident: ref2/cit2
  doi: 10.1039/D0EM00291G
– ident: ref84/cit84
  doi: 10.1016/j.scitotenv.2023.166022
– ident: ref86/cit86
  doi: 10.1021/acs.est.2c02763
– ident: ref46/cit46
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: ref59/cit59
  doi: 10.1016/j.jhazmat.2022.129667
– ident: ref51/cit51
  doi: 10.1021/es401115q
– ident: ref67/cit67
  doi: 10.1016/j.fsi.2018.08.050
– ident: ref96/cit96
  doi: 10.1021/acs.est.3c01118
– ident: ref39/cit39
  doi: 10.1016/j.envpol.2016.06.031
– ident: ref73/cit73
  doi: 10.1021/acs.est.0c00201
– ident: ref10/cit10
  doi: 10.1016/j.envpol.2020.115908
– ident: ref7/cit7
  doi: 10.1016/j.scitotenv.2020.139186
– ident: ref12/cit12
  doi: 10.1021/acs.est.2c07185
– ident: ref63/cit63
  doi: 10.1007/s00244-021-00837-z
– ident: ref97/cit97
  doi: 10.1016/j.envres.2022.113582
– ident: ref26/cit26
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– ident: ref89/cit89
  doi: 10.1016/j.ecoenv.2021.112733
– ident: ref62/cit62
  doi: 10.1016/j.scitotenv.2013.09.094
– ident: ref24/cit24
  doi: 10.1016/j.jhazmat.2021.127870
– ident: ref36/cit36
  doi: 10.1021/acs.est.5b02651
– ident: ref4/cit4
  doi: 10.1016/j.watres.2022.118233
– ident: ref3/cit3
  doi: 10.1126/science.abg9065
– ident: ref92/cit92
  doi: 10.1016/j.envpol.2018.09.120
– ident: ref6/cit6
– ident: ref48/cit48
  doi: 10.1113/JP275072
– ident: ref25/cit25
  doi: 10.1038/ncomms11666
– ident: ref45/cit45
  doi: 10.1016/j.envres.2018.12.020
– ident: ref35/cit35
  doi: 10.1002/ieam.1841
– ident: ref21/cit21
  doi: 10.1016/j.jhazmat.2019.121434
– ident: ref22/cit22
  doi: 10.1016/j.cbi.2019.108844
– ident: ref16/cit16
  doi: 10.1016/j.tox.2019.152249
– ident: ref40/cit40
  doi: 10.1002/etc.3218
– ident: ref80/cit80
  doi: 10.1002/etc.4640
– ident: ref28/cit28
  doi: 10.1016/j.cct.2015.09.002
– ident: ref14/cit14
  doi: 10.1146/annurev.pharmtox.43.100901.140223
– ident: ref56/cit56
  doi: 10.1016/j.arr.2020.101019
– ident: ref72/cit72
  doi: 10.1016/j.scitotenv.2020.144577
– ident: ref81/cit81
  doi: 10.1038/s41514-017-0013-z
– ident: ref33/cit33
  doi: 10.1007/s10844-021-00693-2
– ident: ref54/cit54
  doi: 10.1016/j.envpol.2018.10.007
– ident: ref64/cit64
  doi: 10.1016/j.envint.2022.107367
SSID ssj0002308
Score 2.478018
Snippet Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose–response relationship characterized by low-dose...
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9314
SubjectTerms Algorithms
Amplitudes
Ecological risk assessment
environmental assessment
Environmental risk
Hormesis
Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants
Perfluoroalkyl & polyfluoroalkyl substances
Perfluorochemicals
Perfluorooctane sulfonic acid
Perfluorooctanoic acid
plasticity
Probability distribution
risk
Risk assessment
species
technology
Title Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment
URI http://dx.doi.org/10.1021/acs.est.4c00686
https://www.ncbi.nlm.nih.gov/pubmed/38709515
https://www.proquest.com/docview/3063795927
https://www.proquest.com/docview/3051426308
https://www.proquest.com/docview/3153859775
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELWgXOBAodCybUFG6oGLQ2I7TtLbqtpqiwSqoJX2FtmOI1W7Sso6eyhfwucyk2SzhWqBU6LYk4zs8fg5Hr8h5MRkRSRiqZkSsmDSZREzLtUM7CUp4AYgPf7Q__xFTa_lp1k825BF_7mDz6OP2voAHGQgbXuc4TF5wuGCBjw--zY4XUDS6TpZQSbUbGDxefACnIas_30a2oIt2znmfLeLzvItNSGGlsyDVWMC--MhceO_1X9BnvdIk44703hJHrlqjzy7xz-4R_Ynm2NuULUf5_4V-YknQ-iFp19vbh0FXEuv2ohxkKKXbsmorgp6WS_uysWqXtZ6Mb8DcfBBDRqRZ5gQxLqCTgERO3_jT2mXW4COvyO1uIWCBtbTjW9fdHEvqr392MSuXTIo4Od0PNCHvibX55OrsynrczgwLTLZsDg0ZWk415FWZaFNaDKbOQlmEDpYqiC_XRbaDM_fxrEok8QqLaJIh0WJIqnYJztVXbk3hCaJygpltDHSydgpowD7KJ3GJomsSt2InEBj5_0Y9Hm7vc6jHB9CD-R9D4xIsO753PY86JiOY7Fd4MMgcNtRgGyverw2pY0esCgTmNGdJyPyfiiGUYxbM7py9QrrAHDlCoz4L3VwckK6wHhEDjozHfQR4HYBK8eH_9cGR-QpB3CGURA8PSY7zXLl3gK4asy7dlj9ArwRITY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4a4wAc-DEYdAww0g5c0iVx4iS7VVOnFrZpQCf1FtmOI02tklGnh_GX8OfyXpqk21AR3KLEz3lJPtufY7_vARyoJPN4GEhH8CBzApN4jjKxdBAvUYYHSOnph_7ZuRhdBp-n4XQL3DYWBp2wWJOtF_HX6gLeIZ3DfrIf6Dqq4QE8RCriEY4Hx9-7vhcJddzmLEi4mHZiPn9UQKORtndHow0Usx5qTp7B187JeofJrL-sVF__vKff-D9P8RyeNryTDVZAeQFbptiBJ7fUCHdgd7gOesOiTau3L-EXxYmwsWXfrq4NQ5bLJvX-cbRiF2bhMFlk7KKc3-TzZbko5Xx2g-boXEWQsg6lB9EmYyPkx8Ze2SO2yjTABj9IaFzjhQpn15WtKxrf2uNe32yo2w4aHbAzNujERF_B5clwcjxymowOjuRJUDmhq_Jc-b70pMgzqVyV6MQECArX4MSF1O4SVycUjRuGPI8iLST3POlmOZnEfBe2i7Iwb4BFkUgyoaRSgQlCI5RAJiRkHKrI0yI2PTjAl502LdKm9WK776V0Er9A2nyBHvRbAKS6UUWn5BzzzQafOoPrlSDI5qL7LaLWfuAUjVN-dz_qwcfuMrZpWqiRhSmXVAZprC8Qy38pQ0MViQeGPXi9QmvnD8dOGJlzuPdv7-ADPBpNzk7T0_H5l7fw2EfaRvsj_HgftqvF0rxD2lWp93VL-w0_rimX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BIiE48FhYKCxgpD1wScnLTsKtWlq1PFYVbKXeIr8irVolpU4Pyy_h5zKTptkFVAS3KvG40-Qb-3Pt-QbgRGUmiHgsPRHFxottFnjKptJDvCQGPyClpz_0P5-J8Sz-MOfzNimMcmHQCYc9uWYTn6J6ZYpWYSB4S9dxrOzHuslsuAm3iI4QlgenX7vxF0l1uqtbkEVi3gn6_NEBzUja_Toj7aGZzXQzug-zztHmlMmiv6lVX3__TcPxf3_JA7jX8k822ALmIdyw5SHcvaZKeAhHw6vkN2zaRr97BD8oX4RNHPtysbIM2S47b86RoxWb2rXHZGnYtFpeFstNta7kcnGJ5uhgTdByHpUJ0dawMfJk6y7cO7atOMAG30hwXOONGlfZtWs6mlw769582VDvBmp0wC3YoBMVfQyz0fD8dOy1lR08GWVx7XFfFYUKQxlIURipfJXpzMYIDt_iAoZU7zJfZ5SVy3lUJIkWMgoC6ZuCTNLoCA7KqrRPgSWJyIxQUqnYxtwKJZARCZlylQRapLYHJ_iw8zYyXd5suodBThfxDeTtG-hBfweCXLfq6FSkY7nf4E1nsNoKg-xverxD1ZUfuFSLqM57mPTgdXcbY5s2bGRpqw21QTobCsTzX9rQlEUigrwHT7aI7fyJcDBGBs2f_dszeAW3p-9H-afJ2cfncCdE9kbHJML0GA7q9ca-QPZVq5dNsP0EtX0sGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Is+Ripe+for+Targeting+Per-+and+Polyfluoroalkyl+Substances-Induced+Hormesis%3A+Global+Aquatic+Hotspots+and+Implications+for+Ecological+Risk+Assessment&rft.jtitle=Environmental+science+%26+technology&rft.au=Sun%2C+Tao&rft.au=Ji%2C+Chenglong&rft.au=Li%2C+Fei&rft.au=Wu%2C+Huifeng&rft.date=2024-05-28&rft.issn=1520-5851&rft.volume=58&rft.issue=21+p.9314-9327&rft.spage=9314&rft.epage=9327&rft_id=info:doi/10.1021%2Facs.est.4c00686&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon