Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method

Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 16; no. 4; pp. 2139 - 2159
Main Authors Tubman, Norm M, Freeman, C. Daniel, Levine, Daniel S, Hait, Diptarka, Head-Gordon, Martin, Whaley, K. Birgitta
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.04.2020
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.8b00536

Cover

Abstract Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.
AbstractList Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si$_2$H$_6$ which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.
Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.
Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.
Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si H which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.
Author Freeman, C. Daniel
Levine, Daniel S
Tubman, Norm M
Hait, Diptarka
Head-Gordon, Martin
Whaley, K. Birgitta
AuthorAffiliation Chemical Sciences Division
Lawrence Berkeley National Laboratory
Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry
AuthorAffiliation_xml – name: Lawrence Berkeley National Laboratory
– name: Chemical Sciences Division
– name: Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry
Author_xml – sequence: 1
  givenname: Norm M
  orcidid: 0000-0002-9577-8485
  surname: Tubman
  fullname: Tubman, Norm M
  email: norm.m.tubman@gmail.com
  organization: Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: C. Daniel
  surname: Freeman
  fullname: Freeman, C. Daniel
  organization: Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Daniel S
  orcidid: 0000-0001-8921-3659
  surname: Levine
  fullname: Levine, Daniel S
  organization: Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Diptarka
  orcidid: 0000-0003-1570-920X
  surname: Hait
  fullname: Hait, Diptarka
  organization: Lawrence Berkeley National Laboratory
– sequence: 5
  givenname: Martin
  orcidid: 0000-0002-4309-6669
  surname: Head-Gordon
  fullname: Head-Gordon, Martin
  organization: Lawrence Berkeley National Laboratory
– sequence: 6
  givenname: K. Birgitta
  surname: Whaley
  fullname: Whaley, K. Birgitta
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32159951$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1633273$$D View this record in Osti.gov
BookMark eNp9kc1vEzEQxS1URD_gzglZcOFAgr1ee9fHKBSI1IpD4Wx57UnW0cYOtrd8_PU43YRDJTjNSPN7o5n3LtGZDx4QeknJnJKKvtcmzbcmm3nbEcKZeIIuKK_lTIpKnP3taXuOLlPaEsJYXbFn6JxVlEvJ6QW6vw0WoseL_T4GbXpIOAd8_VObjD84vQleD-63zi54rL3FdzCAyWDxMvi124xxGq18hlg0h_6Hyz3OPeCF1fvs7gHf6d1-cH6Dlyt8C7kP9jl6utZDghfHeoW-fbz-uvw8u_nyabVc3Mw0kzTPLLMgBLVtxYWVppOWcUKNhM5wLYFzU0tL6ZrXbdO1vG1ox6GmtJU14UJqdoVeT3tDyk4l4zKY3gTvyxOKCsaqhhXo7QQVC76PkLLauWRgGLSHMCZVsUY0jMiGFvTNI3Qbxlg8OlCSyoawihTq1ZEaux1YtY9up-MvdbK9AGICTAwpRVirctmDkzlqNyhK1CFfVfJVh3zVMd8iJI-Ep93_kbybJA-T07X_xP8A5V64IQ
CitedBy_id crossref_primary_10_1021_acs_jctc_1c00121
crossref_primary_10_1021_acs_jctc_2c01025
crossref_primary_10_22331_q_2024_11_26_1538
crossref_primary_10_1021_acs_jctc_1c00081
crossref_primary_10_1021_acs_jctc_1c00769
crossref_primary_10_1002_wcms_1706
crossref_primary_10_1063_5_0192458
crossref_primary_10_1063_5_0085515
crossref_primary_10_1038_s41524_023_01078_5
crossref_primary_10_1063_5_0045468
crossref_primary_10_1039_D2CP01127A
crossref_primary_10_1021_acs_jctc_3c01080
crossref_primary_10_1088_2516_1075_ad9978
crossref_primary_10_1021_acs_jpclett_2c02868
crossref_primary_10_1021_acs_jctc_1c00010
crossref_primary_10_1021_acs_jctc_2c01316
crossref_primary_10_1063_5_0162873
crossref_primary_10_1021_acs_jctc_0c00141
crossref_primary_10_1063_5_0139295
crossref_primary_10_1063_5_0159403
crossref_primary_10_1021_acs_jctc_3c00897
crossref_primary_10_1021_acs_jctc_0c01191
crossref_primary_10_1063_5_0064400
crossref_primary_10_1063_5_0231739
crossref_primary_10_1103_PhysRevA_108_023313
crossref_primary_10_1021_acs_jctc_3c01190
crossref_primary_10_1063_5_0027617
crossref_primary_10_1002_wcms_1659
crossref_primary_10_1140_epjs_s11734_023_00991_6
crossref_primary_10_1038_s41534_022_00599_z
crossref_primary_10_1021_acs_jpca_2c07949
crossref_primary_10_1021_acs_jctc_4c00528
crossref_primary_10_1080_00268976_2020_1817592
crossref_primary_10_1063_5_0047386
crossref_primary_10_1103_PhysRevB_107_035130
crossref_primary_10_21468_SciPostPhysCodeb_51
crossref_primary_10_1039_D4FD00054D
crossref_primary_10_1021_acs_jctc_4c00216
crossref_primary_10_1021_acs_jctc_1c00272
crossref_primary_10_1021_acs_jctc_3c00808
crossref_primary_10_1021_acs_jctc_3c00929
crossref_primary_10_1103_PRXQuantum_5_040339
crossref_primary_10_1039_D4CP00436A
crossref_primary_10_1063_5_0214150
crossref_primary_10_1063_5_0139117
crossref_primary_10_1063_5_0224883
crossref_primary_10_1103_PhysRevB_107_075119
crossref_primary_10_1021_acs_jctc_1c00936
crossref_primary_10_1063_5_0099192
crossref_primary_10_1021_acs_jpclett_0c02621
crossref_primary_10_1021_acs_jpca_1c00397
crossref_primary_10_1002_jcc_26424
crossref_primary_10_1063_5_0209137
crossref_primary_10_1063_5_0035454
crossref_primary_10_1063_5_0076006
crossref_primary_10_1021_acs_jctc_4c00986
crossref_primary_10_1063_5_0018577
crossref_primary_10_1021_acs_jctc_1c01138
crossref_primary_10_1021_acs_jctc_3c00744
crossref_primary_10_1063_5_0079310
crossref_primary_10_1088_1361_648X_ac5db4
crossref_primary_10_1063_5_0118285
crossref_primary_10_1088_2058_9565_ad7d32
crossref_primary_10_1021_acs_jctc_2c00536
crossref_primary_10_1021_acs_jpclett_0c03225
crossref_primary_10_1088_2058_9565_ad3a97
crossref_primary_10_1021_acs_jctc_4c00152
crossref_primary_10_1021_acs_jpclett_4c02060
crossref_primary_10_1021_acs_jctc_4c00037
crossref_primary_10_1021_acs_jpclett_2c01738
crossref_primary_10_1063_5_0038694
crossref_primary_10_1063_5_0134009
crossref_primary_10_1103_PRXQuantum_2_030102
crossref_primary_10_1007_s41061_021_00351_9
crossref_primary_10_1021_acs_jpca_3c05322
crossref_primary_10_1021_acs_jctc_1c00830
crossref_primary_10_1063_5_0024791
crossref_primary_10_1063_5_0044060
crossref_primary_10_1063_5_0251601
crossref_primary_10_1021_acs_jctc_2c01111
crossref_primary_10_1063_5_0249348
crossref_primary_10_1021_acs_jctc_0c00341
crossref_primary_10_1063_5_0060124
crossref_primary_10_1021_acs_jctc_1c00959
crossref_primary_10_1080_00268976_2021_1936250
crossref_primary_10_1186_s41313_022_00049_5
crossref_primary_10_1103_PhysRevB_111_035124
crossref_primary_10_1021_acs_jctc_4c00846
crossref_primary_10_1063_5_0055522
crossref_primary_10_1021_acs_jpclett_0c03084
crossref_primary_10_1021_acs_jctc_1c00589
crossref_primary_10_1021_acs_jctc_0c01187
crossref_primary_10_1021_acs_jctc_3c00688
crossref_primary_10_1039_D4CP03671A
crossref_primary_10_1063_5_0040785
crossref_primary_10_1063_5_0231409
crossref_primary_10_1063_5_0026324
crossref_primary_10_1021_acs_jctc_4c01462
crossref_primary_10_1002_jcc_27203
crossref_primary_10_1103_PhysRevResearch_4_033173
crossref_primary_10_1103_PRXQuantum_3_020323
crossref_primary_10_1021_acs_jctc_4c00410
crossref_primary_10_1002_qua_70000
crossref_primary_10_1021_acs_jpca_3c07526
crossref_primary_10_1021_acs_jctc_0c01292
crossref_primary_10_1039_D4FD00061G
crossref_primary_10_1002_wcms_1517
crossref_primary_10_1021_acs_jctc_3c01247
crossref_primary_10_1021_acs_jctc_3c00831
crossref_primary_10_1080_00268976_2022_2057365
crossref_primary_10_1063_5_0065314
crossref_primary_10_22331_q_2023_07_25_1066
crossref_primary_10_1103_PRXQuantum_4_030307
crossref_primary_10_1063_5_0148650
crossref_primary_10_1063_5_0233542
crossref_primary_10_1021_acs_jctc_4c01479
crossref_primary_10_1016_j_future_2024_04_060
crossref_primary_10_1016_j_physrep_2022_08_003
crossref_primary_10_1021_acs_jctc_1c00181
crossref_primary_10_1021_acs_jctc_4c00304
crossref_primary_10_1039_D1CS01184G
Cites_doi 10.1063/1.461037
10.1021/ct300486d
10.1021/cr200137a
10.1063/1.4977727
10.1063/1.3659143
10.1080/00268976.2014.952696
10.1021/ct300504f
10.1063/1.4989858
10.1088/1361-648X/aab9c3
10.1021/acs.jctc.5b01190
10.1021/acs.jctc.6b01028
10.1063/1.1804498
10.1063/1.455063
10.1021/acs.jctc.9b00674
10.1063/1.4905329
10.1063/1.4996044
10.1103/PhysRevB.83.212401
10.1063/1.4720076
10.1021/acs.jpca.6b10953
10.1038/nchem.2041
10.1146/annurev-conmatphys-020911-125018
10.1021/acs.jctc.8b00680
10.1103/PhysRevB.48.10345
10.1063/1.4948308
10.1038/nature11770
10.1063/1.2768362
10.1063/1.456415
10.1098/rspa.1955.0134
10.1109/SC.2005.17
10.1002/wcms.1364
10.1063/1.4955109
10.1063/1.5031140
10.1063/1.1940588
10.1021/acs.jctc.7b01252
10.1139/cjc-2013-0017
10.1016/0301-0104(83)85011-3
10.1063/1.478295
10.1103/PhysRevC.79.064324
10.1007/BF02394557
10.1016/0009-2614(84)85513-X
10.1063/1.3152576
10.1021/acs.jctc.6b00407
10.1016/S0065-3276(08)60532-8
10.1063/1.5037923
10.1103/PhysRevLett.114.033001
10.1063/1.478747
10.1103/RevModPhys.77.259
10.1063/1.1487829
10.1103/PhysRev.28.695
10.1021/acs.jctc.5b01099
10.1080/00268977800100581
10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#
10.1016/0009-2614(90)85633-N
10.1103/PhysRevB.90.081116
10.1080/00268976.2017.1333644
10.1063/1.3600351
10.1063/1.3193710
10.5334/jors.bw
10.1063/1.4932595
10.1063/1.3008061
10.1103/PhysRevB.87.081108
10.1063/1.4992127
10.1063/1.1829045
10.1063/1.1449459
10.1103/PhysRevB.100.125165
10.1063/1.3611401
10.1063/1.456997
10.1063/1.4998614
10.1007/978-3-319-67792-7_47
10.1016/0009-2614(80)85158-X
10.1063/1.2335446
10.1063/1.5049143
10.1063/1.4773819
10.1021/acs.jctc.8b00273
10.1063/1.4869192
10.1021/ct3008974
10.1103/PhysRevE.70.056702
10.1063/1.4905528
10.1021/acs.jpclett.7b02075
10.1063/1.460537
10.1103/PhysRevB.87.235112
10.1016/0009-2614(89)87464-0
10.1103/PhysRev.183.23
10.1063/1.1679199
ContentType Journal Article
Copyright Copyright American Chemical Society Apr 14, 2020
Copyright_xml – notice: Copyright American Chemical Society Apr 14, 2020
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
DOI 10.1021/acs.jctc.8b00536
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 2159
ExternalDocumentID 1633273
32159951
10_1021_acs_jctc_8b00536
b865818248
Genre Journal Article
GroupedDBID 53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a391t-d3de661d8256d9cb9d3501c9ebc5a9e55c49d11f5487b85871b5e4118940569a3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Mon Jul 10 02:30:35 EDT 2023
Fri Jul 11 16:49:46 EDT 2025
Mon Jun 30 03:42:41 EDT 2025
Thu Jan 02 22:58:51 EST 2025
Thu Apr 24 23:01:33 EDT 2025
Tue Jul 01 00:37:05 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-d3de661d8256d9cb9d3501c9ebc5a9e55c49d11f5487b85871b5e4118940569a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231; OCI-1053575; DGE-1106400; SC0014664
USDOE Office of Science (SC), Basic Energy Sciences (BES)
National Science Foundation (NSF)
ORCID 0000-0001-8921-3659
0000-0003-1570-920X
0000-0002-4309-6669
0000-0002-9577-8485
0000000295778485
000000031570920X
0000000243096669
0000000189213659
OpenAccessLink https://www.osti.gov/servlets/purl/1633273
PMID 32159951
PQID 2391970320
PQPubID 2048741
PageCount 21
ParticipantIDs osti_scitechconnect_1633273
proquest_miscellaneous_2376730971
proquest_journals_2391970320
pubmed_primary_32159951
crossref_citationtrail_10_1021_acs_jctc_8b00536
crossref_primary_10_1021_acs_jctc_8b00536
acs_journals_10_1021_acs_jctc_8b00536
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-14
PublicationDateYYYYMMDD 2020-04-14
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
Plauger P. (ref69/cit69) 2000
ref49/cit49
ref75/cit75
ref24/cit24
Szabo A. (ref57/cit57) 1982
ref50/cit50
ref78/cit78
ref36/cit36
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
Schäling B. (ref70/cit70) 2011
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
Bell N. (ref83/cit83) 2011
ref26/cit26
ref73/cit73
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1063/1.461037
– volume-title: The boost C++ libraries
  year: 2011
  ident: ref70/cit70
– ident: ref23/cit23
  doi: 10.1021/ct300486d
– ident: ref62/cit62
  doi: 10.1021/cr200137a
– ident: ref7/cit7
  doi: 10.1063/1.4977727
– ident: ref88/cit88
– ident: ref94/cit94
  doi: 10.1063/1.3659143
– ident: ref98/cit98
  doi: 10.1080/00268976.2014.952696
– ident: ref25/cit25
  doi: 10.1021/ct300504f
– ident: ref16/cit16
  doi: 10.1063/1.4989858
– ident: ref93/cit93
  doi: 10.1088/1361-648X/aab9c3
– ident: ref27/cit27
  doi: 10.1021/acs.jctc.5b01190
– ident: ref36/cit36
– ident: ref95/cit95
  doi: 10.1021/acs.jctc.6b01028
– ident: ref61/cit61
  doi: 10.1063/1.1804498
– ident: ref52/cit52
  doi: 10.1063/1.455063
– ident: ref97/cit97
  doi: 10.1021/acs.jctc.9b00674
– ident: ref32/cit32
  doi: 10.1063/1.4905329
– ident: ref40/cit40
– ident: ref79/cit79
– ident: ref48/cit48
  doi: 10.1063/1.4996044
– ident: ref56/cit56
  doi: 10.1103/PhysRevB.83.212401
– start-page: 359
  volume-title: GPU Computing Gems
  year: 2011
  ident: ref83/cit83
– ident: ref104/cit104
– ident: ref19/cit19
  doi: 10.1063/1.4720076
– ident: ref14/cit14
  doi: 10.1021/acs.jpca.6b10953
– ident: ref35/cit35
  doi: 10.1038/nchem.2041
– ident: ref75/cit75
– ident: ref41/cit41
  doi: 10.1146/annurev-conmatphys-020911-125018
– ident: ref15/cit15
  doi: 10.1021/acs.jctc.8b00680
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.48.10345
– ident: ref5/cit5
  doi: 10.1063/1.4948308
– ident: ref71/cit71
– ident: ref22/cit22
  doi: 10.1038/nature11770
– ident: ref33/cit33
  doi: 10.1063/1.2768362
– ident: ref82/cit82
– ident: ref49/cit49
  doi: 10.1063/1.456415
– ident: ref67/cit67
  doi: 10.1098/rspa.1955.0134
– ident: ref59/cit59
  doi: 10.1109/SC.2005.17
– ident: ref91/cit91
  doi: 10.1002/wcms.1364
– ident: ref3/cit3
  doi: 10.1063/1.4955109
– ident: ref106/cit106
  doi: 10.1063/1.5031140
– ident: ref101/cit101
  doi: 10.1063/1.1940588
– ident: ref103/cit103
  doi: 10.1021/acs.jctc.7b01252
– ident: ref1/cit1
  doi: 10.1139/cjc-2013-0017
– ident: ref44/cit44
  doi: 10.1016/0301-0104(83)85011-3
– ident: ref30/cit30
  doi: 10.1063/1.478295
– ident: ref65/cit65
  doi: 10.1103/PhysRevC.79.064324
– ident: ref43/cit43
  doi: 10.1007/BF02394557
– ident: ref51/cit51
  doi: 10.1016/0009-2614(84)85513-X
– ident: ref77/cit77
– ident: ref87/cit87
  doi: 10.1063/1.3152576
– ident: ref4/cit4
  doi: 10.1021/acs.jctc.6b00407
– ident: ref60/cit60
  doi: 10.1016/S0065-3276(08)60532-8
– ident: ref28/cit28
  doi: 10.1063/1.5037923
– ident: ref24/cit24
  doi: 10.1103/PhysRevLett.114.033001
– ident: ref99/cit99
  doi: 10.1063/1.478747
– ident: ref42/cit42
  doi: 10.1103/RevModPhys.77.259
– ident: ref100/cit100
  doi: 10.1063/1.1487829
– ident: ref66/cit66
  doi: 10.1103/PhysRev.28.695
– ident: ref6/cit6
  doi: 10.1021/acs.jctc.5b01099
– ident: ref64/cit64
  doi: 10.1080/00268977800100581
– ident: ref76/cit76
  doi: 10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#
– ident: ref53/cit53
  doi: 10.1016/0009-2614(90)85633-N
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.90.081116
– ident: ref102/cit102
  doi: 10.1080/00268976.2017.1333644
– ident: ref47/cit47
  doi: 10.1063/1.3600351
– ident: ref18/cit18
  doi: 10.1063/1.3193710
– ident: ref21/cit21
  doi: 10.5334/jors.bw
– ident: ref26/cit26
  doi: 10.1063/1.4932595
– ident: ref12/cit12
– ident: ref96/cit96
  doi: 10.1063/1.3008061
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.87.081108
– ident: ref8/cit8
  doi: 10.1063/1.4992127
– ident: ref73/cit73
– ident: ref81/cit81
– ident: ref68/cit68
  doi: 10.1063/1.1829045
– ident: ref29/cit29
  doi: 10.1063/1.1449459
– ident: ref9/cit9
  doi: 10.1103/PhysRevB.100.125165
– ident: ref17/cit17
  doi: 10.1063/1.3611401
– ident: ref55/cit55
  doi: 10.1063/1.456997
– volume-title: Modern Quantum Chemistry
  year: 1982
  ident: ref57/cit57
– ident: ref86/cit86
  doi: 10.1063/1.4998614
– ident: ref72/cit72
  doi: 10.1007/978-3-319-67792-7_47
– ident: ref50/cit50
  doi: 10.1016/0009-2614(80)85158-X
– ident: ref58/cit58
  doi: 10.1063/1.2335446
– ident: ref105/cit105
  doi: 10.1063/1.5049143
– ident: ref20/cit20
  doi: 10.1063/1.4773819
– ident: ref89/cit89
– ident: ref78/cit78
– ident: ref90/cit90
  doi: 10.1021/acs.jctc.8b00273
– ident: ref2/cit2
  doi: 10.1063/1.4869192
– ident: ref84/cit84
– ident: ref34/cit34
  doi: 10.1021/ct3008974
– ident: ref92/cit92
  doi: 10.1103/PhysRevE.70.056702
– ident: ref74/cit74
– ident: ref46/cit46
  doi: 10.1063/1.4905528
– ident: ref13/cit13
  doi: 10.1021/acs.jpclett.7b02075
– ident: ref80/cit80
– volume-title: C++ Standard Template Library
  year: 2000
  ident: ref69/cit69
– ident: ref11/cit11
  doi: 10.1063/1.460537
– ident: ref38/cit38
  doi: 10.1103/PhysRevB.87.235112
– ident: ref85/cit85
– ident: ref54/cit54
  doi: 10.1016/0009-2614(89)87464-0
– ident: ref63/cit63
  doi: 10.1103/PhysRev.183.23
– ident: ref10/cit10
  doi: 10.1063/1.1679199
SSID ssj0033423
Score 2.6442106
Snippet Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2139
SubjectTerms Adaptive algorithms
Adaptive sampling
Algorithms
Classification
Computer simulation
Configuration interaction
Determinants
Hamiltonian functions
Hamiltonians
Hash based algorithms
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Masking
Mathematical analysis
Matrix algebra
Matrix elements
Matrix methods
Multiplication
Perturbation theory
Search algorithms
Sorting algorithms
Wave function
Title Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method
URI http://dx.doi.org/10.1021/acs.jctc.8b00536
https://www.ncbi.nlm.nih.gov/pubmed/32159951
https://www.proquest.com/docview/2391970320
https://www.proquest.com/docview/2376730971
https://www.osti.gov/servlets/purl/1633273
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Web Editions
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BOSwXXrvLhhZkJDjsIYUkTlIfqwICJLgUJG6RX6kKKEWbFCF-PTNOWgQsiGtiR8547PnGM_4GYI9L9HxynvtaoouCSiF8qUzoJ4KiZJGWxjExXVwmp9f8_Ca-eaXJeR_BD4MDqcvura50t-c0JlmEpTBJU0rf6w-Gs103IiY7x43KiXEy6DUhyf99gQyRLt8YotYEF9TnINMZm5PVumpR6TgKKcfkrjutVFc_f2Rw_MZ_rMFKgzlZv1aSdViwxQb8GMxKvf2Ex7oiGus3BOO2ZNWEHT9JXbGjsRw5tF7f12SyMGzoiudYw-i-4Hg0rbWIudPF-qIEo_NdhuCS9Y18oC2VDSUlrxcjNjhjF65u9S-4Pjm-Gpz6TUEGX0YiqHwTGYv23KBXmRihlTAUltTCKh1LYeNYc2GCICcvSPVi9MVUbDm6MAJhYSJk9BtaxaSwf4DlgnhleKqsUZyrXKjgMDIh4bdcHKrEg30UWNYsqDJzsfIwyNxDlGLWSNGDg9ksZrphNafiGvdf9Pg77_FQM3p80bZNipEhGiFKXU25R7rKEMNGCPs86Mz05XWgIUpKpFSW3oPd-WucTwrEyMJOptQmTXBnFWngwWatZ_OhRIjBBMLerW8KoA3LIR0BEP0k70Cr-je124iTKrXjFsgLPVAMQA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7YFeKKUtDY_Wleihhyw4cbLr42oBLS3LgQWJW-RXVkCVRSSLKn49M06yiIqi9urYljMe2994PN8A7AiFlk8u8tAoNFFQKWSotI3CVJKXLDbKeiam8Uk6Ohc_LpKLJeBtLAwOosSeSu_Ef2QX4LtUdmUq0-17xUlfweskFZzsrcFw0m6-MRHaeYpUQcSTvN94Jp_rgc4jUz45jzozXFd_x5r-zDl8C6eL0fqnJtfdeaW75v4PIsf_-p1VWGkQKBvUKvMOllyxBsvDNvHbe7ir86OxQUM37kpWzdjBb2Uqtn-pph6719GbTBWWTXwqHWcZRQ9eTue1TjF_11iHTTC67WUINdnAqhvaYNlE0VP2YsqGR2zss1h_gPPDg7PhKGzSM4QqlrwKbWwdnu4WbczUSqOlJSelkU6bREmXJEZIy3lONpHuJ2iZ6cQJNGgkgsRUqvgjdIpZ4T4ByyWxzIiedlYLoXOp-V5sI0JzudzTaQDfUGBZs7zKzHvOI575QpRi1kgxgN12MjPTcJxTqo1fL7T4vmhxU_N7vFB3k_QjQ2xCBLuGXiKZKkNEGyMIDGCrVZvHgUYoKdmjJPUBfF18xvkkt4wq3GxOdXop7rOyxwNYr9VtMZQYEZlEELzxjwL4Asujs_Fxdnx08nMT3kR0OUDElGILOtXt3G0jgqr0Z79mHgCfpxSi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-xIjFeNtgGhI_hSeyBh7QkcdL6sSpUfAyEVEC8Rf5KxYfSiqTTtL-eOyfptGmg7dWxLed8Z__OZ_8OYI9L9HwynvlaoouCSiF8qUzoJ4KiZJGWxjExnV8kx9f89Da-XYC4eQuDgyiwp8IF8cmqpyarGQaCDpXf61K3e055kjewGCdo6YSIBqNmAY6I1M7RpHIinwx6dXTybz3QnqSL3_ak1gRt62W86fad4Xu4mY_YXTd5aM9K1dY__yBz_O9fWoF3NRJl_Up1VmHB5h_g7aBJAPcRvld50li_ph23BSsn7OiH1CU7vJNjh-GrV5xM5oaNXEodaxi9IrwbzyrdYu7MsXo-wejUlyHkZH0jp7TQspGkK-35mA1O2LnLZv0JrodHV4Njv07T4MtIBKVvImNxlzfoayZGaCUMBSu1sErHUtg41lyYIMjIN1K9GD00FVuOjo1AsJgIGa1BK5_kdgNYJohthneVNYpzlQkVHEQmJFSXiQOVePAVBZbWZlakLoIeBqkrRCmmtRQ96DQTmuqa65xSbjy-0mJ_3mJa8Xy8UneLdCRFjEJEu5puJOkyRWQbIRj0YLtRnV8DDVFSokvJ6j34Mv-M80nhGZnbyYzqdBNcb0U38GC9Urn5UCJEZgLB8OY_CmAXli4Ph-m3k4uzLVgO6YyA-Cn5NrTKp5ndQSBVqs_ObJ4BjxwXJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modern+Approaches+to+Exact+Diagonalization+and+Selected+Configuration+Interaction+with+the+Adaptive+Sampling+CI+Method&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Tubman%2C+Norm+M&rft.au=Freeman%2C+C.+Daniel&rft.au=Levine%2C+Daniel+S&rft.au=Hait%2C+Diptarka&rft.date=2020-04-14&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=16&rft.issue=4&rft.spage=2139&rft.epage=2159&rft_id=info:doi/10.1021%2Facs.jctc.8b00536&rft.externalDocID=b865818248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon