Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin

Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 90; no. 10; p. e0229923
Main Authors Heydenreich, Rosa, Delbrück, Alessia I., Trunet, Clément, Mathys, Alexander
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 23.10.2024
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
1070-6291
1098-5336
DOI10.1128/aem.02299-23

Cover

Abstract Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy’s success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers’ demand for safe and minimally processed food.
AbstractList The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration.IMPORTANCEExtremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy’s success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers’ demand for safe and minimally processed food.
Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy’s success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers’ demand for safe and minimally processed food.
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for resulted in a reduction of culturable dormant spores by 8 log units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced spores by only 2 log units. thus, proved to be substantially more HP-resistant compared to , validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration.The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration.Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.IMPORTANCEExtremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
Author Delbrück, Alessia I.
Trunet, Clément
Heydenreich, Rosa
Mathys, Alexander
Author_xml – sequence: 1
  givenname: Rosa
  orcidid: 0000-0001-6548-8666
  surname: Heydenreich
  fullname: Heydenreich, Rosa
  organization: Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Alessia I.
  surname: Delbrück
  fullname: Delbrück, Alessia I.
  organization: Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Clément
  surname: Trunet
  fullname: Trunet, Clément
  organization: Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ACTIA 19.03 ALTER’iX, Quimper, France
– sequence: 4
  givenname: Alexander
  orcidid: 0000-0003-1633-848X
  surname: Mathys
  fullname: Mathys, Alexander
  organization: Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39311577$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1PFDEUwBsDkQW8eTZNvGjC4Gu7s-0clSiQkHhQz01n5nUp6bRjO7OG_94uu0JCgqd-_d5Hf--YHIQYkJC3DM4Z4-qTweEcOG-aiotXZMGgUVUtxOqALAC2t3wJR-Q45zsAWMJKvSZHohGM1VIuCP6Ykplw7TBTGxNFa7Gb3AbprVvf0jFhznNCusY0uGAmFwMtWNluqf3Z0i-mc97PmeYxlpDyvol-48KaBpddOCWH1viMb_brCfn17evPi6vq5vvl9cXnm8qIhk2VrGum0PK-Q1S1aZW1dddIxWGJPSiG_QpQtii5gKaVKJdctP3KYsuACSHFCal2eecwmvs_xns9JjeYdK8Z6K0uXXTpB12ai8J_2PFjir9nzJMeXO7QexMwzlkLBqq4qlVT0PfP0Ls4p1B-UyjBai6V2jbwcUeZPPAn4oXi7_YZ53bA_rHTf8MpAN8BXYo5J7S6c9OD8jIz51_KevYs6L8G_gL-srAZ
CitedBy_id crossref_primary_10_1016_j_foodcont_2025_111134
Cites_doi 10.1111/j.1750-3841.2011.02066.x
10.1007/s12393-016-9155-1
10.1016/j.ijfoodmicro.2023.110279
10.1111/j.1365-2672.2009.04442.x
10.1111/j.1472-765X.2012.03278.x
10.3389/fmicb.2019.03122
10.3181/00379727-38-9808P
10.1016/j.ifset.2007.06.010
10.1016/s0168-1605(98)00130-5
10.1111/j.1365-2672.1996.tb03520.x
10.3389/fmicb.2018.03163
10.3389/fmicb.2023.1161604
10.1016/j.ijfoodmicro.2012.12.010
10.1128/AEM.70.12.7321-7328.2004
10.1002/bit.22849
10.12691/ajmr-11-2-5
10.1111/ijfs.14263
10.1080/10408398.2016.1271770
10.1111/1541-4337.12348
10.1016/j.ijfoodmicro.2021.109088
10.1128/AAC.00625-08
10.1016/j.ifset.2015.06.007
10.3136/fstr.11.324
10.1016/B978-0-12-823872-1.00005-3
10.3389/fmicb.2019.03118
10.1111/jam.12480
10.1016/j.cellsig.2020.109729
10.1128/JB.00736-09
10.1080/08957959.2012.664642
10.1016/j.ifset.2021.102828
10.1533/9781845698379.5.394
10.1146/annurev-food-041715-033144
10.1016/B978-0-12-822521-9.00103-9
10.1016/j.fm.2011.12.006
10.1128/aem.02324-21
10.1128/JB.01497-09
10.1038/nprot.2011.307
10.1021/cb1004178
10.1007/978-94-017-9918-8_23
10.1080/10498850802179776
10.3389/fnut.2021.643837
10.1111/j.1365-2672.2005.02736.x
10.3389/fmicb.2018.02277
10.1111/j.1365-2672.2006.03062.x
10.1128/AEM.02406-21
10.1111/j.1471-0307.1979.tb01907.x
10.1128/AEM.01596-19
10.1128/JB.00326-10
10.1146/annurev-micro-090816-093558
10.1128/AEM.64.9.3220-3224.1998
10.1080/10408398.2013.779570
10.1098/rspl.1877.0036
10.1128/jb.172.1.7-14.1990
10.1002/9780470376409
10.1128/AEM.00193-15
10.1016/j.tim.2013.03.001
10.1080/08957959.2021.1946054
10.1128/AEM.03043-13
10.1128/9781555819972.ch2
10.1128/AEM.71.10.5879-5887.2005
10.1016/j.fm.2019.103244
10.3390/foods11233820
10.1128/AEM.00503-17
10.1128/aem.56.8.2551-2558.1990
10.4315/0362-028x-67.11.2530
10.1016/j.ifset.2011.09.006
10.1016/j.foodcont.2011.10.061
10.1128/JB.01668-08
10.1111/j.1365-2672.2007.03722.x
10.1128/jb.175.5.1367-1374.1993
10.1016/j.fm.2014.01.007
10.1533/9781845698379.6.435
10.1111/j.1541-4337.2007.00021.x
10.1016/j.tifs.2008.04.001
10.1111/1541-4337.12789
10.1128/AEM.03755-12
10.1016/j.ijfoodmicro.2003.09.011
10.1146/annurev-food-032519-051632
10.1099/00221287-60-3-335
10.1016/j.cub.2010.06.031
10.1111/j.1365-2672.1996.tb03520.x
ContentType Journal Article
Copyright Copyright © 2024 Heydenreich et al.
Copyright American Society for Microbiology Oct 2024
Copyright_xml – notice: Copyright © 2024 Heydenreich et al.
– notice: Copyright American Society for Microbiology Oct 2024
DBID AAYXX
CITATION
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
ADTOC
UNPAY
DOI 10.1128/aem.02299-23
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
Editor Roussel, Sophie
Editor_xml – sequence: 1
  givenname: Sophie
  surname: Roussel
  fullname: Roussel, Sophie
ExternalDocumentID 10.1128/aem.02299-23
aem02299-23
39311577
10_1128_aem_02299_23
Genre Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation SNSF
  grantid: 31003A_182273
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
AGVNZ
NPM
RHF
UCJ
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
.55
.GJ
3O-
ADTOC
ADXHL
AFFNX
AGCDD
AI.
C1A
EJD
H~9
MVM
NEJ
OHT
TAF
UNPAY
VH1
WHG
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
ID FETCH-LOGICAL-a391t-75518ef2dcee85ab8ff5c978204ed081ed60e7be72309b7e7423bd6feb1013373
ISSN 0099-2240
1098-5336
1070-6291
IngestDate Sun Sep 07 11:22:57 EDT 2025
Fri Sep 05 04:42:15 EDT 2025
Mon Jun 30 10:36:44 EDT 2025
Thu Oct 24 02:26:31 EDT 2024
Thu Apr 03 07:07:13 EDT 2025
Wed Oct 01 05:06:25 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords germination
endospore
nisin
Bacillus subtilis
inactivation
Bacillus amyloliquefaciens
superdormant
high isostatic pressure
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a391t-75518ef2dcee85ab8ff5c978204ed081ed60e7be72309b7e7423bd6feb1013373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1633-848X
0000-0001-6548-8666
OpenAccessLink https://doi.org/10.1128/aem.02299-23
PMID 39311577
PQID 3131527887
PQPubID 42251
PageCount 19
ParticipantIDs unpaywall_primary_10_1128_aem_02299_23
proquest_miscellaneous_3108393589
proquest_journals_3131527887
asm2_journals_10_1128_aem_02299_23
pubmed_primary_39311577
crossref_citationtrail_10_1128_aem_02299_23
crossref_primary_10_1128_aem_02299_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-23
PublicationDateYYYYMMDD 2024-10-23
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Applied and environmental microbiology
PublicationTitleAbbrev Appl Environ Microbiol
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2024
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
Nicholson WL (e_1_3_4_86_2) 1990
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_67_2
e_1_3_4_88_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
Sutton S (e_1_3_4_87_2) 2011; 17
e_1_3_4_18_2
e_1_3_4_39_2
B20
Doona, CJ, Feeherry, FE (B8) 2007
Aoyama, Y, Shigeta, Y, Okazaki, T, Hagura, Y, Suzuki, K (B66) 2005; 11
Nicholson, WL, Setlow, P (B82) 1990; 172
Nguyen Thi Minh, H, Dantigny, P, Perrier-Cornet, JM, Gervais, P (B63) 2010; 107
Delbrück, AI, Zhang, Y, Heydenreich, R, Mathys, A (B26) 2021; 20
Oey, I, Lille, M, Van Loey, A, Hendrickx, M (B13) 2008; 19
Aouadhi, C, Simonin, H, Prévost, H, Lamballerie, M de, Maaroufi, A, Mejri, S (B67) 2012; 30
Crane, JM, Frodyma, ME, Bergstrom, GC (B74) 2014; 116
Kmiha, S, Modugno, C, Aouadhi, C, Simonin, H, Mejri, S, Perrier-Cornet, JM, Maaroufi, A (B56) 2021; 41
Reineke, K, Mathys, A, Heinz, V, Knorr, D (B18) 2013; 21
Brown, JV, Wiles, R, Prentice, GA (B77) 1979; 32
Reineke, K, Schlumbach, K, Baier, D, Mathys, A, Knorr, D (B28) 2013; 162
Modugno, C, Kmiha, S, Simonin, H, Aouadhi, C, Diosdado Cañizares, E, Lang, E, André, S, Mejri, S, Maaroufi, A, Perrier-Cornet, JM (B38) 2019; 84
Yi, X, Setlow, P (B64) 2010; 192
Gratz, M, Sevenich, R, Hoppe, T, Schottroff, F, Vlaskovic, N, Belkova, B, Chytilova, L, Filatova, M, Stupak, M, Hajslova, J, Rauh, C, Jaeger, H (B6) 2021; 8
Black, EP, Setlow, P, Hocking, AD, Stewart, CM, Kelly, AL, Hoover, DG (B14) 2007; 6
Raso, J, Góngora-Nieto, MM, Barbosa-Cánovas, GV, Swanson, BG (B47) 1998; 44
Nicholson, WL, Setlow, P, Harwood, CR, Cutting, SM (B85) 1990
Li, Z, Schottroff, F, Simpson, DJ, Gänzle, MG (B41) 2019; 85
Delbrück, AI, Zhang, Y, Hug, V, Trunet, C, Mathys, A (B15) 2021; 343
Hu, H, Balasubramaniam, VM (B4) 2024
Margosch, D, Gänzle, MG, Ehrmann, MA, Vogel, RF (B19) 2004; 70
Doona, CJ, Feeherry, FE, Kustin, K, Chen, H, Huang, R, Philip Ye, X, Setlow, P (B60) 2017; 9
Popa, EE, Miteluț, AC, Râpă, M, Popescu, PA, Drăghici, MC, Geicu-Cristea, M, Popa, ME (B34) 2022; 11
Witty, M (B76) 2023; 11
Setlow, P (B1) 2006; 101
Reineke, K, Doehner, I, Schlumbach, K, Baier, D, Mathys, A, Knorr, D (B16) 2012; 13
Setlow, P, Johnson, EA (B2) 2019
Lenz, CA, Vogel, RF, Akasaka, K, Matsuki, H (B24) 2015
Sevenich, R, Mathys, A (B62) 2018; 17
Sokołowska, B, Skąpska, S, Fonberg-Broczek, M, Niezgoda, J, Chotkiewicz, M, Dekowska, A, Rzoska, S (B73) 2012; 32
Setlow, P, Wang, S, Li, YQ (B23) 2017; 71
Zhang, Y, Delbrück, AI, Off, CL, Benke, S, Mathys, A (B49) 2019; 10
Syed, QA, Reineke, K, Saldo, J, Buffa, M, Guamis, B, Knorr, D (B69) 2012; 25
Delbrück, AI, Tritten, Y, Nanni, P, Heydenreich, R, Mathys, A (B30) 2022; 88
Yu, B, Kanaan, J, Shames, H, Wicander, J, Aryal, M, Li, Y, Korza, G, Brul, S, Kramer, G, Li, YQ, Nichols, FC, Hao, B, Setlow, P (B61) 2023; 14
Black, EP, Koziol-Dube, K, Guan, D, Wei, J, Setlow, B, Cortezzo, DE, Hoover, DG, Setlow, P (B58) 2005; 71
Wells-Bennik, MHJ, Eijlander, RT, den Besten, HMW, Berendsen, EM, Warda, AK, Krawczyk, AO, Nierop Groot, MN, Xiao, Y, Zwietering, MH, Kuipers, OP, Abee, T (B5) 2016; 7
Tyndall, J (B75) 1878; 26
Gut, IM, Prouty, AM, Ballard, JD, van der Donk, WA, Blanke, SR (B54) 2008; 52
Herdegen, V, Vogel, RF (B72) 1998
Heydenreich, R, Delbrück, AI, Mathys, A (B27) 2023; 402
Wei, J, Shah, IM, Ghosh, S, Dworkin, J, Hoover, DG, Setlow, P (B71) 2010; 192
Christie, G, Setlow, P (B25) 2020; 74
Margosch, D, Ehrmann, MA, Gänzle, MG, Vogel, RF (B40) 2004; 67
B42
B87
Wuytack, EY, Boven, S, Michiels, CW (B70) 1998; 64
B45
Modugno, C, Peltier, C, Simonin, H, Dujourdy, L, Capitani, F, Sandt, C, Perrier-Cornet, JM (B39) 2019; 10
Gould, GW, Sale, AJH (B17) 1970; 60
Fekraoui, F, Ferret, É, Paniel, N, Auvy, O, Chamontin, C, André, S, Simonin, H, Perrier-Cornet, J-M (B21) 2021; 74
Ghosh, S, Setlow, P (B32) 2009; 191
Omardien, S, Drijfhout, JW, Zaat, SA, Brul, S (B55) 2018; 9
Mathys, A, Chapman, B, Bull, M, Heinz, V, Knorr, D (B46) 2007; 8
Queirós, RP, Saraiva, JA, da Silva, JAL (B57) 2018; 58
Black, EP, Wei, J, Atluri, S, Cortezzo, DE, Koziol-Dube, K, Hoover, DG, Setlow, P (B44) 2007; 102
Sutton, S (B86) 2011; 17
de Hoon, MJL, Eichenberger, P, Vitkup, D (B3) 2010; 20
Reineke, K, Mathys, A (B10) 2020; 11
Liu, W, Hansen, JN (B53) 1990; 56
Ordóñez‐Santos, LE, Martínez‐Girón, J (B7) 2020; 55
Basset, J, Gratia, A, Macheboeuf, M, Manil, P (B22) 1938; 38
Fairhead, H, Setlow, B, Setlow, P (B83) 1993; 175
Syed, QA, Buffa, M, Guamis, BV, Saldo, J (B48) 2016; 56
Kong, L, Doona, CJ, Setlow, P, Li, Y (B80) 2014; 80
Ghosh, S, Setlow, P (B31) 2010; 108
Gut, IM, Blanke, SR, van der Donk, WA (B35) 2011; 6
Borch-Pedersen, K, Mellegård, H, Reineke, K, Boysen, P, Sevenich, R, Lindbäck, T, Aspholm, M (B59) 2017; 83
Reineke, K, Mathys, A, Knorr, D (B52) 2011; 76
B12
Roberts, CM, Hoover, DG (B79) 1996; 81
Black, EP, Linton, M, McCall, RD, Curran, W, Fitzgerald, GF, Kelly, AL, Patterson, MF (B37) 2008; 105
Hofstetter, S, Winter, R, McMullen, LM, Gänzle, MG (B36) 2013; 79
Jermann, C, Koutchma, T, Margas, E, Leadley, C, Ros-Polski, V (B9) 2015; 31
Kim, H, Kim, H, Bang, J, Kim, Y, Beuchat, LR, Ryu, JH (B78) 2012; 55
Zhang, Y, Mathys, A (B29) 2018; 9
Van Opstal, I, Bagamboula, CF, Vanmuysen, SCM, Wuytack, EY, Michiels, CW (B65) 2004; 92
Luu, S, Cruz-Mora, J, Setlow, B, Feeherry, FE, Doona, CJ, Setlow, P (B50) 2015; 81
Wen, J, Smelt, J, Vischer, NOE, de Vos, AL, Setlow, P, Brul, S (B51) 2022; 88
Heinz, V, Knorr, D (B43) 1998; 222
Gänzle, MG, Knoerzer, K, Sevenich, RBT-HPTP (B11) 2023
Suklim, K, Flick, GJ, Bourne, DW, Granata, LA, Eifert, J, Williams, R, Popham, D, Wittman, R (B68) 2008; 17
Ghosh, S, Zhang, P, Li, Y, Setlow, P (B33) 2009; 191
Georget, E, Kapoor, S, Winter, R, Reineke, K, Song, Y, Callanan, M, Ananta, E, Heinz, V, Mathys, A (B81) 2014; 41
Kong, L, Zhang, P, Wang, G, Yu, J, Setlow, P, Li, Y (B84) 2011; 6
References_xml – ident: e_1_3_4_53_2
  doi: 10.1111/j.1750-3841.2011.02066.x
– ident: e_1_3_4_61_2
  doi: 10.1007/s12393-016-9155-1
– ident: e_1_3_4_28_2
  doi: 10.1016/j.ijfoodmicro.2023.110279
– volume: 17
  start-page: 42
  year: 2011
  ident: e_1_3_4_87_2
  article-title: Accuracy of plate counts
  publication-title: J Valid Technol
– ident: e_1_3_4_32_2
  doi: 10.1111/j.1365-2672.2009.04442.x
– ident: e_1_3_4_79_2
  doi: 10.1111/j.1472-765X.2012.03278.x
– ident: e_1_3_4_40_2
  doi: 10.3389/fmicb.2019.03122
– ident: e_1_3_4_23_2
  doi: 10.3181/00379727-38-9808P
– ident: e_1_3_4_47_2
  doi: 10.1016/j.ifset.2007.06.010
– ident: e_1_3_4_48_2
  doi: 10.1016/s0168-1605(98)00130-5
– ident: e_1_3_4_80_2
  doi: 10.1111/j.1365-2672.1996.tb03520.x
– ident: e_1_3_4_30_2
  doi: 10.3389/fmicb.2018.03163
– ident: e_1_3_4_62_2
  doi: 10.3389/fmicb.2023.1161604
– ident: e_1_3_4_29_2
  doi: 10.1016/j.ijfoodmicro.2012.12.010
– ident: e_1_3_4_20_2
  doi: 10.1128/AEM.70.12.7321-7328.2004
– ident: e_1_3_4_64_2
  doi: 10.1002/bit.22849
– ident: e_1_3_4_77_2
  doi: 10.12691/ajmr-11-2-5
– ident: e_1_3_4_8_2
  doi: 10.1111/ijfs.14263
– ident: e_1_3_4_58_2
  doi: 10.1080/10408398.2016.1271770
– ident: e_1_3_4_63_2
  doi: 10.1111/1541-4337.12348
– ident: e_1_3_4_16_2
  doi: 10.1016/j.ijfoodmicro.2021.109088
– ident: e_1_3_4_55_2
  doi: 10.1128/AAC.00625-08
– ident: e_1_3_4_10_2
  doi: 10.1016/j.ifset.2015.06.007
– ident: e_1_3_4_67_2
  doi: 10.3136/fstr.11.324
– ident: e_1_3_4_12_2
  doi: 10.1016/B978-0-12-823872-1.00005-3
– ident: e_1_3_4_50_2
  doi: 10.3389/fmicb.2019.03118
– ident: e_1_3_4_75_2
  doi: 10.1111/jam.12480
– ident: e_1_3_4_26_2
  doi: 10.1016/j.cellsig.2020.109729
– ident: e_1_3_4_34_2
  doi: 10.1128/JB.00736-09
– ident: e_1_3_4_74_2
  doi: 10.1080/08957959.2012.664642
– ident: e_1_3_4_22_2
  doi: 10.1016/j.ifset.2021.102828
– ident: e_1_3_4_73_2
  doi: 10.1533/9781845698379.5.394
– ident: e_1_3_4_6_2
  doi: 10.1146/annurev-food-041715-033144
– ident: e_1_3_4_5_2
  doi: 10.1016/B978-0-12-822521-9.00103-9
– ident: e_1_3_4_68_2
  doi: 10.1016/j.fm.2011.12.006
– start-page: 391
  volume-title: Molecular biological methods for Bacillus
  year: 1990
  ident: e_1_3_4_86_2
– ident: e_1_3_4_52_2
  doi: 10.1128/aem.02324-21
– ident: e_1_3_4_72_2
  doi: 10.1128/JB.01497-09
– ident: e_1_3_4_85_2
  doi: 10.1038/nprot.2011.307
– ident: e_1_3_4_36_2
  doi: 10.1021/cb1004178
– ident: e_1_3_4_25_2
  doi: 10.1007/978-94-017-9918-8_23
– ident: e_1_3_4_69_2
  doi: 10.1080/10498850802179776
– ident: e_1_3_4_88_2
– ident: e_1_3_4_7_2
  doi: 10.3389/fnut.2021.643837
– ident: e_1_3_4_2_2
  doi: 10.1111/j.1365-2672.2005.02736.x
– ident: e_1_3_4_56_2
  doi: 10.3389/fmicb.2018.02277
– ident: e_1_3_4_45_2
  doi: 10.1111/j.1365-2672.2006.03062.x
– ident: e_1_3_4_31_2
  doi: 10.1128/AEM.02406-21
– ident: e_1_3_4_78_2
  doi: 10.1111/j.1471-0307.1979.tb01907.x
– ident: e_1_3_4_42_2
  doi: 10.1128/AEM.01596-19
– ident: e_1_3_4_65_2
  doi: 10.1128/JB.00326-10
– ident: e_1_3_4_24_2
  doi: 10.1146/annurev-micro-090816-093558
– ident: e_1_3_4_71_2
  doi: 10.1128/AEM.64.9.3220-3224.1998
– ident: e_1_3_4_49_2
  doi: 10.1080/10408398.2013.779570
– ident: e_1_3_4_76_2
  doi: 10.1098/rspl.1877.0036
– ident: e_1_3_4_83_2
  doi: 10.1128/jb.172.1.7-14.1990
– ident: e_1_3_4_9_2
  doi: 10.1002/9780470376409
– ident: e_1_3_4_51_2
  doi: 10.1128/AEM.00193-15
– ident: e_1_3_4_19_2
  doi: 10.1016/j.tim.2013.03.001
– ident: e_1_3_4_57_2
  doi: 10.1080/08957959.2021.1946054
– ident: e_1_3_4_81_2
  doi: 10.1128/AEM.03043-13
– ident: e_1_3_4_3_2
  doi: 10.1128/9781555819972.ch2
– ident: e_1_3_4_59_2
  doi: 10.1128/AEM.71.10.5879-5887.2005
– ident: e_1_3_4_39_2
  doi: 10.1016/j.fm.2019.103244
– ident: e_1_3_4_35_2
  doi: 10.3390/foods11233820
– ident: e_1_3_4_60_2
  doi: 10.1128/AEM.00503-17
– ident: e_1_3_4_54_2
  doi: 10.1128/aem.56.8.2551-2558.1990
– ident: e_1_3_4_41_2
  doi: 10.4315/0362-028x-67.11.2530
– ident: e_1_3_4_17_2
  doi: 10.1016/j.ifset.2011.09.006
– ident: e_1_3_4_70_2
  doi: 10.1016/j.foodcont.2011.10.061
– ident: e_1_3_4_33_2
  doi: 10.1128/JB.01668-08
– ident: e_1_3_4_13_2
– ident: e_1_3_4_38_2
  doi: 10.1111/j.1365-2672.2007.03722.x
– ident: e_1_3_4_84_2
  doi: 10.1128/jb.175.5.1367-1374.1993
– ident: e_1_3_4_82_2
  doi: 10.1016/j.fm.2014.01.007
– ident: e_1_3_4_44_2
  doi: 10.1533/9781845698379.6.435
– ident: e_1_3_4_15_2
  doi: 10.1111/j.1541-4337.2007.00021.x
– ident: e_1_3_4_14_2
  doi: 10.1016/j.tifs.2008.04.001
– ident: e_1_3_4_27_2
  doi: 10.1111/1541-4337.12789
– ident: e_1_3_4_37_2
  doi: 10.1128/AEM.03755-12
– ident: e_1_3_4_66_2
  doi: 10.1016/j.ijfoodmicro.2003.09.011
– ident: e_1_3_4_11_2
  doi: 10.1146/annurev-food-032519-051632
– ident: e_1_3_4_43_2
– ident: e_1_3_4_18_2
  doi: 10.1099/00221287-60-3-335
– ident: e_1_3_4_4_2
  doi: 10.1016/j.cub.2010.06.031
– volume: 85
  start-page: 1
  year: 2019
  end-page: 12
  ident: B41
  article-title: The copy number of the spoVA2mob operon determines pressure resistance of Bacillus endospores
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01596-19
– volume: 191
  start-page: 1787
  year: 2009
  end-page: 1797
  ident: B32
  article-title: Isolation and characterization of superdormant spores of Bacillus species
  publication-title: J Bacteriol
  doi: 10.1128/JB.01668-08
– volume: 38
  start-page: 248
  year: 1938
  end-page: 251
  ident: B22
  article-title: Action of high pressures on plant viruses
  publication-title: Exp Biol Med (Maywood)
  doi: 10.3181/00379727-38-9808P
– volume: 17
  start-page: 42
  year: 2011
  end-page: 46
  ident: B86
  article-title: Accuracy of plate counts
  publication-title: J Valid Technol
– volume: 9
  year: 2018
  ident: B55
  article-title: Cationic amphipathic antimicrobial peptides perturb the inner membrane of germinated spores thus inhibiting their outgrowth
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.02277
– start-page: 23
  year: 2019
  end-page: 63
  ident: B2
  article-title: Spores and their significance
  publication-title: Food microbiology: fundamentals and frontiers ;p In ;Wiley
– volume: 71
  start-page: 5879
  year: 2005
  end-page: 5887
  ident: B58
  article-title: Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.10.5879-5887.2005
– volume: 58
  start-page: 1538
  year: 2018
  end-page: 1556
  ident: B57
  article-title: Tailoring structure and technological properties of plant proteins using high hydrostatic pressure
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2016.1271770
– volume: 79
  start-page: 2103
  year: 2013
  end-page: 2106
  ident: B36
  article-title: In situ determination of Clostridium endospore membrane fluidity during pressure-assisted thermal processing in combination with nisin or reutericyclin
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03755-12
– volume: 222
  start-page: 435
  year: 1998
  end-page: 441
  ident: B43
  article-title: High pressure germination and inactivation kinetics of bacterial spores
  publication-title: Spec Publ Soc Chem
  doi: 10.1533/9781845698379.6.435
– volume: 83
  start-page: 10
  year: 2017
  end-page: 11
  ident: B59
  article-title: Effects of high pressure on Bacillus licheniformis spore germination and inactivation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00503-17
– ident: B12
  article-title: Hiperbaric . High pressure thermal processing . Available from : https://www.hiperbaric.com/en/high-pressure-thermal-processing . Retrieved 19 Feb 2024 .
– volume: 17
  start-page: 646
  year: 2018
  end-page: 662
  ident: B62
  article-title: Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: a review
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12348
– volume: 192
  start-page: 3424
  year: 2010
  end-page: 3433
  ident: B64
  article-title: Studies of the commitment step in the germination of spores of Bacillus species
  publication-title: J Bacteriol
  doi: 10.1128/JB.00326-10
– volume: 162
  start-page: 55
  year: 2013
  end-page: 63
  ident: B28
  article-title: The release of dipicolinic acid - the rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2012.12.010
– volume: 17
  start-page: 322
  year: 2008
  end-page: 337
  ident: B68
  article-title: Pressure-induced germination and inactivation of Bacillus cereus spores and their survival in fresh blue crab meat (Callinectes sapidus) during storage
  publication-title: J Aquat Food Prod Technol
  doi: 10.1080/10498850802179776
– volume: 10
  start-page: 3118
  year: 2019
  ident: B49
  article-title: Flow cytometry combined with single cell sorting to study heterogeneous germination of Bacillus spores under high pressure
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.03118
– volume: 172
  start-page: 7
  year: 1990
  end-page: 14
  ident: B82
  article-title: Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.1.7-14.1990
– volume: 67
  start-page: 2530
  year: 2004
  end-page: 2537
  ident: B40
  article-title: Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots
  publication-title: J Food Prot
  doi: 10.4315/0362-028x-67.11.2530
– volume: 11
  start-page: 58
  year: 2023
  end-page: 63
  ident: B76
  article-title: Tyndallization does not suppress Bacillus megaterium and may explain part of potato peel colic
  publication-title: AJMR
  doi: 10.12691/ajmr-11-2-5
– volume: 175
  start-page: 1367
  year: 1993
  end-page: 1374
  ident: B83
  article-title: Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.5.1367-1374.1993
– volume: 102
  start-page: 65
  year: 2007
  end-page: 76
  ident: B44
  article-title: Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2006.03062.x
– volume: 6
  start-page: 625
  year: 2011
  end-page: 639
  ident: B84
  article-title: Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.307
– volume: 81
  start-page: 363
  year: 1996
  end-page: 368
  ident: B79
  article-title: Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin
  publication-title: J Appl Bacteriol
  doi: 10.1111/j.1365-2672.1996.tb03520.x
– volume: 31
  start-page: 14
  year: 2015
  end-page: 27
  ident: B9
  article-title: Mapping trends in novel and emerging food processing technologies around the world
  publication-title: Innov Food Sci Emerg Technol
  doi: 10.1016/j.ifset.2015.06.007
– volume: 107
  start-page: 876
  year: 2010
  end-page: 883
  ident: B63
  article-title: Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22849
– volume: 64
  start-page: 3220
  year: 1998
  end-page: 3224
  ident: B70
  article-title: Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.9.3220-3224.1998
– volume: 88
  year: 2022
  ident: B30
  article-title: Moderate high-pressure superdormancy in Bacillus spores: properties of superdormant spores and proteins potentially influencing moderate high-pressure germination
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02406-21
– start-page: 1
  year: 2023
  end-page: 15
  ident: B11
  article-title: Introduction to high pressure thermal processing and pressure assisted thermal sterilization
  publication-title: High pressure thermal processing ;p In
– volume: 32
  start-page: 109
  year: 1979
  end-page: 112
  ident: B77
  article-title: The effect of a modified Tyndallization process upon the sporeforming bacteria of milk and cream
  publication-title: Int J Dairy Tech
  doi: 10.1111/j.1471-0307.1979.tb01907.x
– volume: 80
  start-page: 345
  year: 2014
  end-page: 353
  ident: B80
  article-title: Monitoring rates and heterogeneity of high-pressure germination of Bacillus spores by phase-contrast microscopy of individual spores
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03043-13
– ident: B20
  article-title: Lenz CA . 2017 . Effect of high hydrostatic pressure on Clostridium botulinum type E endospores. PhD thesis , Technische Universität München , Germany
– volume: 105
  start-page: 78
  year: 2008
  end-page: 87
  ident: B37
  article-title: The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2007.03722.x
– volume: 116
  start-page: 1572
  year: 2014
  end-page: 1583
  ident: B74
  article-title: Nutrient-induced spore germination of a Bacillus amyloliquefaciens biocontrol agent on wheat spikes
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.12480
– ident: B87
  article-title: Molecular Probes . 2006 . Propidium iodide nucleic acid stain . Available from : https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fmp01304.pdf . Retrieved 19 Dec 2023 .
– volume: 56
  start-page: 474
  year: 2016
  end-page: 483
  ident: B48
  article-title: Factors affecting bacterial inactivation during high hydrostatic pressure processing of foods: a review
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2013.779570
– volume: 11
  start-page: 255
  year: 2020
  end-page: 274
  ident: B10
  article-title: Endospore inactivation by emerging technologies: a review of target structures and inactivation mechanisms
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev-food-032519-051632
– volume: 343
  start-page: 109088
  year: 2021
  ident: B15
  article-title: Isolation, stability, and characteristics of high-pressure superdormant Bacillus subtilis spores
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2021.109088
– volume: 44
  start-page: 125
  year: 1998
  end-page: 132
  ident: B47
  article-title: Influence of several environmental factors on the initiation of germination and inactivation of Bacillus cereus by high hydrostatic pressure
  publication-title: Int J Food Microbiol
  doi: 10.1016/s0168-1605(98)00130-5
– volume: 60
  start-page: 335
  year: 1970
  end-page: 346
  ident: B17
  article-title: Initiation of germination of bacterial spores by hydrostatic pressure
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-60-3-335
– volume: 108
  start-page: 582
  year: 2010
  end-page: 590
  ident: B31
  article-title: The preparation, germination properties and stability of superdormant spores of Bacillus cereus
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2009.04442.x
– volume: 11
  start-page: 324
  year: 2005
  end-page: 327
  ident: B66
  article-title: Non-thermal inactivation of Bacillus spores by pressure-holding
  publication-title: FSTR
  doi: 10.3136/fstr.11.324
– volume: 14
  start-page: 1161604
  year: 2023
  ident: B61
  article-title: Identification and characterization of new proteins crucial for bacterial spore resistance and germination
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2023.1161604
– volume: 74
  start-page: 109729
  year: 2020
  ident: B25
  article-title: Bacillus spore germination: knowns, unknowns and what we need to learn
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2020.109729
– volume: 9
  start-page: 3163
  year: 2018
  ident: B29
  article-title: Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03163
– volume: 9
  start-page: 122
  year: 2017
  end-page: 142
  ident: B60
  article-title: A quasi-chemical model for bacterial spore germination kinetics by high pressure
  publication-title: Food Eng Rev
  doi: 10.1007/s12393-016-9155-1
– volume: 41
  start-page: 8
  year: 2014
  end-page: 18
  ident: B81
  article-title: In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2014.01.007
– volume: 52
  start-page: 4281
  year: 2008
  end-page: 4288
  ident: B54
  article-title: Inhibition of Bacillus anthracis spore outgrowth by nisin
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00625-08
– volume: 26
  start-page: 228
  year: 1878
  end-page: 238
  ident: B75
  article-title: III. Further researches on the department and vital resistance of putrefactive and infective organisms, from a physical point of view
  publication-title: Proc R Soc London
– volume: 101
  start-page: 514
  year: 2006
  end-page: 525
  ident: B1
  article-title: Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2005.02736.x
– volume: 20
  start-page: 4159
  year: 2021
  end-page: 4181
  ident: B26
  article-title: Bacillus spore germination at moderate high pressure: A review on underlying mechanisms, influencing factors, and its comparison with nutrient germination
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12789
– ident: B45
  article-title: Delbrück AI . 2022 . Moderate high pressure superdormancy – properties of Bacillus subtilis superdormant spores and potential underlying mechanisms. PhD thesis , ETH Zurich , Zurich, Switzerland
– volume: 76
  start-page: M189
  year: 2011
  end-page: 97
  ident: B52
  article-title: The impact of high pressure and temperature on bacterial spores: inactivation mechanisms of Bacillus subtilis above 500 MPa
  publication-title: J Food Sci
  doi: 10.1111/j.1750-3841.2011.02066.x
– volume: 32
  start-page: 119
  year: 2012
  end-page: 127
  ident: B73
  article-title: The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice
  publication-title: High Press Res
  doi: 10.1080/08957959.2012.664642
– volume: 19
  start-page: 320
  year: 2008
  end-page: 328
  ident: B13
  article-title: Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2008.04.001
– volume: 13
  start-page: 31
  year: 2012
  end-page: 41
  ident: B16
  article-title: The different pathways of spore germination and inactivation in dependence of pressure and temperature
  publication-title: Innov Food Sci Emerg Technol
  doi: 10.1016/j.ifset.2011.09.006
– volume: 402
  start-page: 110279
  year: 2023
  ident: B27
  article-title: Post-high-pressure temperature and time - overlooked parameters in high pressure treatment of bacterial spores
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2023.110279
– volume: 8
  start-page: 519
  year: 2007
  end-page: 527
  ident: B46
  article-title: Flow cytometric assessment of Bacillus spore response to high pressure and heat
  publication-title: Innov Food Sci Emerg Technol
  doi: 10.1016/j.ifset.2007.06.010
– start-page: 391
  year: 1990
  end-page: 450
  ident: B85
  article-title: Sporulation, germination and outgrowth
  publication-title: Molecular biological methods for Bacillus ;p In ;J. Wiley
– start-page: 469
  year: 2015
  end-page: 537
  ident: B24
  article-title: Pressure-based strategy for the inactivation of spores
  publication-title: High pressure bioscience: basic concepts, applications and frontiers ;p In ;Springer Netherlands ;Dordrecht
– volume: 92
  start-page: 227
  year: 2004
  end-page: 234
  ident: B65
  article-title: Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2003.09.011
– volume: 55
  start-page: 201
  year: 2020
  end-page: 210
  ident: B7
  article-title: Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice
  publication-title: Int J Food Sci Tech
  doi: 10.1111/ijfs.14263
– volume: 6
  start-page: 744
  year: 2011
  end-page: 752
  ident: B35
  article-title: Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin
  publication-title: ACS Chem Biol
  doi: 10.1021/cb1004178
– volume: 191
  start-page: 5584
  year: 2009
  end-page: 5591
  ident: B33
  article-title: Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation
  publication-title: J Bacteriol
  doi: 10.1128/JB.00736-09
– year: 2007
  ident: B8
  publication-title: High pressure processing of foods ;Blackwell Publishing Ltd
– volume: 88
  year: 2022
  ident: B51
  article-title: Heat activation and inactivation of bacterial spores: is there an overlap?
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.02324-21
– volume: 70
  start-page: 7321
  year: 2004
  end-page: 7328
  ident: B19
  article-title: Pressure inactivation of Bacillus endospores
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.12.7321-7328.2004
– volume: 7
  start-page: 457
  year: 2016
  end-page: 482
  ident: B5
  article-title: Bacterial spores in food: survival, emergence, and outgrowth
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev-food-041715-033144
– volume: 41
  start-page: 328
  year: 2021
  end-page: 340
  ident: B56
  article-title: Inhibitory effect of high hydrostatic pressure, nisin, and moderate heating on the inactivation of Paenibacillus sp. and Terribacillus aidingensis spores isolated from UHT milk
  publication-title: High Press Res
  doi: 10.1080/08957959.2021.1946054
– volume: 81
  start-page: 2927
  year: 2015
  end-page: 2938
  ident: B50
  article-title: The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00193-15
– volume: 192
  start-page: 1455
  year: 2010
  end-page: 1458
  ident: B71
  article-title: Superdormant spores of Bacillus species germinate normally with high pressure, peptidoglycan fragments, and bryostatin
  publication-title: J Bacteriol
  doi: 10.1128/JB.01497-09
– volume: 21
  start-page: 296
  year: 2013
  end-page: 304
  ident: B18
  article-title: Mechanisms of endospore inactivation under high pressure
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2013.03.001
– volume: 56
  start-page: 2551
  year: 1990
  end-page: 2558
  ident: B53
  article-title: Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.56.8.2551-2558.1990
– volume: 6
  start-page: 103
  year: 2007
  end-page: 119
  ident: B14
  article-title: Response of spores to high‐pressure processing
  publication-title: Comp Rev Food Sci Food Safe
  doi: 10.1111/j.1541-4337.2007.00021.x
– volume: 10
  year: 2019
  ident: B39
  article-title: Understanding the effects of high pressure on bacterial spores using synchrotron infrared spectroscopy
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.03122
– volume: 55
  start-page: 218
  year: 2012
  end-page: 223
  ident: B78
  article-title: Reduction of Bacillus cereus spores in sikhye, a traditional Korean rice beverage, by modified Tyndallization processes with and without carbon dioxide injection
  publication-title: Lett Appl Microbiol
  doi: 10.1111/j.1472-765X.2012.03278.x
– volume: 20
  start-page: R735
  year: 2010
  end-page: 745
  ident: B3
  article-title: Hierarchical evolution of the bacterial sporulation network
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.06.031
– start-page: 394
  year: 1998
  end-page: 402
  ident: B72
  article-title: Strategies for high pressure inactivation of endospore-forming bacteria
  publication-title: High pressure food science, bioscience and chemistry ;p In ;The Royal Society of Chemistry
– volume: 84
  start-page: 103244
  year: 2019
  ident: B38
  article-title: High pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2019.103244
– start-page: 531
  year: 2024
  end-page: 551
  ident: B4
  article-title: High-pressure processing
  publication-title: Encyclopedia of food safety ;2nd ;p In ed ;Elsevier
– volume: 11
  year: 2022
  ident: B34
  article-title: Antimicrobial active packaging containing nisin for preservation of products of animal origin: an overview
  publication-title: Foods
  doi: 10.3390/foods11233820
– ident: B42
  article-title: Merck KGaA . 2024 . Tryptic soy broth - dehydrated culture media . Available from : https://www.sigmaaldrich.com/CH/en/product/sial/22092#product-documentation . Retrieved 20 Feb 2024 .
– volume: 8
  year: 2021
  ident: B6
  article-title: Gentle sterilization of carrot-based purees by high-pressure thermal sterilization and ohmic heating and influence on food processing contaminants and quality attributes
  publication-title: Front Nutr
  doi: 10.3389/fnut.2021.643837
– volume: 71
  start-page: 459
  year: 2017
  end-page: 477
  ident: B23
  article-title: Germination of spores of the orders Bacillales and Clostridiales
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-090816-093558
– volume: 25
  start-page: 361
  year: 2012
  end-page: 367
  ident: B69
  article-title: Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2011.10.061
– volume: 74
  start-page: 102828
  year: 2021
  ident: B21
  article-title: Cycling versus continuous high pressure treatments at moderate temperatures : effect on bacterial spores ?
  publication-title: Innov Food Sci Emerg Technol
  doi: 10.1016/j.ifset.2021.102828
– volume: 30
  start-page: 1
  year: 2012
  end-page: 7
  ident: B67
  article-title: Optimization of pressure-induced germination of Bacillus sporothermodurans spores in water and milk
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2011.12.006
SSID ssj0004068
Score 2.482431
Snippet Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of...
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic...
SourceID unpaywall
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0229923
SubjectTerms Alanine
Applied and Industrial Microbiology
Atmospheric pressure
Bacillus
Bacteria
Bacteriocins
Deactivation
Effectiveness
Enumeration
Food chains
Food Microbiology
Food processing
Food quality
Food safety
Food spoilage
Germination
High pressure
Inactivation
Isostatic pressure
L-Alanine
Nisin
Nutrients
Preservation
Processed foods
Spoilage
Spore germination
Spore-forming bacteria
Spores
Sterilization
Valine
Title Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin
URI https://www.ncbi.nlm.nih.gov/pubmed/39311577
https://journals.asm.org/doi/10.1128/aem.02299-23
https://www.proquest.com/docview/3131527887
https://www.proquest.com/docview/3108393589
https://doi.org/10.1128/aem.02299-23
UnpaywallVersion publishedVersion
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: KQ8
  dateStart: 19530101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: DIK
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1098-5336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004068
  issn: 0099-2240
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBp7QFAYFAYyCHipUtIkdZLHrYAGCCTQJu0tshMHVcrSaWlA5S_hz-XOjh0POjR4idrUSazel_th331HyHMwAtE0FswDV4J5YPF9D8QMX6UQEgKKMNbZFp_Y4XH0_mR2Mhj8dLKW2pWY5D821pX8j1ThHMgVq2T_QbL2pnACPoN84QgShuOVZGyoZWWjmbtVbgamAiEJ8ViluOL-wFed8KJ9Q0w_x2KGb9ZXPOD5oqraZowRrsrPApWl1hnqRdMRcxue2s5nxdV2p0QOK1AWPaNTv766LnDqC91u6suysTbgtayE2qQ_mGt9vF9hPi4fv5vYtYTzttY7JfNKb-e7STofOSLsQomOu4ARRKj5dY2xUcpp6qFnoU2S1sNIc4rwcRW17itqAOlvNgABFjVweToB5wTvG_aGzmzu_2b_bFaiioeCJIOrM3V1FoTXyPUgZgx7Y3z47PDQ-ywx_KY4dVNSESSv3GeDnefNaXDR5_kjkNkh2219xtffeVU5zs3RbXKri0rovobYHTKQ9ZDc0H1K10OybcrXmyHZcRgs7xLZQ5ACBKmFIEUIUgNB6kCQwjAXgnRZUgNBqiFILQSpguA9cvz2zdH80Os6d3g8TKcrL0aeP1kGBbhgyYyLpCxneYrUjJEswAmVBfNlLGQMAXAqYonpAqJgJTgOEJKEcbhLtuplLR8QGkUSgl7BZOLnUTlN0zxgBegUJlS_PDkiz_AvzrrXssk2SXFExkYAWd5x32MLluqS0S_s6DPN-XLJuD0jy_7x4TTETtFgu0fkqf0ZdDZuxPFaLlscA4EPJiCkI3JfY8A-CM4j_xVc_dKC4q-zeHjF2T4iN_u3b49src5b-Rgc6pV4orD9C8EZytA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+effective+high+pressure+germination+or+inactivation+of+Bacillus+spores+involving+nisin&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Heydenreich%2C+Rosa&rft.au=Delbr%C3%BCck%2C+Alessia+I.&rft.au=Trunet%2C+Cl%C3%A9ment&rft.au=Mathys%2C+Alexander&rft.date=2024-10-23&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=90&rft.issue=10&rft_id=info:doi/10.1128%2Faem.02299-23&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_aem_02299_23
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon