Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin
Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation...
Saved in:
Published in | Applied and environmental microbiology Vol. 90; no. 10; p. e0229923 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
23.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0099-2240 1098-5336 1070-6291 1098-5336 |
DOI | 10.1128/aem.02299-23 |
Cover
Abstract | Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy’s success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers’ demand for safe and minimally processed food. |
---|---|
AbstractList | The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration.IMPORTANCEExtremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy’s success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers’ demand for safe and minimally processed food. Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy’s success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers’ demand for safe and minimally processed food. The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for resulted in a reduction of culturable dormant spores by 8 log units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced spores by only 2 log units. thus, proved to be substantially more HP-resistant compared to , validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food. The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration.The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration.Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.IMPORTANCEExtremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food. The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination–inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination–inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food. |
Author | Delbrück, Alessia I. Trunet, Clément Heydenreich, Rosa Mathys, Alexander |
Author_xml | – sequence: 1 givenname: Rosa orcidid: 0000-0001-6548-8666 surname: Heydenreich fullname: Heydenreich, Rosa organization: Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland – sequence: 2 givenname: Alessia I. surname: Delbrück fullname: Delbrück, Alessia I. organization: Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland – sequence: 3 givenname: Clément surname: Trunet fullname: Trunet, Clément organization: Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ACTIA 19.03 ALTER’iX, Quimper, France – sequence: 4 givenname: Alexander orcidid: 0000-0003-1633-848X surname: Mathys fullname: Mathys, Alexander organization: Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39311577$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1PFDEUwBsDkQW8eTZNvGjC4Gu7s-0clSiQkHhQz01n5nUp6bRjO7OG_94uu0JCgqd-_d5Hf--YHIQYkJC3DM4Z4-qTweEcOG-aiotXZMGgUVUtxOqALAC2t3wJR-Q45zsAWMJKvSZHohGM1VIuCP6Ykplw7TBTGxNFa7Gb3AbprVvf0jFhznNCusY0uGAmFwMtWNluqf3Z0i-mc97PmeYxlpDyvol-48KaBpddOCWH1viMb_brCfn17evPi6vq5vvl9cXnm8qIhk2VrGum0PK-Q1S1aZW1dddIxWGJPSiG_QpQtii5gKaVKJdctP3KYsuACSHFCal2eecwmvs_xns9JjeYdK8Z6K0uXXTpB12ai8J_2PFjir9nzJMeXO7QexMwzlkLBqq4qlVT0PfP0Ls4p1B-UyjBai6V2jbwcUeZPPAn4oXi7_YZ53bA_rHTf8MpAN8BXYo5J7S6c9OD8jIz51_KevYs6L8G_gL-srAZ |
CitedBy_id | crossref_primary_10_1016_j_foodcont_2025_111134 |
Cites_doi | 10.1111/j.1750-3841.2011.02066.x 10.1007/s12393-016-9155-1 10.1016/j.ijfoodmicro.2023.110279 10.1111/j.1365-2672.2009.04442.x 10.1111/j.1472-765X.2012.03278.x 10.3389/fmicb.2019.03122 10.3181/00379727-38-9808P 10.1016/j.ifset.2007.06.010 10.1016/s0168-1605(98)00130-5 10.1111/j.1365-2672.1996.tb03520.x 10.3389/fmicb.2018.03163 10.3389/fmicb.2023.1161604 10.1016/j.ijfoodmicro.2012.12.010 10.1128/AEM.70.12.7321-7328.2004 10.1002/bit.22849 10.12691/ajmr-11-2-5 10.1111/ijfs.14263 10.1080/10408398.2016.1271770 10.1111/1541-4337.12348 10.1016/j.ijfoodmicro.2021.109088 10.1128/AAC.00625-08 10.1016/j.ifset.2015.06.007 10.3136/fstr.11.324 10.1016/B978-0-12-823872-1.00005-3 10.3389/fmicb.2019.03118 10.1111/jam.12480 10.1016/j.cellsig.2020.109729 10.1128/JB.00736-09 10.1080/08957959.2012.664642 10.1016/j.ifset.2021.102828 10.1533/9781845698379.5.394 10.1146/annurev-food-041715-033144 10.1016/B978-0-12-822521-9.00103-9 10.1016/j.fm.2011.12.006 10.1128/aem.02324-21 10.1128/JB.01497-09 10.1038/nprot.2011.307 10.1021/cb1004178 10.1007/978-94-017-9918-8_23 10.1080/10498850802179776 10.3389/fnut.2021.643837 10.1111/j.1365-2672.2005.02736.x 10.3389/fmicb.2018.02277 10.1111/j.1365-2672.2006.03062.x 10.1128/AEM.02406-21 10.1111/j.1471-0307.1979.tb01907.x 10.1128/AEM.01596-19 10.1128/JB.00326-10 10.1146/annurev-micro-090816-093558 10.1128/AEM.64.9.3220-3224.1998 10.1080/10408398.2013.779570 10.1098/rspl.1877.0036 10.1128/jb.172.1.7-14.1990 10.1002/9780470376409 10.1128/AEM.00193-15 10.1016/j.tim.2013.03.001 10.1080/08957959.2021.1946054 10.1128/AEM.03043-13 10.1128/9781555819972.ch2 10.1128/AEM.71.10.5879-5887.2005 10.1016/j.fm.2019.103244 10.3390/foods11233820 10.1128/AEM.00503-17 10.1128/aem.56.8.2551-2558.1990 10.4315/0362-028x-67.11.2530 10.1016/j.ifset.2011.09.006 10.1016/j.foodcont.2011.10.061 10.1128/JB.01668-08 10.1111/j.1365-2672.2007.03722.x 10.1128/jb.175.5.1367-1374.1993 10.1016/j.fm.2014.01.007 10.1533/9781845698379.6.435 10.1111/j.1541-4337.2007.00021.x 10.1016/j.tifs.2008.04.001 10.1111/1541-4337.12789 10.1128/AEM.03755-12 10.1016/j.ijfoodmicro.2003.09.011 10.1146/annurev-food-032519-051632 10.1099/00221287-60-3-335 10.1016/j.cub.2010.06.031 10.1111/j.1365-2672.1996.tb03520.x |
ContentType | Journal Article |
Copyright | Copyright © 2024 Heydenreich et al. Copyright American Society for Microbiology Oct 2024 |
Copyright_xml | – notice: Copyright © 2024 Heydenreich et al. – notice: Copyright American Society for Microbiology Oct 2024 |
DBID | AAYXX CITATION NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 ADTOC UNPAY |
DOI | 10.1128/aem.02299-23 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
Editor | Roussel, Sophie |
Editor_xml | – sequence: 1 givenname: Sophie surname: Roussel fullname: Roussel, Sophie |
ExternalDocumentID | 10.1128/aem.02299-23 aem02299-23 39311577 10_1128_aem_02299_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation SNSF grantid: 31003A_182273 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM AGVNZ NPM RHF UCJ 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 .55 .GJ 3O- ADTOC ADXHL AFFNX AGCDD AI. C1A EJD H~9 MVM NEJ OHT TAF UNPAY VH1 WHG X7M XJT YV5 ZCG ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-a391t-75518ef2dcee85ab8ff5c978204ed081ed60e7be72309b7e7423bd6feb1013373 |
ISSN | 0099-2240 1098-5336 1070-6291 |
IngestDate | Sun Sep 07 11:22:57 EDT 2025 Fri Sep 05 04:42:15 EDT 2025 Mon Jun 30 10:36:44 EDT 2025 Thu Oct 24 02:26:31 EDT 2024 Thu Apr 03 07:07:13 EDT 2025 Wed Oct 01 05:06:25 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | germination endospore nisin Bacillus subtilis inactivation Bacillus amyloliquefaciens superdormant high isostatic pressure |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a391t-75518ef2dcee85ab8ff5c978204ed081ed60e7be72309b7e7423bd6feb1013373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1633-848X 0000-0001-6548-8666 |
OpenAccessLink | https://doi.org/10.1128/aem.02299-23 |
PMID | 39311577 |
PQID | 3131527887 |
PQPubID | 42251 |
PageCount | 19 |
ParticipantIDs | unpaywall_primary_10_1128_aem_02299_23 proquest_miscellaneous_3108393589 proquest_journals_3131527887 asm2_journals_10_1128_aem_02299_23 pubmed_primary_39311577 crossref_citationtrail_10_1128_aem_02299_23 crossref_primary_10_1128_aem_02299_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-23 |
PublicationDateYYYYMMDD | 2024-10-23 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAbbrev | Appl Environ Microbiol |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 Nicholson WL (e_1_3_4_86_2) 1990 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 Sutton S (e_1_3_4_87_2) 2011; 17 e_1_3_4_18_2 e_1_3_4_39_2 B20 Doona, CJ, Feeherry, FE (B8) 2007 Aoyama, Y, Shigeta, Y, Okazaki, T, Hagura, Y, Suzuki, K (B66) 2005; 11 Nicholson, WL, Setlow, P (B82) 1990; 172 Nguyen Thi Minh, H, Dantigny, P, Perrier-Cornet, JM, Gervais, P (B63) 2010; 107 Delbrück, AI, Zhang, Y, Heydenreich, R, Mathys, A (B26) 2021; 20 Oey, I, Lille, M, Van Loey, A, Hendrickx, M (B13) 2008; 19 Aouadhi, C, Simonin, H, Prévost, H, Lamballerie, M de, Maaroufi, A, Mejri, S (B67) 2012; 30 Crane, JM, Frodyma, ME, Bergstrom, GC (B74) 2014; 116 Kmiha, S, Modugno, C, Aouadhi, C, Simonin, H, Mejri, S, Perrier-Cornet, JM, Maaroufi, A (B56) 2021; 41 Reineke, K, Mathys, A, Heinz, V, Knorr, D (B18) 2013; 21 Brown, JV, Wiles, R, Prentice, GA (B77) 1979; 32 Reineke, K, Schlumbach, K, Baier, D, Mathys, A, Knorr, D (B28) 2013; 162 Modugno, C, Kmiha, S, Simonin, H, Aouadhi, C, Diosdado Cañizares, E, Lang, E, André, S, Mejri, S, Maaroufi, A, Perrier-Cornet, JM (B38) 2019; 84 Yi, X, Setlow, P (B64) 2010; 192 Gratz, M, Sevenich, R, Hoppe, T, Schottroff, F, Vlaskovic, N, Belkova, B, Chytilova, L, Filatova, M, Stupak, M, Hajslova, J, Rauh, C, Jaeger, H (B6) 2021; 8 Black, EP, Setlow, P, Hocking, AD, Stewart, CM, Kelly, AL, Hoover, DG (B14) 2007; 6 Raso, J, Góngora-Nieto, MM, Barbosa-Cánovas, GV, Swanson, BG (B47) 1998; 44 Nicholson, WL, Setlow, P, Harwood, CR, Cutting, SM (B85) 1990 Li, Z, Schottroff, F, Simpson, DJ, Gänzle, MG (B41) 2019; 85 Delbrück, AI, Zhang, Y, Hug, V, Trunet, C, Mathys, A (B15) 2021; 343 Hu, H, Balasubramaniam, VM (B4) 2024 Margosch, D, Gänzle, MG, Ehrmann, MA, Vogel, RF (B19) 2004; 70 Doona, CJ, Feeherry, FE, Kustin, K, Chen, H, Huang, R, Philip Ye, X, Setlow, P (B60) 2017; 9 Popa, EE, Miteluț, AC, Râpă, M, Popescu, PA, Drăghici, MC, Geicu-Cristea, M, Popa, ME (B34) 2022; 11 Witty, M (B76) 2023; 11 Setlow, P (B1) 2006; 101 Reineke, K, Doehner, I, Schlumbach, K, Baier, D, Mathys, A, Knorr, D (B16) 2012; 13 Setlow, P, Johnson, EA (B2) 2019 Lenz, CA, Vogel, RF, Akasaka, K, Matsuki, H (B24) 2015 Sevenich, R, Mathys, A (B62) 2018; 17 Sokołowska, B, Skąpska, S, Fonberg-Broczek, M, Niezgoda, J, Chotkiewicz, M, Dekowska, A, Rzoska, S (B73) 2012; 32 Setlow, P, Wang, S, Li, YQ (B23) 2017; 71 Zhang, Y, Delbrück, AI, Off, CL, Benke, S, Mathys, A (B49) 2019; 10 Syed, QA, Reineke, K, Saldo, J, Buffa, M, Guamis, B, Knorr, D (B69) 2012; 25 Delbrück, AI, Tritten, Y, Nanni, P, Heydenreich, R, Mathys, A (B30) 2022; 88 Yu, B, Kanaan, J, Shames, H, Wicander, J, Aryal, M, Li, Y, Korza, G, Brul, S, Kramer, G, Li, YQ, Nichols, FC, Hao, B, Setlow, P (B61) 2023; 14 Black, EP, Koziol-Dube, K, Guan, D, Wei, J, Setlow, B, Cortezzo, DE, Hoover, DG, Setlow, P (B58) 2005; 71 Wells-Bennik, MHJ, Eijlander, RT, den Besten, HMW, Berendsen, EM, Warda, AK, Krawczyk, AO, Nierop Groot, MN, Xiao, Y, Zwietering, MH, Kuipers, OP, Abee, T (B5) 2016; 7 Tyndall, J (B75) 1878; 26 Gut, IM, Prouty, AM, Ballard, JD, van der Donk, WA, Blanke, SR (B54) 2008; 52 Herdegen, V, Vogel, RF (B72) 1998 Heydenreich, R, Delbrück, AI, Mathys, A (B27) 2023; 402 Wei, J, Shah, IM, Ghosh, S, Dworkin, J, Hoover, DG, Setlow, P (B71) 2010; 192 Christie, G, Setlow, P (B25) 2020; 74 Margosch, D, Ehrmann, MA, Gänzle, MG, Vogel, RF (B40) 2004; 67 B42 B87 Wuytack, EY, Boven, S, Michiels, CW (B70) 1998; 64 B45 Modugno, C, Peltier, C, Simonin, H, Dujourdy, L, Capitani, F, Sandt, C, Perrier-Cornet, JM (B39) 2019; 10 Gould, GW, Sale, AJH (B17) 1970; 60 Fekraoui, F, Ferret, É, Paniel, N, Auvy, O, Chamontin, C, André, S, Simonin, H, Perrier-Cornet, J-M (B21) 2021; 74 Ghosh, S, Setlow, P (B32) 2009; 191 Omardien, S, Drijfhout, JW, Zaat, SA, Brul, S (B55) 2018; 9 Mathys, A, Chapman, B, Bull, M, Heinz, V, Knorr, D (B46) 2007; 8 Queirós, RP, Saraiva, JA, da Silva, JAL (B57) 2018; 58 Black, EP, Wei, J, Atluri, S, Cortezzo, DE, Koziol-Dube, K, Hoover, DG, Setlow, P (B44) 2007; 102 Sutton, S (B86) 2011; 17 de Hoon, MJL, Eichenberger, P, Vitkup, D (B3) 2010; 20 Reineke, K, Mathys, A (B10) 2020; 11 Liu, W, Hansen, JN (B53) 1990; 56 Ordóñez‐Santos, LE, Martínez‐Girón, J (B7) 2020; 55 Basset, J, Gratia, A, Macheboeuf, M, Manil, P (B22) 1938; 38 Fairhead, H, Setlow, B, Setlow, P (B83) 1993; 175 Syed, QA, Buffa, M, Guamis, BV, Saldo, J (B48) 2016; 56 Kong, L, Doona, CJ, Setlow, P, Li, Y (B80) 2014; 80 Ghosh, S, Setlow, P (B31) 2010; 108 Gut, IM, Blanke, SR, van der Donk, WA (B35) 2011; 6 Borch-Pedersen, K, Mellegård, H, Reineke, K, Boysen, P, Sevenich, R, Lindbäck, T, Aspholm, M (B59) 2017; 83 Reineke, K, Mathys, A, Knorr, D (B52) 2011; 76 B12 Roberts, CM, Hoover, DG (B79) 1996; 81 Black, EP, Linton, M, McCall, RD, Curran, W, Fitzgerald, GF, Kelly, AL, Patterson, MF (B37) 2008; 105 Hofstetter, S, Winter, R, McMullen, LM, Gänzle, MG (B36) 2013; 79 Jermann, C, Koutchma, T, Margas, E, Leadley, C, Ros-Polski, V (B9) 2015; 31 Kim, H, Kim, H, Bang, J, Kim, Y, Beuchat, LR, Ryu, JH (B78) 2012; 55 Zhang, Y, Mathys, A (B29) 2018; 9 Van Opstal, I, Bagamboula, CF, Vanmuysen, SCM, Wuytack, EY, Michiels, CW (B65) 2004; 92 Luu, S, Cruz-Mora, J, Setlow, B, Feeherry, FE, Doona, CJ, Setlow, P (B50) 2015; 81 Wen, J, Smelt, J, Vischer, NOE, de Vos, AL, Setlow, P, Brul, S (B51) 2022; 88 Heinz, V, Knorr, D (B43) 1998; 222 Gänzle, MG, Knoerzer, K, Sevenich, RBT-HPTP (B11) 2023 Suklim, K, Flick, GJ, Bourne, DW, Granata, LA, Eifert, J, Williams, R, Popham, D, Wittman, R (B68) 2008; 17 Ghosh, S, Zhang, P, Li, Y, Setlow, P (B33) 2009; 191 Georget, E, Kapoor, S, Winter, R, Reineke, K, Song, Y, Callanan, M, Ananta, E, Heinz, V, Mathys, A (B81) 2014; 41 Kong, L, Zhang, P, Wang, G, Yu, J, Setlow, P, Li, Y (B84) 2011; 6 |
References_xml | – ident: e_1_3_4_53_2 doi: 10.1111/j.1750-3841.2011.02066.x – ident: e_1_3_4_61_2 doi: 10.1007/s12393-016-9155-1 – ident: e_1_3_4_28_2 doi: 10.1016/j.ijfoodmicro.2023.110279 – volume: 17 start-page: 42 year: 2011 ident: e_1_3_4_87_2 article-title: Accuracy of plate counts publication-title: J Valid Technol – ident: e_1_3_4_32_2 doi: 10.1111/j.1365-2672.2009.04442.x – ident: e_1_3_4_79_2 doi: 10.1111/j.1472-765X.2012.03278.x – ident: e_1_3_4_40_2 doi: 10.3389/fmicb.2019.03122 – ident: e_1_3_4_23_2 doi: 10.3181/00379727-38-9808P – ident: e_1_3_4_47_2 doi: 10.1016/j.ifset.2007.06.010 – ident: e_1_3_4_48_2 doi: 10.1016/s0168-1605(98)00130-5 – ident: e_1_3_4_80_2 doi: 10.1111/j.1365-2672.1996.tb03520.x – ident: e_1_3_4_30_2 doi: 10.3389/fmicb.2018.03163 – ident: e_1_3_4_62_2 doi: 10.3389/fmicb.2023.1161604 – ident: e_1_3_4_29_2 doi: 10.1016/j.ijfoodmicro.2012.12.010 – ident: e_1_3_4_20_2 doi: 10.1128/AEM.70.12.7321-7328.2004 – ident: e_1_3_4_64_2 doi: 10.1002/bit.22849 – ident: e_1_3_4_77_2 doi: 10.12691/ajmr-11-2-5 – ident: e_1_3_4_8_2 doi: 10.1111/ijfs.14263 – ident: e_1_3_4_58_2 doi: 10.1080/10408398.2016.1271770 – ident: e_1_3_4_63_2 doi: 10.1111/1541-4337.12348 – ident: e_1_3_4_16_2 doi: 10.1016/j.ijfoodmicro.2021.109088 – ident: e_1_3_4_55_2 doi: 10.1128/AAC.00625-08 – ident: e_1_3_4_10_2 doi: 10.1016/j.ifset.2015.06.007 – ident: e_1_3_4_67_2 doi: 10.3136/fstr.11.324 – ident: e_1_3_4_12_2 doi: 10.1016/B978-0-12-823872-1.00005-3 – ident: e_1_3_4_50_2 doi: 10.3389/fmicb.2019.03118 – ident: e_1_3_4_75_2 doi: 10.1111/jam.12480 – ident: e_1_3_4_26_2 doi: 10.1016/j.cellsig.2020.109729 – ident: e_1_3_4_34_2 doi: 10.1128/JB.00736-09 – ident: e_1_3_4_74_2 doi: 10.1080/08957959.2012.664642 – ident: e_1_3_4_22_2 doi: 10.1016/j.ifset.2021.102828 – ident: e_1_3_4_73_2 doi: 10.1533/9781845698379.5.394 – ident: e_1_3_4_6_2 doi: 10.1146/annurev-food-041715-033144 – ident: e_1_3_4_5_2 doi: 10.1016/B978-0-12-822521-9.00103-9 – ident: e_1_3_4_68_2 doi: 10.1016/j.fm.2011.12.006 – start-page: 391 volume-title: Molecular biological methods for Bacillus year: 1990 ident: e_1_3_4_86_2 – ident: e_1_3_4_52_2 doi: 10.1128/aem.02324-21 – ident: e_1_3_4_72_2 doi: 10.1128/JB.01497-09 – ident: e_1_3_4_85_2 doi: 10.1038/nprot.2011.307 – ident: e_1_3_4_36_2 doi: 10.1021/cb1004178 – ident: e_1_3_4_25_2 doi: 10.1007/978-94-017-9918-8_23 – ident: e_1_3_4_69_2 doi: 10.1080/10498850802179776 – ident: e_1_3_4_88_2 – ident: e_1_3_4_7_2 doi: 10.3389/fnut.2021.643837 – ident: e_1_3_4_2_2 doi: 10.1111/j.1365-2672.2005.02736.x – ident: e_1_3_4_56_2 doi: 10.3389/fmicb.2018.02277 – ident: e_1_3_4_45_2 doi: 10.1111/j.1365-2672.2006.03062.x – ident: e_1_3_4_31_2 doi: 10.1128/AEM.02406-21 – ident: e_1_3_4_78_2 doi: 10.1111/j.1471-0307.1979.tb01907.x – ident: e_1_3_4_42_2 doi: 10.1128/AEM.01596-19 – ident: e_1_3_4_65_2 doi: 10.1128/JB.00326-10 – ident: e_1_3_4_24_2 doi: 10.1146/annurev-micro-090816-093558 – ident: e_1_3_4_71_2 doi: 10.1128/AEM.64.9.3220-3224.1998 – ident: e_1_3_4_49_2 doi: 10.1080/10408398.2013.779570 – ident: e_1_3_4_76_2 doi: 10.1098/rspl.1877.0036 – ident: e_1_3_4_83_2 doi: 10.1128/jb.172.1.7-14.1990 – ident: e_1_3_4_9_2 doi: 10.1002/9780470376409 – ident: e_1_3_4_51_2 doi: 10.1128/AEM.00193-15 – ident: e_1_3_4_19_2 doi: 10.1016/j.tim.2013.03.001 – ident: e_1_3_4_57_2 doi: 10.1080/08957959.2021.1946054 – ident: e_1_3_4_81_2 doi: 10.1128/AEM.03043-13 – ident: e_1_3_4_3_2 doi: 10.1128/9781555819972.ch2 – ident: e_1_3_4_59_2 doi: 10.1128/AEM.71.10.5879-5887.2005 – ident: e_1_3_4_39_2 doi: 10.1016/j.fm.2019.103244 – ident: e_1_3_4_35_2 doi: 10.3390/foods11233820 – ident: e_1_3_4_60_2 doi: 10.1128/AEM.00503-17 – ident: e_1_3_4_54_2 doi: 10.1128/aem.56.8.2551-2558.1990 – ident: e_1_3_4_41_2 doi: 10.4315/0362-028x-67.11.2530 – ident: e_1_3_4_17_2 doi: 10.1016/j.ifset.2011.09.006 – ident: e_1_3_4_70_2 doi: 10.1016/j.foodcont.2011.10.061 – ident: e_1_3_4_33_2 doi: 10.1128/JB.01668-08 – ident: e_1_3_4_13_2 – ident: e_1_3_4_38_2 doi: 10.1111/j.1365-2672.2007.03722.x – ident: e_1_3_4_84_2 doi: 10.1128/jb.175.5.1367-1374.1993 – ident: e_1_3_4_82_2 doi: 10.1016/j.fm.2014.01.007 – ident: e_1_3_4_44_2 doi: 10.1533/9781845698379.6.435 – ident: e_1_3_4_15_2 doi: 10.1111/j.1541-4337.2007.00021.x – ident: e_1_3_4_14_2 doi: 10.1016/j.tifs.2008.04.001 – ident: e_1_3_4_27_2 doi: 10.1111/1541-4337.12789 – ident: e_1_3_4_37_2 doi: 10.1128/AEM.03755-12 – ident: e_1_3_4_66_2 doi: 10.1016/j.ijfoodmicro.2003.09.011 – ident: e_1_3_4_11_2 doi: 10.1146/annurev-food-032519-051632 – ident: e_1_3_4_43_2 – ident: e_1_3_4_18_2 doi: 10.1099/00221287-60-3-335 – ident: e_1_3_4_4_2 doi: 10.1016/j.cub.2010.06.031 – volume: 85 start-page: 1 year: 2019 end-page: 12 ident: B41 article-title: The copy number of the spoVA2mob operon determines pressure resistance of Bacillus endospores publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01596-19 – volume: 191 start-page: 1787 year: 2009 end-page: 1797 ident: B32 article-title: Isolation and characterization of superdormant spores of Bacillus species publication-title: J Bacteriol doi: 10.1128/JB.01668-08 – volume: 38 start-page: 248 year: 1938 end-page: 251 ident: B22 article-title: Action of high pressures on plant viruses publication-title: Exp Biol Med (Maywood) doi: 10.3181/00379727-38-9808P – volume: 17 start-page: 42 year: 2011 end-page: 46 ident: B86 article-title: Accuracy of plate counts publication-title: J Valid Technol – volume: 9 year: 2018 ident: B55 article-title: Cationic amphipathic antimicrobial peptides perturb the inner membrane of germinated spores thus inhibiting their outgrowth publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02277 – start-page: 23 year: 2019 end-page: 63 ident: B2 article-title: Spores and their significance publication-title: Food microbiology: fundamentals and frontiers ;p In ;Wiley – volume: 71 start-page: 5879 year: 2005 end-page: 5887 ident: B58 article-title: Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.10.5879-5887.2005 – volume: 58 start-page: 1538 year: 2018 end-page: 1556 ident: B57 article-title: Tailoring structure and technological properties of plant proteins using high hydrostatic pressure publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2016.1271770 – volume: 79 start-page: 2103 year: 2013 end-page: 2106 ident: B36 article-title: In situ determination of Clostridium endospore membrane fluidity during pressure-assisted thermal processing in combination with nisin or reutericyclin publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03755-12 – volume: 222 start-page: 435 year: 1998 end-page: 441 ident: B43 article-title: High pressure germination and inactivation kinetics of bacterial spores publication-title: Spec Publ Soc Chem doi: 10.1533/9781845698379.6.435 – volume: 83 start-page: 10 year: 2017 end-page: 11 ident: B59 article-title: Effects of high pressure on Bacillus licheniformis spore germination and inactivation publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00503-17 – ident: B12 article-title: Hiperbaric . High pressure thermal processing . Available from : https://www.hiperbaric.com/en/high-pressure-thermal-processing . Retrieved 19 Feb 2024 . – volume: 17 start-page: 646 year: 2018 end-page: 662 ident: B62 article-title: Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: a review publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12348 – volume: 192 start-page: 3424 year: 2010 end-page: 3433 ident: B64 article-title: Studies of the commitment step in the germination of spores of Bacillus species publication-title: J Bacteriol doi: 10.1128/JB.00326-10 – volume: 162 start-page: 55 year: 2013 end-page: 63 ident: B28 article-title: The release of dipicolinic acid - the rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2012.12.010 – volume: 17 start-page: 322 year: 2008 end-page: 337 ident: B68 article-title: Pressure-induced germination and inactivation of Bacillus cereus spores and their survival in fresh blue crab meat (Callinectes sapidus) during storage publication-title: J Aquat Food Prod Technol doi: 10.1080/10498850802179776 – volume: 10 start-page: 3118 year: 2019 ident: B49 article-title: Flow cytometry combined with single cell sorting to study heterogeneous germination of Bacillus spores under high pressure publication-title: Front Microbiol doi: 10.3389/fmicb.2019.03118 – volume: 172 start-page: 7 year: 1990 end-page: 14 ident: B82 article-title: Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis publication-title: J Bacteriol doi: 10.1128/jb.172.1.7-14.1990 – volume: 67 start-page: 2530 year: 2004 end-page: 2537 ident: B40 article-title: Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots publication-title: J Food Prot doi: 10.4315/0362-028x-67.11.2530 – volume: 11 start-page: 58 year: 2023 end-page: 63 ident: B76 article-title: Tyndallization does not suppress Bacillus megaterium and may explain part of potato peel colic publication-title: AJMR doi: 10.12691/ajmr-11-2-5 – volume: 175 start-page: 1367 year: 1993 end-page: 1374 ident: B83 article-title: Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species publication-title: J Bacteriol doi: 10.1128/jb.175.5.1367-1374.1993 – volume: 102 start-page: 65 year: 2007 end-page: 76 ident: B44 article-title: Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2006.03062.x – volume: 6 start-page: 625 year: 2011 end-page: 639 ident: B84 article-title: Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers publication-title: Nat Protoc doi: 10.1038/nprot.2011.307 – volume: 81 start-page: 363 year: 1996 end-page: 368 ident: B79 article-title: Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin publication-title: J Appl Bacteriol doi: 10.1111/j.1365-2672.1996.tb03520.x – volume: 31 start-page: 14 year: 2015 end-page: 27 ident: B9 article-title: Mapping trends in novel and emerging food processing technologies around the world publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2015.06.007 – volume: 107 start-page: 876 year: 2010 end-page: 883 ident: B63 article-title: Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure publication-title: Biotechnol Bioeng doi: 10.1002/bit.22849 – volume: 64 start-page: 3220 year: 1998 end-page: 3224 ident: B70 article-title: Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.9.3220-3224.1998 – volume: 88 year: 2022 ident: B30 article-title: Moderate high-pressure superdormancy in Bacillus spores: properties of superdormant spores and proteins potentially influencing moderate high-pressure germination publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02406-21 – start-page: 1 year: 2023 end-page: 15 ident: B11 article-title: Introduction to high pressure thermal processing and pressure assisted thermal sterilization publication-title: High pressure thermal processing ;p In – volume: 32 start-page: 109 year: 1979 end-page: 112 ident: B77 article-title: The effect of a modified Tyndallization process upon the sporeforming bacteria of milk and cream publication-title: Int J Dairy Tech doi: 10.1111/j.1471-0307.1979.tb01907.x – volume: 80 start-page: 345 year: 2014 end-page: 353 ident: B80 article-title: Monitoring rates and heterogeneity of high-pressure germination of Bacillus spores by phase-contrast microscopy of individual spores publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03043-13 – ident: B20 article-title: Lenz CA . 2017 . Effect of high hydrostatic pressure on Clostridium botulinum type E endospores. PhD thesis , Technische Universität München , Germany – volume: 105 start-page: 78 year: 2008 end-page: 87 ident: B37 article-title: The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2007.03722.x – volume: 116 start-page: 1572 year: 2014 end-page: 1583 ident: B74 article-title: Nutrient-induced spore germination of a Bacillus amyloliquefaciens biocontrol agent on wheat spikes publication-title: J Appl Microbiol doi: 10.1111/jam.12480 – ident: B87 article-title: Molecular Probes . 2006 . Propidium iodide nucleic acid stain . Available from : https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fmp01304.pdf . Retrieved 19 Dec 2023 . – volume: 56 start-page: 474 year: 2016 end-page: 483 ident: B48 article-title: Factors affecting bacterial inactivation during high hydrostatic pressure processing of foods: a review publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2013.779570 – volume: 11 start-page: 255 year: 2020 end-page: 274 ident: B10 article-title: Endospore inactivation by emerging technologies: a review of target structures and inactivation mechanisms publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-032519-051632 – volume: 343 start-page: 109088 year: 2021 ident: B15 article-title: Isolation, stability, and characteristics of high-pressure superdormant Bacillus subtilis spores publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2021.109088 – volume: 44 start-page: 125 year: 1998 end-page: 132 ident: B47 article-title: Influence of several environmental factors on the initiation of germination and inactivation of Bacillus cereus by high hydrostatic pressure publication-title: Int J Food Microbiol doi: 10.1016/s0168-1605(98)00130-5 – volume: 60 start-page: 335 year: 1970 end-page: 346 ident: B17 article-title: Initiation of germination of bacterial spores by hydrostatic pressure publication-title: J Gen Microbiol doi: 10.1099/00221287-60-3-335 – volume: 108 start-page: 582 year: 2010 end-page: 590 ident: B31 article-title: The preparation, germination properties and stability of superdormant spores of Bacillus cereus publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2009.04442.x – volume: 11 start-page: 324 year: 2005 end-page: 327 ident: B66 article-title: Non-thermal inactivation of Bacillus spores by pressure-holding publication-title: FSTR doi: 10.3136/fstr.11.324 – volume: 14 start-page: 1161604 year: 2023 ident: B61 article-title: Identification and characterization of new proteins crucial for bacterial spore resistance and germination publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1161604 – volume: 74 start-page: 109729 year: 2020 ident: B25 article-title: Bacillus spore germination: knowns, unknowns and what we need to learn publication-title: Cell Signal doi: 10.1016/j.cellsig.2020.109729 – volume: 9 start-page: 3163 year: 2018 ident: B29 article-title: Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies publication-title: Front Microbiol doi: 10.3389/fmicb.2018.03163 – volume: 9 start-page: 122 year: 2017 end-page: 142 ident: B60 article-title: A quasi-chemical model for bacterial spore germination kinetics by high pressure publication-title: Food Eng Rev doi: 10.1007/s12393-016-9155-1 – volume: 41 start-page: 8 year: 2014 end-page: 18 ident: B81 article-title: In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure publication-title: Food Microbiol doi: 10.1016/j.fm.2014.01.007 – volume: 52 start-page: 4281 year: 2008 end-page: 4288 ident: B54 article-title: Inhibition of Bacillus anthracis spore outgrowth by nisin publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00625-08 – volume: 26 start-page: 228 year: 1878 end-page: 238 ident: B75 article-title: III. Further researches on the department and vital resistance of putrefactive and infective organisms, from a physical point of view publication-title: Proc R Soc London – volume: 101 start-page: 514 year: 2006 end-page: 525 ident: B1 article-title: Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2005.02736.x – volume: 20 start-page: 4159 year: 2021 end-page: 4181 ident: B26 article-title: Bacillus spore germination at moderate high pressure: A review on underlying mechanisms, influencing factors, and its comparison with nutrient germination publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12789 – ident: B45 article-title: Delbrück AI . 2022 . Moderate high pressure superdormancy – properties of Bacillus subtilis superdormant spores and potential underlying mechanisms. PhD thesis , ETH Zurich , Zurich, Switzerland – volume: 76 start-page: M189 year: 2011 end-page: 97 ident: B52 article-title: The impact of high pressure and temperature on bacterial spores: inactivation mechanisms of Bacillus subtilis above 500 MPa publication-title: J Food Sci doi: 10.1111/j.1750-3841.2011.02066.x – volume: 32 start-page: 119 year: 2012 end-page: 127 ident: B73 article-title: The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice publication-title: High Press Res doi: 10.1080/08957959.2012.664642 – volume: 19 start-page: 320 year: 2008 end-page: 328 ident: B13 article-title: Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2008.04.001 – volume: 13 start-page: 31 year: 2012 end-page: 41 ident: B16 article-title: The different pathways of spore germination and inactivation in dependence of pressure and temperature publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2011.09.006 – volume: 402 start-page: 110279 year: 2023 ident: B27 article-title: Post-high-pressure temperature and time - overlooked parameters in high pressure treatment of bacterial spores publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2023.110279 – volume: 8 start-page: 519 year: 2007 end-page: 527 ident: B46 article-title: Flow cytometric assessment of Bacillus spore response to high pressure and heat publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2007.06.010 – start-page: 391 year: 1990 end-page: 450 ident: B85 article-title: Sporulation, germination and outgrowth publication-title: Molecular biological methods for Bacillus ;p In ;J. Wiley – start-page: 469 year: 2015 end-page: 537 ident: B24 article-title: Pressure-based strategy for the inactivation of spores publication-title: High pressure bioscience: basic concepts, applications and frontiers ;p In ;Springer Netherlands ;Dordrecht – volume: 92 start-page: 227 year: 2004 end-page: 234 ident: B65 article-title: Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2003.09.011 – volume: 55 start-page: 201 year: 2020 end-page: 210 ident: B7 article-title: Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice publication-title: Int J Food Sci Tech doi: 10.1111/ijfs.14263 – volume: 6 start-page: 744 year: 2011 end-page: 752 ident: B35 article-title: Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin publication-title: ACS Chem Biol doi: 10.1021/cb1004178 – volume: 191 start-page: 5584 year: 2009 end-page: 5591 ident: B33 article-title: Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation publication-title: J Bacteriol doi: 10.1128/JB.00736-09 – year: 2007 ident: B8 publication-title: High pressure processing of foods ;Blackwell Publishing Ltd – volume: 88 year: 2022 ident: B51 article-title: Heat activation and inactivation of bacterial spores: is there an overlap? publication-title: Appl Environ Microbiol doi: 10.1128/aem.02324-21 – volume: 70 start-page: 7321 year: 2004 end-page: 7328 ident: B19 article-title: Pressure inactivation of Bacillus endospores publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.12.7321-7328.2004 – volume: 7 start-page: 457 year: 2016 end-page: 482 ident: B5 article-title: Bacterial spores in food: survival, emergence, and outgrowth publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-041715-033144 – volume: 41 start-page: 328 year: 2021 end-page: 340 ident: B56 article-title: Inhibitory effect of high hydrostatic pressure, nisin, and moderate heating on the inactivation of Paenibacillus sp. and Terribacillus aidingensis spores isolated from UHT milk publication-title: High Press Res doi: 10.1080/08957959.2021.1946054 – volume: 81 start-page: 2927 year: 2015 end-page: 2938 ident: B50 article-title: The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00193-15 – volume: 192 start-page: 1455 year: 2010 end-page: 1458 ident: B71 article-title: Superdormant spores of Bacillus species germinate normally with high pressure, peptidoglycan fragments, and bryostatin publication-title: J Bacteriol doi: 10.1128/JB.01497-09 – volume: 21 start-page: 296 year: 2013 end-page: 304 ident: B18 article-title: Mechanisms of endospore inactivation under high pressure publication-title: Trends Microbiol doi: 10.1016/j.tim.2013.03.001 – volume: 56 start-page: 2551 year: 1990 end-page: 2558 ident: B53 article-title: Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis publication-title: Appl Environ Microbiol doi: 10.1128/aem.56.8.2551-2558.1990 – volume: 6 start-page: 103 year: 2007 end-page: 119 ident: B14 article-title: Response of spores to high‐pressure processing publication-title: Comp Rev Food Sci Food Safe doi: 10.1111/j.1541-4337.2007.00021.x – volume: 10 year: 2019 ident: B39 article-title: Understanding the effects of high pressure on bacterial spores using synchrotron infrared spectroscopy publication-title: Front Microbiol doi: 10.3389/fmicb.2019.03122 – volume: 55 start-page: 218 year: 2012 end-page: 223 ident: B78 article-title: Reduction of Bacillus cereus spores in sikhye, a traditional Korean rice beverage, by modified Tyndallization processes with and without carbon dioxide injection publication-title: Lett Appl Microbiol doi: 10.1111/j.1472-765X.2012.03278.x – volume: 20 start-page: R735 year: 2010 end-page: 745 ident: B3 article-title: Hierarchical evolution of the bacterial sporulation network publication-title: Curr Biol doi: 10.1016/j.cub.2010.06.031 – start-page: 394 year: 1998 end-page: 402 ident: B72 article-title: Strategies for high pressure inactivation of endospore-forming bacteria publication-title: High pressure food science, bioscience and chemistry ;p In ;The Royal Society of Chemistry – volume: 84 start-page: 103244 year: 2019 ident: B38 article-title: High pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin publication-title: Food Microbiol doi: 10.1016/j.fm.2019.103244 – start-page: 531 year: 2024 end-page: 551 ident: B4 article-title: High-pressure processing publication-title: Encyclopedia of food safety ;2nd ;p In ed ;Elsevier – volume: 11 year: 2022 ident: B34 article-title: Antimicrobial active packaging containing nisin for preservation of products of animal origin: an overview publication-title: Foods doi: 10.3390/foods11233820 – ident: B42 article-title: Merck KGaA . 2024 . Tryptic soy broth - dehydrated culture media . Available from : https://www.sigmaaldrich.com/CH/en/product/sial/22092#product-documentation . Retrieved 20 Feb 2024 . – volume: 8 year: 2021 ident: B6 article-title: Gentle sterilization of carrot-based purees by high-pressure thermal sterilization and ohmic heating and influence on food processing contaminants and quality attributes publication-title: Front Nutr doi: 10.3389/fnut.2021.643837 – volume: 71 start-page: 459 year: 2017 end-page: 477 ident: B23 article-title: Germination of spores of the orders Bacillales and Clostridiales publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-090816-093558 – volume: 25 start-page: 361 year: 2012 end-page: 367 ident: B69 article-title: Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures publication-title: Food Control doi: 10.1016/j.foodcont.2011.10.061 – volume: 74 start-page: 102828 year: 2021 ident: B21 article-title: Cycling versus continuous high pressure treatments at moderate temperatures : effect on bacterial spores ? publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2021.102828 – volume: 30 start-page: 1 year: 2012 end-page: 7 ident: B67 article-title: Optimization of pressure-induced germination of Bacillus sporothermodurans spores in water and milk publication-title: Food Microbiol doi: 10.1016/j.fm.2011.12.006 |
SSID | ssj0004068 |
Score | 2.482431 |
Snippet | Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of... The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic... |
SourceID | unpaywall proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0229923 |
SubjectTerms | Alanine Applied and Industrial Microbiology Atmospheric pressure Bacillus Bacteria Bacteriocins Deactivation Effectiveness Enumeration Food chains Food Microbiology Food processing Food quality Food safety Food spoilage Germination High pressure Inactivation Isostatic pressure L-Alanine Nisin Nutrients Preservation Processed foods Spoilage Spore germination Spore-forming bacteria Spores Sterilization Valine |
Title | Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39311577 https://journals.asm.org/doi/10.1128/aem.02299-23 https://www.proquest.com/docview/3131527887 https://www.proquest.com/docview/3108393589 https://doi.org/10.1128/aem.02299-23 |
UnpaywallVersion | publishedVersion |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1098-5336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: KQ8 dateStart: 19530101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1098-5336 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: DIK dateStart: 19760101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1098-5336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004068 issn: 0099-2240 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBp7QFAYFAYyCHipUtIkdZLHrYAGCCTQJu0tshMHVcrSaWlA5S_hz-XOjh0POjR4idrUSazel_th331HyHMwAtE0FswDV4J5YPF9D8QMX6UQEgKKMNbZFp_Y4XH0_mR2Mhj8dLKW2pWY5D821pX8j1ThHMgVq2T_QbL2pnACPoN84QgShuOVZGyoZWWjmbtVbgamAiEJ8ViluOL-wFed8KJ9Q0w_x2KGb9ZXPOD5oqraZowRrsrPApWl1hnqRdMRcxue2s5nxdV2p0QOK1AWPaNTv766LnDqC91u6suysTbgtayE2qQ_mGt9vF9hPi4fv5vYtYTzttY7JfNKb-e7STofOSLsQomOu4ARRKj5dY2xUcpp6qFnoU2S1sNIc4rwcRW17itqAOlvNgABFjVweToB5wTvG_aGzmzu_2b_bFaiioeCJIOrM3V1FoTXyPUgZgx7Y3z47PDQ-ywx_KY4dVNSESSv3GeDnefNaXDR5_kjkNkh2219xtffeVU5zs3RbXKri0rovobYHTKQ9ZDc0H1K10OybcrXmyHZcRgs7xLZQ5ACBKmFIEUIUgNB6kCQwjAXgnRZUgNBqiFILQSpguA9cvz2zdH80Os6d3g8TKcrL0aeP1kGBbhgyYyLpCxneYrUjJEswAmVBfNlLGQMAXAqYonpAqJgJTgOEJKEcbhLtuplLR8QGkUSgl7BZOLnUTlN0zxgBegUJlS_PDkiz_AvzrrXssk2SXFExkYAWd5x32MLluqS0S_s6DPN-XLJuD0jy_7x4TTETtFgu0fkqf0ZdDZuxPFaLlscA4EPJiCkI3JfY8A-CM4j_xVc_dKC4q-zeHjF2T4iN_u3b49src5b-Rgc6pV4orD9C8EZytA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+effective+high+pressure+germination+or+inactivation+of+Bacillus+spores+involving+nisin&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Heydenreich%2C+Rosa&rft.au=Delbr%C3%BCck%2C+Alessia+I.&rft.au=Trunet%2C+Cl%C3%A9ment&rft.au=Mathys%2C+Alexander&rft.date=2024-10-23&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=90&rft.issue=10&rft_id=info:doi/10.1128%2Faem.02299-23&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_aem_02299_23 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |