Photoacoustic Spectroscopic Analysis of Electron-Trapping Sites in Titanium(IV) Oxide Photocatalyst Powder Treated by Ball Milling
Photoabsorption of trapped electrons in rutile titanium(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide range of light wavelengths from visible to mid-infrared (IR) regions using photoacoustic spectroscopy (PAS). In the presence of an electron dono...
Saved in:
Published in | Journal of physical chemistry. C Vol. 126; no. 49; pp. 20975 - 20982 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 |
DOI | 10.1021/acs.jpcc.2c07064 |
Cover
Abstract | Photoabsorption of trapped electrons in rutile titanium(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide range of light wavelengths from visible to mid-infrared (IR) regions using photoacoustic spectroscopy (PAS). In the presence of an electron donor under an inert gas atmosphere, photoacoustic signals for all of the samples were increased by ultraviolet irradiation, resulting in the appearance of broad absorption due to electron accumulation in TiO2. For ball-milled TiO2 with a large specific surface area (34 m2 g–1), mid-IR absorption attributed to free electrons and shallowly trapped electrons was smaller than that of the pristine sample with a small specific surface area (2.8 m2 g–1), but broad absorption ascribed to deeply trapped electrons dramatically increased in the range of near-IR to visible regions. This near-IR–visible absorption was slightly observed even in the presence of oxygen, and it was divided into two parts: one was characteristic near-IR absorption of rutile TiO2 having a peak at ∼1.0 eV below the bottom of the conduction band, while the other was ball-milling-induced absorption with a peak at ∼1.7 eV. By annealing treatment, absorptions of free electrons/shallowly trapped electrons and deeply trapped electrons increased and decreased, respectively, although not as much as in the pristine sample. At that time, the specific surface area also decreased to 18 m2 g–1. In the evaluation of photocatalytic activity, pristine TiO2 showed the highest activity for hydrogen (H2) evolution from an aqueous solution containing an electron donor, whereas the rates of H2 evolution for the ball-milled and subsequently annealed samples were 0.21 and 0.34 times lower than that for the pristine sample. Thus, we found from the results of PAS measurements that the main factor governing the photocatalytic activity is not specific surface area but the presence of deeper-energy electron-trapping sites formed by pulverization with ball milling. |
---|---|
AbstractList | Photoabsorption of trapped electrons in rutile titanium(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide range of light wavelengths from visible to mid-infrared (IR) regions using photoacoustic spectroscopy (PAS). In the presence of an electron donor under an inert gas atmosphere, photoacoustic signals for all of the samples were increased by ultraviolet irradiation, resulting in the appearance of broad absorption due to electron accumulation in TiO2. For ball-milled TiO2 with a large specific surface area (34 m2 g–1), mid-IR absorption attributed to free electrons and shallowly trapped electrons was smaller than that of the pristine sample with a small specific surface area (2.8 m2 g–1), but broad absorption ascribed to deeply trapped electrons dramatically increased in the range of near-IR to visible regions. This near-IR–visible absorption was slightly observed even in the presence of oxygen, and it was divided into two parts: one was characteristic near-IR absorption of rutile TiO2 having a peak at ∼1.0 eV below the bottom of the conduction band, while the other was ball-milling-induced absorption with a peak at ∼1.7 eV. By annealing treatment, absorptions of free electrons/shallowly trapped electrons and deeply trapped electrons increased and decreased, respectively, although not as much as in the pristine sample. At that time, the specific surface area also decreased to 18 m2 g–1. In the evaluation of photocatalytic activity, pristine TiO2 showed the highest activity for hydrogen (H2) evolution from an aqueous solution containing an electron donor, whereas the rates of H2 evolution for the ball-milled and subsequently annealed samples were 0.21 and 0.34 times lower than that for the pristine sample. Thus, we found from the results of PAS measurements that the main factor governing the photocatalytic activity is not specific surface area but the presence of deeper-energy electron-trapping sites formed by pulverization with ball milling. |
Author | Yamaguchi, Yuichi Murakami, Naoya Shinoda, Tatsuki Kudo, Akihiko |
AuthorAffiliation | Kyushu Institute of Technology Tokyo University of Science Carbon Value Research Center, Research Institute of Science & Technology Department of Applied Chemistry, Faculty of Science Graduate School of Life Science and Systems Engineering |
AuthorAffiliation_xml | – name: Carbon Value Research Center, Research Institute of Science & Technology – name: Tokyo University of Science – name: Graduate School of Life Science and Systems Engineering – name: Department of Applied Chemistry, Faculty of Science – name: Kyushu Institute of Technology |
Author_xml | – sequence: 1 givenname: Tatsuki orcidid: 0000-0002-5516-2221 surname: Shinoda fullname: Shinoda, Tatsuki organization: Kyushu Institute of Technology – sequence: 2 givenname: Yuichi orcidid: 0000-0003-1897-3487 surname: Yamaguchi fullname: Yamaguchi, Yuichi organization: Tokyo University of Science – sequence: 3 givenname: Akihiko surname: Kudo fullname: Kudo, Akihiko organization: Tokyo University of Science – sequence: 4 givenname: Naoya orcidid: 0000-0003-2444-8603 surname: Murakami fullname: Murakami, Naoya email: murakami@life.kyutech.ac.jp organization: Kyushu Institute of Technology |
BookMark | eNp9kE1LAzEQhoNUsK3ePeao4NZkv_dYS9WC0kJXr0t2ktWUNFmSFO3VX-72Aw-CnmaGmeeFeQaop40WCF1SMqIkpLcM3GjVAoxCIBlJ4xPUp0UUBlmcJL2fPs7O0MC5FSFJRGjUR1-Ld-MNA7NxXgJetgK8NQ5M201jzdTWSYdNg6dqv9FBaVnbSv2Gl9ILh6XGpfRMy836avZ6jeefkgu8TwXmd7zHC_PBhcWlFcwLjustvmNK4WepVBd0jk4bppy4ONYhermflpPH4Gn-MJuMnwIWFcQHUJOCEEgKHos0ByG4iGtGmySHgtZxGNUND1mSAIQJhzwi0GRZSHnGsjAv0iIaInLIhe5BZ0VTtVaumd1WlFQ7h1XnsNo5rI4OOyT9hUD3q5dGe8uk-g-8OYD7jdnYzqT7-_wblPCM9w |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_3c02831 crossref_primary_10_1016_j_jece_2023_109451 crossref_primary_10_1016_j_pacs_2024_100668 crossref_primary_10_1541_ieejjournal_144_10 |
Cites_doi | 10.1016/j.jallcom.2016.10.159 10.1039/C7RA11337D 10.1016/j.jssc.2004.08.017 10.1039/B800489G 10.1021/jp900108a 10.1016/j.inoche.2022.109585 10.1039/C8CP04885A 10.1038/natrevmats.2017.50 10.1021/acs.jpcc.2c00603 10.1016/j.jpowsour.2008.05.057 10.1021/ie980378u 10.1246/cl.150979 10.1021/acs.jpcc.9b02876 10.1246/cl.150907 10.1246/cl.200825 10.1039/D2SE00065B 10.1016/j.matchemphys.2012.05.068 10.1021/jp071362x 10.1016/j.cattod.2007.01.044 10.1021/acs.jpcc.5b09236 10.1021/acs.jpcc.8b10566 10.1063/1.4816058 10.1039/D0CC06414A 10.1021/acsami.7b07786 10.1246/cl.2009.238 10.1039/b206594k 10.1063/1.322296 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.2c07064 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 20982 |
ExternalDocumentID | 10_1021_acs_jpcc_2c07064 b520399572 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ |
ID | FETCH-LOGICAL-a390t-cb0900c59d4e68ceede4ba1f58c91b423bfd2a55cc25dc830cf7721d7a7289693 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 02:50:50 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Sat Dec 17 03:10:30 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a390t-cb0900c59d4e68ceede4ba1f58c91b423bfd2a55cc25dc830cf7721d7a7289693 |
ORCID | 0000-0003-2444-8603 0000-0002-5516-2221 0000-0003-1897-3487 |
OpenAccessLink | https://kyutech.repo.nii.ac.jp/records/2000320 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1021_acs_jpcc_2c07064 crossref_citationtrail_10_1021_acs_jpcc_2c07064 acs_journals_10_1021_acs_jpcc_2c07064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1016/j.jallcom.2016.10.159 – ident: ref4/cit4 doi: 10.1039/C7RA11337D – ident: ref7/cit7 doi: 10.1016/j.jssc.2004.08.017 – ident: ref14/cit14 doi: 10.1039/B800489G – ident: ref8/cit8 doi: 10.1021/jp900108a – ident: ref27/cit27 doi: 10.1016/j.inoche.2022.109585 – ident: ref19/cit19 doi: 10.1039/C8CP04885A – ident: ref13/cit13 doi: 10.1038/natrevmats.2017.50 – ident: ref24/cit24 doi: 10.1021/acs.jpcc.2c00603 – ident: ref10/cit10 doi: 10.1016/j.jpowsour.2008.05.057 – ident: ref15/cit15 doi: 10.1021/ie980378u – ident: ref12/cit12 doi: 10.1246/cl.150979 – ident: ref20/cit20 doi: 10.1021/acs.jpcc.9b02876 – ident: ref3/cit3 doi: 10.1246/cl.150907 – ident: ref9/cit9 doi: 10.1246/cl.200825 – ident: ref6/cit6 doi: 10.1039/D2SE00065B – ident: ref11/cit11 doi: 10.1016/j.matchemphys.2012.05.068 – ident: ref23/cit23 doi: 10.1021/jp071362x – ident: ref18/cit18 doi: 10.1016/j.cattod.2007.01.044 – ident: ref26/cit26 doi: 10.1021/acs.jpcc.5b09236 – ident: ref21/cit21 doi: 10.1021/acs.jpcc.8b10566 – ident: ref2/cit2 doi: 10.1063/1.4816058 – ident: ref22/cit22 doi: 10.1039/D0CC06414A – ident: ref5/cit5 doi: 10.1021/acsami.7b07786 – ident: ref16/cit16 doi: 10.1246/cl.2009.238 – ident: ref25/cit25 doi: 10.1039/b206594k – ident: ref17/cit17 doi: 10.1063/1.322296 |
SSID | ssj0053013 |
Score | 2.432342 |
Snippet | Photoabsorption of trapped electrons in rutile titanium(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 20975 |
SubjectTerms | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials |
Title | Photoacoustic Spectroscopic Analysis of Electron-Trapping Sites in Titanium(IV) Oxide Photocatalyst Powder Treated by Ball Milling |
URI | http://dx.doi.org/10.1021/acs.jpcc.2c07064 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1932-7455 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053013 issn: 1932-7447 databaseCode: ACS dateStart: 20070101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhR-zyASR6SEmcOMuxVK0AiUWiRb1F9tiBQmkqkorlyJczTlNAbELKJVE8spzJzJtM_B4huxgTXTdgicWYxgIlCWxLJgAWTxiI0OOBLiiFTs_8o7Z30uGdD5qcrx185hwIyKq3A4AqA3RP35sk08wPHVNo1eqX46jL0VHdUQcZEaPnBWVL8icLJhFB9ikRfcoozfmRNFFWEBGaH0nuqsNcVuHlO03jPya7QOZKYElrI09YJBO6v0Rm6mM9t2XyenGT5ikGwEK_ixrh-dxQWaYDPBtzk9A0oY1SGcfCPGbYG67pJeLSjHb7tNVFLNkd3u8fX1Xo-VNXaVpYLT4CPWc5vUgflX6gLQNFtaLymR6KXo-aHYdoaIW0m41W_cgqFRgs4UZ2boG0I9sGHilP-6HJp9qTwkl4CJEjEYnJRDHBOQDjCkLXhgTRuqMCEWAh50fuKpnqp329Rij3IyzlQhUpR3mcu0JCGCjfFhyk8rlYJ3u4eHH5BmVx0RxnTlxcxBWNyxVdJwfjxxZDSWNu1DR6f4yovI8YjCg8fr1345-z2CSzzOyDcPDgW2QqfxjqbUQnudwp3PINwf7iBQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7YFe-kZsnz4UCQ5ZEifO49iuQAvlpbIgbpE9dtoty2a1yaqlx_7yjr0JRYgiKuUSKx6NnMnMN574G4AP5BPDMOGFx7mhBKVIfE8ViJ4oOMo0EolxlEL7B_HgJNo9E2dLELRnYUiJiiRVroj_l10g2LRj36eIPY5kpXH0AB46IhSLhvrHrfMVZK_hopBMwDGKkqYyeZsEG4-wuhaPrgWW7Sfw5Uol9z_JeW9eqx7-usHW-F86P4XHDcxkHxd28QyWzOQ5LPfb7m4v4PfRt7IuyR26bl7MtqGvLbFlOaW7lqmElQXbavrkeBTVLJfDV3ZMKLViowkbjghZjuYX6zunG-zw50gb5qS6LaHLqmZH5Q9tZmxoganRTF2yT3I8Zvb8IQl6CSfbW8P-wGv6MXgyzPzaQ-Vnvo8i05GJUxtdTaRkUIgUs0ARLlOF5lIIRC40pqGPBWH3QCcyobQuzsIV6EzKiVkFJuKMErtUZzrQkRChVJgmOvalQKVjIbuwRouXN99TlbtSOQ9yN0grmjcr2oXN9u3l2JCa294a4ztmbFzNmC4IPf757Kt7avEelgfD_b18b-fg82t4xO0JiYAu8QY69Wxu3hJuqdU7Z6l_AGIK6nA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFouLX0g6AN8aKVyyJI4cR7HdmEFfdCVWBC3yB7bsO12syJZtfTYX96xN0GoolUr5RIrHo2c8cw3mfgbgJfkE-M44zbg3FCCYrMwUBYxEJajzBORGU8p9PEoPThJ3p2JsyUQ3VkYUqImSbUv4rtdPdO2ZRiIdt345xlijyNZaprcgRXhGOAcIuofdw5YkM3Gi2Iygcckydrq5G0SXEzC-kZMuhFcBg_g9Fot_0_Jl968UT388Rtj43_rvQb3W7jJ3izs4yEsmekjuNfvurw9hp_Di6qpyC36rl7MtaNvHMFlNaO7jrGEVZbtt_1yAopujtPhnB0TWq3ZeMpGY0KY4_nX14enO-zT97E2zEv1n4au6oYNq2_aXLKRA6hGM3XF3srJhLlziCToCZwM9kf9g6DtyxDIuAibAFVYhCGKQicmzV2UNYmSkRU5FpEifKas5lIIRC405nGIljB8pDOZUXqXFvE6LE-rqdkAJtKCErxcFzrSiRCxVJhnOg2lQKVTITfhFS1e2e6ruvQlcx6VfpBWtGxXdBN2uzdYYktu7npsTP4yY-d6xmxB7PHHZ5_-oxbbcHe4Nyg_HB69fwar3B2UiOgSz2G5uZybFwRfGrXljfUX3d_s6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoacoustic+Spectroscopic+Analysis+of+Electron-Trapping+Sites+in+Titanium%28IV%29+Oxide+Photocatalyst+Powder+Treated+by+Ball+Milling&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Shinoda%2C+Tatsuki&rft.au=Yamaguchi%2C+Yuichi&rft.au=Kudo%2C+Akihiko&rft.au=Murakami%2C+Naoya&rft.date=2022-12-15&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=49&rft.spage=20975&rft.epage=20982&rft_id=info:doi/10.1021%2Facs.jpcc.2c07064&rft.externalDocID=b520399572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |