Photoacoustic Spectroscopic Analysis of Electron-Trapping Sites in Titanium(IV) Oxide Photocatalyst Powder Treated by Ball Milling

Photoabsorption of trapped electrons in rutile titanium­(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide range of light wavelengths from visible to mid-infrared (IR) regions using photoacoustic spectroscopy (PAS). In the presence of an electron dono...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 126; no. 49; pp. 20975 - 20982
Main Authors Shinoda, Tatsuki, Yamaguchi, Yuichi, Kudo, Akihiko, Murakami, Naoya
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.12.2022
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
DOI10.1021/acs.jpcc.2c07064

Cover

Abstract Photoabsorption of trapped electrons in rutile titanium­(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide range of light wavelengths from visible to mid-infrared (IR) regions using photoacoustic spectroscopy (PAS). In the presence of an electron donor under an inert gas atmosphere, photoacoustic signals for all of the samples were increased by ultraviolet irradiation, resulting in the appearance of broad absorption due to electron accumulation in TiO2. For ball-milled TiO2 with a large specific surface area (34 m2 g–1), mid-IR absorption attributed to free electrons and shallowly trapped electrons was smaller than that of the pristine sample with a small specific surface area (2.8 m2 g–1), but broad absorption ascribed to deeply trapped electrons dramatically increased in the range of near-IR to visible regions. This near-IR–visible absorption was slightly observed even in the presence of oxygen, and it was divided into two parts: one was characteristic near-IR absorption of rutile TiO2 having a peak at ∼1.0 eV below the bottom of the conduction band, while the other was ball-milling-induced absorption with a peak at ∼1.7 eV. By annealing treatment, absorptions of free electrons/shallowly trapped electrons and deeply trapped electrons increased and decreased, respectively, although not as much as in the pristine sample. At that time, the specific surface area also decreased to 18 m2 g–1. In the evaluation of photocatalytic activity, pristine TiO2 showed the highest activity for hydrogen (H2) evolution from an aqueous solution containing an electron donor, whereas the rates of H2 evolution for the ball-milled and subsequently annealed samples were 0.21 and 0.34 times lower than that for the pristine sample. Thus, we found from the results of PAS measurements that the main factor governing the photocatalytic activity is not specific surface area but the presence of deeper-energy electron-trapping sites formed by pulverization with ball milling.
AbstractList Photoabsorption of trapped electrons in rutile titanium­(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide range of light wavelengths from visible to mid-infrared (IR) regions using photoacoustic spectroscopy (PAS). In the presence of an electron donor under an inert gas atmosphere, photoacoustic signals for all of the samples were increased by ultraviolet irradiation, resulting in the appearance of broad absorption due to electron accumulation in TiO2. For ball-milled TiO2 with a large specific surface area (34 m2 g–1), mid-IR absorption attributed to free electrons and shallowly trapped electrons was smaller than that of the pristine sample with a small specific surface area (2.8 m2 g–1), but broad absorption ascribed to deeply trapped electrons dramatically increased in the range of near-IR to visible regions. This near-IR–visible absorption was slightly observed even in the presence of oxygen, and it was divided into two parts: one was characteristic near-IR absorption of rutile TiO2 having a peak at ∼1.0 eV below the bottom of the conduction band, while the other was ball-milling-induced absorption with a peak at ∼1.7 eV. By annealing treatment, absorptions of free electrons/shallowly trapped electrons and deeply trapped electrons increased and decreased, respectively, although not as much as in the pristine sample. At that time, the specific surface area also decreased to 18 m2 g–1. In the evaluation of photocatalytic activity, pristine TiO2 showed the highest activity for hydrogen (H2) evolution from an aqueous solution containing an electron donor, whereas the rates of H2 evolution for the ball-milled and subsequently annealed samples were 0.21 and 0.34 times lower than that for the pristine sample. Thus, we found from the results of PAS measurements that the main factor governing the photocatalytic activity is not specific surface area but the presence of deeper-energy electron-trapping sites formed by pulverization with ball milling.
Author Yamaguchi, Yuichi
Murakami, Naoya
Shinoda, Tatsuki
Kudo, Akihiko
AuthorAffiliation Kyushu Institute of Technology
Tokyo University of Science
Carbon Value Research Center, Research Institute of Science & Technology
Department of Applied Chemistry, Faculty of Science
Graduate School of Life Science and Systems Engineering
AuthorAffiliation_xml – name: Carbon Value Research Center, Research Institute of Science & Technology
– name: Tokyo University of Science
– name: Graduate School of Life Science and Systems Engineering
– name: Department of Applied Chemistry, Faculty of Science
– name: Kyushu Institute of Technology
Author_xml – sequence: 1
  givenname: Tatsuki
  orcidid: 0000-0002-5516-2221
  surname: Shinoda
  fullname: Shinoda, Tatsuki
  organization: Kyushu Institute of Technology
– sequence: 2
  givenname: Yuichi
  orcidid: 0000-0003-1897-3487
  surname: Yamaguchi
  fullname: Yamaguchi, Yuichi
  organization: Tokyo University of Science
– sequence: 3
  givenname: Akihiko
  surname: Kudo
  fullname: Kudo, Akihiko
  organization: Tokyo University of Science
– sequence: 4
  givenname: Naoya
  orcidid: 0000-0003-2444-8603
  surname: Murakami
  fullname: Murakami, Naoya
  email: murakami@life.kyutech.ac.jp
  organization: Kyushu Institute of Technology
BookMark eNp9kE1LAzEQhoNUsK3ePeao4NZkv_dYS9WC0kJXr0t2ktWUNFmSFO3VX-72Aw-CnmaGmeeFeQaop40WCF1SMqIkpLcM3GjVAoxCIBlJ4xPUp0UUBlmcJL2fPs7O0MC5FSFJRGjUR1-Ld-MNA7NxXgJetgK8NQ5M201jzdTWSYdNg6dqv9FBaVnbSv2Gl9ILh6XGpfRMy836avZ6jeefkgu8TwXmd7zHC_PBhcWlFcwLjustvmNK4WepVBd0jk4bppy4ONYhermflpPH4Gn-MJuMnwIWFcQHUJOCEEgKHos0ByG4iGtGmySHgtZxGNUND1mSAIQJhzwi0GRZSHnGsjAv0iIaInLIhe5BZ0VTtVaumd1WlFQ7h1XnsNo5rI4OOyT9hUD3q5dGe8uk-g-8OYD7jdnYzqT7-_wblPCM9w
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c02831
crossref_primary_10_1016_j_jece_2023_109451
crossref_primary_10_1016_j_pacs_2024_100668
crossref_primary_10_1541_ieejjournal_144_10
Cites_doi 10.1016/j.jallcom.2016.10.159
10.1039/C7RA11337D
10.1016/j.jssc.2004.08.017
10.1039/B800489G
10.1021/jp900108a
10.1016/j.inoche.2022.109585
10.1039/C8CP04885A
10.1038/natrevmats.2017.50
10.1021/acs.jpcc.2c00603
10.1016/j.jpowsour.2008.05.057
10.1021/ie980378u
10.1246/cl.150979
10.1021/acs.jpcc.9b02876
10.1246/cl.150907
10.1246/cl.200825
10.1039/D2SE00065B
10.1016/j.matchemphys.2012.05.068
10.1021/jp071362x
10.1016/j.cattod.2007.01.044
10.1021/acs.jpcc.5b09236
10.1021/acs.jpcc.8b10566
10.1063/1.4816058
10.1039/D0CC06414A
10.1021/acsami.7b07786
10.1246/cl.2009.238
10.1039/b206594k
10.1063/1.322296
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.2c07064
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 20982
ExternalDocumentID 10_1021_acs_jpcc_2c07064
b520399572
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
ID FETCH-LOGICAL-a390t-cb0900c59d4e68ceede4ba1f58c91b423bfd2a55cc25dc830cf7721d7a7289693
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 02:50:50 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Sat Dec 17 03:10:30 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-cb0900c59d4e68ceede4ba1f58c91b423bfd2a55cc25dc830cf7721d7a7289693
ORCID 0000-0003-2444-8603
0000-0002-5516-2221
0000-0003-1897-3487
OpenAccessLink https://kyutech.repo.nii.ac.jp/records/2000320
PageCount 8
ParticipantIDs crossref_primary_10_1021_acs_jpcc_2c07064
crossref_citationtrail_10_1021_acs_jpcc_2c07064
acs_journals_10_1021_acs_jpcc_2c07064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1016/j.jallcom.2016.10.159
– ident: ref4/cit4
  doi: 10.1039/C7RA11337D
– ident: ref7/cit7
  doi: 10.1016/j.jssc.2004.08.017
– ident: ref14/cit14
  doi: 10.1039/B800489G
– ident: ref8/cit8
  doi: 10.1021/jp900108a
– ident: ref27/cit27
  doi: 10.1016/j.inoche.2022.109585
– ident: ref19/cit19
  doi: 10.1039/C8CP04885A
– ident: ref13/cit13
  doi: 10.1038/natrevmats.2017.50
– ident: ref24/cit24
  doi: 10.1021/acs.jpcc.2c00603
– ident: ref10/cit10
  doi: 10.1016/j.jpowsour.2008.05.057
– ident: ref15/cit15
  doi: 10.1021/ie980378u
– ident: ref12/cit12
  doi: 10.1246/cl.150979
– ident: ref20/cit20
  doi: 10.1021/acs.jpcc.9b02876
– ident: ref3/cit3
  doi: 10.1246/cl.150907
– ident: ref9/cit9
  doi: 10.1246/cl.200825
– ident: ref6/cit6
  doi: 10.1039/D2SE00065B
– ident: ref11/cit11
  doi: 10.1016/j.matchemphys.2012.05.068
– ident: ref23/cit23
  doi: 10.1021/jp071362x
– ident: ref18/cit18
  doi: 10.1016/j.cattod.2007.01.044
– ident: ref26/cit26
  doi: 10.1021/acs.jpcc.5b09236
– ident: ref21/cit21
  doi: 10.1021/acs.jpcc.8b10566
– ident: ref2/cit2
  doi: 10.1063/1.4816058
– ident: ref22/cit22
  doi: 10.1039/D0CC06414A
– ident: ref5/cit5
  doi: 10.1021/acsami.7b07786
– ident: ref16/cit16
  doi: 10.1246/cl.2009.238
– ident: ref25/cit25
  doi: 10.1039/b206594k
– ident: ref17/cit17
  doi: 10.1063/1.322296
SSID ssj0053013
Score 2.432342
Snippet Photoabsorption of trapped electrons in rutile titanium­(IV) oxide (TiO2) before and after ball-milling and annealing treatments was investigated in a wide...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 20975
SubjectTerms C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
Title Photoacoustic Spectroscopic Analysis of Electron-Trapping Sites in Titanium(IV) Oxide Photocatalyst Powder Treated by Ball Milling
URI http://dx.doi.org/10.1021/acs.jpcc.2c07064
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1932-7455
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053013
  issn: 1932-7447
  databaseCode: ACS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhR-zyASR6SEmcOMuxVK0AiUWiRb1F9tiBQmkqkorlyJczTlNAbELKJVE8spzJzJtM_B4huxgTXTdgicWYxgIlCWxLJgAWTxiI0OOBLiiFTs_8o7Z30uGdD5qcrx185hwIyKq3A4AqA3RP35sk08wPHVNo1eqX46jL0VHdUQcZEaPnBWVL8icLJhFB9ikRfcoozfmRNFFWEBGaH0nuqsNcVuHlO03jPya7QOZKYElrI09YJBO6v0Rm6mM9t2XyenGT5ikGwEK_ixrh-dxQWaYDPBtzk9A0oY1SGcfCPGbYG67pJeLSjHb7tNVFLNkd3u8fX1Xo-VNXaVpYLT4CPWc5vUgflX6gLQNFtaLymR6KXo-aHYdoaIW0m41W_cgqFRgs4UZ2boG0I9sGHilP-6HJp9qTwkl4CJEjEYnJRDHBOQDjCkLXhgTRuqMCEWAh50fuKpnqp329Rij3IyzlQhUpR3mcu0JCGCjfFhyk8rlYJ3u4eHH5BmVx0RxnTlxcxBWNyxVdJwfjxxZDSWNu1DR6f4yovI8YjCg8fr1345-z2CSzzOyDcPDgW2QqfxjqbUQnudwp3PINwf7iBQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7YFe-kZsnz4UCQ5ZEifO49iuQAvlpbIgbpE9dtoty2a1yaqlx_7yjr0JRYgiKuUSKx6NnMnMN574G4AP5BPDMOGFx7mhBKVIfE8ViJ4oOMo0EolxlEL7B_HgJNo9E2dLELRnYUiJiiRVroj_l10g2LRj36eIPY5kpXH0AB46IhSLhvrHrfMVZK_hopBMwDGKkqYyeZsEG4-wuhaPrgWW7Sfw5Uol9z_JeW9eqx7-usHW-F86P4XHDcxkHxd28QyWzOQ5LPfb7m4v4PfRt7IuyR26bl7MtqGvLbFlOaW7lqmElQXbavrkeBTVLJfDV3ZMKLViowkbjghZjuYX6zunG-zw50gb5qS6LaHLqmZH5Q9tZmxoganRTF2yT3I8Zvb8IQl6CSfbW8P-wGv6MXgyzPzaQ-Vnvo8i05GJUxtdTaRkUIgUs0ARLlOF5lIIRC40pqGPBWH3QCcyobQuzsIV6EzKiVkFJuKMErtUZzrQkRChVJgmOvalQKVjIbuwRouXN99TlbtSOQ9yN0grmjcr2oXN9u3l2JCa294a4ztmbFzNmC4IPf757Kt7avEelgfD_b18b-fg82t4xO0JiYAu8QY69Wxu3hJuqdU7Z6l_AGIK6nA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFouLX0g6AN8aKVyyJI4cR7HdmEFfdCVWBC3yB7bsO12syJZtfTYX96xN0GoolUr5RIrHo2c8cw3mfgbgJfkE-M44zbg3FCCYrMwUBYxEJajzBORGU8p9PEoPThJ3p2JsyUQ3VkYUqImSbUv4rtdPdO2ZRiIdt345xlijyNZaprcgRXhGOAcIuofdw5YkM3Gi2Iygcckydrq5G0SXEzC-kZMuhFcBg_g9Fot_0_Jl968UT388Rtj43_rvQb3W7jJ3izs4yEsmekjuNfvurw9hp_Di6qpyC36rl7MtaNvHMFlNaO7jrGEVZbtt_1yAopujtPhnB0TWq3ZeMpGY0KY4_nX14enO-zT97E2zEv1n4au6oYNq2_aXLKRA6hGM3XF3srJhLlziCToCZwM9kf9g6DtyxDIuAibAFVYhCGKQicmzV2UNYmSkRU5FpEifKas5lIIRC405nGIljB8pDOZUXqXFvE6LE-rqdkAJtKCErxcFzrSiRCxVJhnOg2lQKVTITfhFS1e2e6ruvQlcx6VfpBWtGxXdBN2uzdYYktu7npsTP4yY-d6xmxB7PHHZ5_-oxbbcHe4Nyg_HB69fwar3B2UiOgSz2G5uZybFwRfGrXljfUX3d_s6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoacoustic+Spectroscopic+Analysis+of+Electron-Trapping+Sites+in+Titanium%28IV%29+Oxide+Photocatalyst+Powder+Treated+by+Ball+Milling&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Shinoda%2C+Tatsuki&rft.au=Yamaguchi%2C+Yuichi&rft.au=Kudo%2C+Akihiko&rft.au=Murakami%2C+Naoya&rft.date=2022-12-15&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=49&rft.spage=20975&rft.epage=20982&rft_id=info:doi/10.1021%2Facs.jpcc.2c07064&rft.externalDocID=b520399572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon