Very-small-aperture 3-D infrasonic array for volcanic jet observation at Stromboli Volcano

SUMMARY This study tested a very-small-aperture 3-D (VSA-3D) infrasonic array. A 3-D array is ideal for resolving the back elevation angle (BEL), which has become important in the analysis of volcanic jet noise or geological flows on steep mountain slopes. Although a VSA infrasonic array, with an ap...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 229; no. 1; pp. 459 - 471
Main Authors Yamakawa, Kazuya, Ichihara, Mie, Lacanna, Giorgio, Sánchez, Claudia, Ripepe, Maurizio
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.04.2022
Subjects
Online AccessGet full text
ISSN0956-540X
1365-246X
1365-246X
DOI10.1093/gji/ggab487

Cover

Abstract SUMMARY This study tested a very-small-aperture 3-D (VSA-3D) infrasonic array. A 3-D array is ideal for resolving the back elevation angle (BEL), which has become important in the analysis of volcanic jet noise or geological flows on steep mountain slopes. Although a VSA infrasonic array, with an aperture as small as a few tens of metres, has recently been shown to have a sufficient resolution of the backazimuth (BAZ) of incident signals, its BEL resolution is considered to be poor. We performed a four-element 3-D array experiment with a 20-m aperture and 2-m height at the summit of Stromboli Volcano. We analysed the direction of arrival (DOA) with the MUSIC algorithm as a function of frequency and conducted a cluster analysis for the estimated DOA–frequency functions of eruption signals. As a result, individual infrasonic signals were successfully related to eruptive vents. We also calculated the standard deviation (STD) of the DOAs in each cluster. Of the observed BAZ-STDs and BEL-STDs, 80 per cent were <2.0° and <4.6°, respectively. A comparison among the array geometries showed that the installation of a sensor above the ground, even at only 2 m, improved the BEL resolution, indicating that the VSA-3D array provides more detailed information about the wavefield than a planar array. The observed signals had higher BELs (−20° to 0°) than the vent direction (−30° to −25°) at 3–6 Hz, although signals above 20 Hz arrived from the vent direction. Our array verified that such DOA deviations were significant by the STD analysis and some tests with synthetic data. We infer that the DOA deviations do not indicate the source location and are caused by topographical diffraction.
AbstractList This study tested a very-small-aperture 3-D (VSA-3D) infrasonic array. A 3-D array is ideal for resolving the back elevation angle (BEL), which has become important in the analysis of volcanic jet noise or geological flows on steep mountain slopes. Although a VSA infrasonic array, with an aperture as small as a few tens of metres, has recently been shown to have a sufficient resolution of the backazimuth (BAZ) of incident signals, its BEL resolution is considered to be poor. We performed a four-element 3-D array experiment with a 20-m aperture and 2-m height at the summit of Stromboli Volcano. We analysed the direction of arrival (DOA) with the MUSIC algorithm as a function of frequency and conducted a cluster analysis for the estimated DOA–frequency functions of eruption signals. As a result, individual infrasonic signals were successfully related to eruptive vents. We also calculated the standard deviation (STD) of the DOAs in each cluster. Of the observed BAZ-STDs and BEL-STDs, 80 per cent were <2.0° and <4.6°, respectively. A comparison among the array geometries showed that the installation of a sensor above the ground, even at only 2 m, improved the BEL resolution, indicating that the VSA-3D array provides more detailed information about the wavefield than a planar array. The observed signals had higher BELs (−20° to 0°) than the vent direction (−30° to −25°) at 3–6 Hz, although signals above 20 Hz arrived from the vent direction. Our array verified that such DOA deviations were significant by the STD analysis and some tests with synthetic data. We infer that the DOA deviations do not indicate the source location and are caused by topographical diffraction.
SUMMARY This study tested a very-small-aperture 3-D (VSA-3D) infrasonic array. A 3-D array is ideal for resolving the back elevation angle (BEL), which has become important in the analysis of volcanic jet noise or geological flows on steep mountain slopes. Although a VSA infrasonic array, with an aperture as small as a few tens of metres, has recently been shown to have a sufficient resolution of the backazimuth (BAZ) of incident signals, its BEL resolution is considered to be poor. We performed a four-element 3-D array experiment with a 20-m aperture and 2-m height at the summit of Stromboli Volcano. We analysed the direction of arrival (DOA) with the MUSIC algorithm as a function of frequency and conducted a cluster analysis for the estimated DOA–frequency functions of eruption signals. As a result, individual infrasonic signals were successfully related to eruptive vents. We also calculated the standard deviation (STD) of the DOAs in each cluster. Of the observed BAZ-STDs and BEL-STDs, 80 per cent were <2.0° and <4.6°, respectively. A comparison among the array geometries showed that the installation of a sensor above the ground, even at only 2 m, improved the BEL resolution, indicating that the VSA-3D array provides more detailed information about the wavefield than a planar array. The observed signals had higher BELs (−20° to 0°) than the vent direction (−30° to −25°) at 3–6 Hz, although signals above 20 Hz arrived from the vent direction. Our array verified that such DOA deviations were significant by the STD analysis and some tests with synthetic data. We infer that the DOA deviations do not indicate the source location and are caused by topographical diffraction.
Author Ripepe, Maurizio
Yamakawa, Kazuya
Lacanna, Giorgio
Sánchez, Claudia
Ichihara, Mie
Author_xml – sequence: 1
  givenname: Kazuya
  orcidid: 0000-0003-0113-4046
  surname: Yamakawa
  fullname: Yamakawa, Kazuya
– sequence: 2
  givenname: Mie
  surname: Ichihara
  fullname: Ichihara, Mie
– sequence: 3
  givenname: Giorgio
  surname: Lacanna
  fullname: Lacanna, Giorgio
– sequence: 4
  givenname: Claudia
  surname: Sánchez
  fullname: Sánchez, Claudia
  email: sanga6681@gmail.com
– sequence: 5
  givenname: Maurizio
  surname: Ripepe
  fullname: Ripepe, Maurizio
BookMark eNp9kE1LAzEQhoMo2FZP_oGcvGhssptkd49SP6HgQS3FyzKJSUnZbkqSVvbf26-TYE8Dw_PO8D59dNr61iB0xegdo1U-nM3dcDYDxcviBPVYLgXJuJyeoh6thCSC0-k56sc4p5Rxxsse-pqY0JG4gKYhsDQhrYLBOXnArrUBom-dxhACdNj6gNe-0bBdzU3CXkUT1pCcbzEk_J6CXyjfODzZUf4CnVloork8zAH6fHr8GL2Q8dvz6-h-TCCvaCIMSmEzm1fS5sKUSlAoZVFZIy0TheKFYUoJabUpM64t15nipuDU6O_CSmvyAbrd3121S-h-Nk3qZXALCF3NaL31Um-81AcvG5ztcR18jMHYWru0a5ECuOafzM2fzPEP13var5ZHwV9pQoif
CitedBy_id crossref_primary_10_1186_s40623_023_01777_9
crossref_primary_10_5331_seppyo_84_5_421
crossref_primary_10_1038_s41598_023_32875_z
Cites_doi 10.1109/PROC.1969.7278
10.1029/2008JB006128
10.1002/2015GL065024
10.1002/2017GL074971
10.1002/2014GL061597
10.1111/j.1365-246X.2012.05696.x
10.1785/0220140047
10.1029/2008GL036486
10.1080/01621459.1963.10500845
10.1002/2017GL076506
10.4294/jpe1952.45.397
10.1016/j.jvolgeores.2011.06.006
10.1093/gji/ggaa010
10.1109/TAP.1986.1143830
10.1111/j.1365-246X.2011.04948.x
10.1002/2013JB010303
10.1038/232253a0
10.1029/2018JB015561
10.1016/j.coldregions.2011.09.006
10.1146/annurev-earth-042711-105508
10.2307/2528688
10.1017/S0022112008003704
10.1029/2011JD016760
10.1093/gji/ggw150
10.1007/978-1-4020-9508-5_2
10.1002/2013JB010827
10.1093/comjnl/9.4.373
10.1029/2009EO270001
10.1029/2002GL015452
10.1029/2006JB004613
10.1109/RBME.2010.2083647
10.1029/2005GL023893
10.1016/j.jvolgeores.2014.06.015
10.1144/M39.9
10.1260/026309205775374451
10.1029/2018GL078851
10.1111/j.1365-246X.2011.04951.x
10.1029/2008JB006007
10.1260/147547207783359459
10.1029/2019JD030386
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1093/gji/ggab487
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 471
ExternalDocumentID oai:flore.unifi.it:2158/1256437
10_1093_gji_ggab487
10.1093/gji/ggab487
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
AAMMB
ABNGD
ACUKT
ADTOC
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
APJGH
UNPAY
ID FETCH-LOGICAL-a390t-1a85f2f396f35e8b50a8679fe6f157b47e1bb56fce824cf4c2b4e740ecd7f6fe3
IEDL.DBID UNPAY
ISSN 0956-540X
1365-246X
IngestDate Sun Oct 26 03:12:40 EDT 2025
Tue Jul 01 03:21:11 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
Wed Aug 28 03:16:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Infrasound
Volcano monitoring
Time-series analysis
Statistical methods
Wave propagation
Waveform analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a390t-1a85f2f396f35e8b50a8679fe6f157b47e1bb56fce824cf4c2b4e740ecd7f6fe3
ORCID 0000-0003-0113-4046
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2158/1256437
PageCount 13
ParticipantIDs unpaywall_primary_10_1093_gji_ggab487
crossref_citationtrail_10_1093_gji_ggab487
crossref_primary_10_1093_gji_ggab487
oup_primary_10_1093_gji_ggab487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Geophysical journal international
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ripepe (2022010314001573900_bib35) 2007; 112
Lee (2022010314001573900_bib27) 2005
Ripepe (2022010314001573900_bib33) 2002; 29
Capon (2022010314001573900_bib3) 1969; 57
Hedlin (2022010314001573900_bib12) 2012; 40
Gal (2022010314001573900_bib10) 2016; 206
Lance (2022010314001573900_bib25) 1967; 9
Tam (2022010314001573900_bib44) 2008; 615
Matoza (2022010314001573900_bib30) 2009; 114
Johnson (2022010314001573900_bib20) 2018; 45
Wishart (2022010314001573900_bib47) 1969; 25
den Ouden (2022010314001573900_bib8) 2020; 221
Matoza (2022010314001573900_bib29) 2013; 118
Posey (2022010314001573900_bib31) 1971; 232
Che (2022010314001573900_bib4) 2011; 185
Le Pichon (2022010314001573900_bib26) 2005; 32
Kim (2022010314001573900_bib22) 2012; 191
Christie (2022010314001573900_bib5) 2010
Lacanna (2022010314001573900_bib23) 2010
Cannata (2022010314001573900_bib1) 2011; 185
Jakobsen (2022010314001573900_bib16) 2005; 24
Ripepe (2022010314001573900_bib34) 2018; 123
Johnson (2022010314001573900_bib17) 2012; 117
Jolly (2022010314001573900_bib21) 2017; 44
Ripepe (2022010314001573900_bib32) 2009; 90
Yamakawa (2022010314001573900_bib49) 2018; 45
Johnson (2022010314001573900_bib19) 2011; 206
Schmidt (2022010314001573900_bib37) 1986; 34
Högbom (2022010314001573900_bib13) 1974; 15
Smink (2022010314001573900_bib39) 2019; 124
Yamasato (2022010314001573900_bib50) 1997; 45
Cannata (2022010314001573900_bib2) 2009; 114
Delle Donne (2022010314001573900_bib7) 2014; 39
Rowell (2022010314001573900_bib36) 2014; 283
Ward (2022010314001573900_bib46) 1963; 58
Matoza (2022010314001573900_bib28) 2009; 36
Sijtsma (2022010314001573900_bib38) 2007; 6
Yokoo (2022010314001573900_bib51) 2014; 85
Xu (2022010314001573900_bib48) 2010; 3
Genco (2022010314001573900_bib11) 2014; 41
Johnson (2022010314001573900_bib18) 2015; 42
Lacanna (2022010314001573900_bib24) 2014; 119
Ulivieri (2022010314001573900_bib45) 2011; 69
References_xml – volume: 57
  start-page: 1408
  year: 1969
  ident: 2022010314001573900_bib3
  article-title: High-resolution frequency-wavenumber spectrum analysis
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1969.7278
– volume: 114
  start-page: 1
  year: 2009
  ident: 2022010314001573900_bib30
  article-title: The source of infrasound associated with long-period events at mount St. Helens
  publication-title: J. geophys. Res.
  doi: 10.1029/2008JB006128
– volume: 42
  start-page: 6324
  year: 2015
  ident: 2022010314001573900_bib18
  article-title: Lahar infrasound associated with Volcán Villarrica's 3 March 2015 eruption
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL065024
– volume: 44
  start-page: 9672
  year: 2017
  ident: 2022010314001573900_bib21
  article-title: Capturing the acoustic radiation pattern of strombolian eruptions using infrasound sensors aboard a tethered aerostat, Yasur Volcano, Vanuatu
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074971
– volume: 41
  start-page: 7135
  year: 2014
  ident: 2022010314001573900_bib11
  article-title: Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061597
– volume: 191
  start-page: 1192
  year: 2012
  ident: 2022010314001573900_bib22
  article-title: Acoustic multipole source model for volcanic explosions and inversion for source parameters
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2012.05696.x
– volume: 85
  start-page: 1212
  year: 2014
  ident: 2022010314001573900_bib51
  article-title: Dual infrasound sources from a vulcanian eruption of Sakurajima Volcano inferred from cross-array observation
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220140047
– volume: 36
  start-page: 2
  year: 2009
  ident: 2022010314001573900_bib28
  article-title: Infrasonic jet noise from volcanic eruptions
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL036486
– volume: 58
  start-page: 236
  year: 1963
  ident: 2022010314001573900_bib46
  article-title: Hierarchical grouping to optimize an objective
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 45
  start-page: 2213
  year: 2018
  ident: 2022010314001573900_bib20
  article-title: Forecasting the eruption of an open-vent volcano using resonant infrasound tones
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076506
– volume: 45
  start-page: 397
  year: 1997
  ident: 2022010314001573900_bib50
  article-title: Quantitative analysis of pyroclastic flows using infrasonic and seismic data at Unzen Volcano, Japan
  publication-title: J. Phys. Earth
  doi: 10.4294/jpe1952.45.397
– volume: 206
  start-page: 61
  year: 2011
  ident: 2022010314001573900_bib19
  article-title: Volcano infrasound: a review
  publication-title: J. Volc. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2011.06.006
– volume: 221
  start-page: 305
  year: 2020
  ident: 2022010314001573900_bib8
  article-title: CLEAN beamforming for the enhanced detection of multiple infrasonic sources
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa010
– volume-title: PhD thesis
  year: 2010
  ident: 2022010314001573900_bib23
  article-title: Modeling of the propagation of aciustic waves at the ground - atmosphere interface
– volume: 34
  start-page: 276
  year: 1986
  ident: 2022010314001573900_bib37
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143830
– volume: 185
  start-page: 190
  year: 2011
  ident: 2022010314001573900_bib4
  article-title: Experimental characterization of seasonal variations in infrasonic traveltimes on the Korean Peninsula with implications for infrasound event location
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.04948.x
– volume: 118
  start-page: 6269
  year: 2013
  ident: 2022010314001573900_bib29
  article-title: Aeroacoustics of volcanic jets: acoustic power estimation and jet velocity dependence
  publication-title: J. geophys. Res.
  doi: 10.1002/2013JB010303
– volume: 232
  start-page: 253
  year: 1971
  ident: 2022010314001573900_bib31
  article-title: Estimation of nuclear explosion energies from microbarograph records
  publication-title: Nature
  doi: 10.1038/232253a0
– volume: 123
  start-page: 9570
  year: 2018
  ident: 2022010314001573900_bib34
  article-title: Infrasonic early warning system for explosive eruptions
  publication-title: J. geophys. Res.
  doi: 10.1029/2018JB015561
– start-page: 556
  volume-title: Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference
  year: 2005
  ident: 2022010314001573900_bib27
  article-title: Phased-array measurements of single flow hot jets
– volume: 69
  start-page: 177
  year: 2011
  ident: 2022010314001573900_bib45
  article-title: Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2011.09.006
– volume: 40
  start-page: 327
  year: 2012
  ident: 2022010314001573900_bib12
  article-title: Infrasound: connecting the solid earth, oceans, and atmosphere
  publication-title: Annu. Rev. Earth planet. Sci.
  doi: 10.1146/annurev-earth-042711-105508
– volume: 25
  start-page: 165
  year: 1969
  ident: 2022010314001573900_bib47
  article-title: An algorithm for hierarchical classifications
  publication-title: Biometrics
  doi: 10.2307/2528688
– volume: 615
  start-page: 253
  year: 2008
  ident: 2022010314001573900_bib44
  article-title: The sources of jet noise: experimental evidence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008003704
– volume: 117
  start-page: 1
  year: 2012
  ident: 2022010314001573900_bib17
  article-title: Probing local wind and temperature structure using infrasound from Volcan Villarrica (Chile)
  publication-title: J. geophys. Res.
  doi: 10.1029/2011JD016760
– volume: 206
  start-page: 345
  year: 2016
  ident: 2022010314001573900_bib10
  article-title: Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggw150
– start-page: 29
  volume-title: Infrasound Monitoring for Atmospheric Studies
  year: 2010
  ident: 2022010314001573900_bib5
  article-title: The IMS infrasound network: design and establishment of infrasound stations
  doi: 10.1007/978-1-4020-9508-5_2
– volume: 119
  start-page: 2988
  year: 2014
  ident: 2022010314001573900_bib24
  article-title: Influence of atmospheric structure and topography on infrasonic wave propagation
  publication-title: J. geophys. Res.
  doi: 10.1002/2013JB010827
– volume: 9
  start-page: 373
  year: 1967
  ident: 2022010314001573900_bib25
  article-title: A general theory of classificatory sorting strategies: 1. Hierarchical systems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/9.4.373
– volume: 90
  start-page: 229
  year: 2009
  ident: 2022010314001573900_bib32
  article-title: Tracking pyroclastic flows at soufrière hills volcano
  publication-title: EOS, Trans. Am. geophys. Un.
  doi: 10.1029/2009EO270001
– volume: 29
  start-page: 33
  year: 2002
  ident: 2022010314001573900_bib33
  article-title: Array tracking of infrasonic sources at Stromboli volcano
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL015452
– volume: 112
  start-page: 1
  year: 2007
  ident: 2022010314001573900_bib35
  article-title: Infrasonic monitoring at Stromboli volcano during the 2003 effusive eruption: insights on the explosive and degassing process of an open conduit system
  publication-title: J. geophys. Res.
  doi: 10.1029/2006JB004613
– volume: 3
  start-page: 120
  year: 2010
  ident: 2022010314001573900_bib48
  article-title: Clustering algorithms in biomedical research: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2083647
– volume: 32
  start-page: 1
  year: 2005
  ident: 2022010314001573900_bib26
  article-title: Infrasound associated with 2004-2005 large Sumatra earthquakes and tsunami
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL023893
– volume: 283
  start-page: 101
  year: 2014
  ident: 2022010314001573900_bib36
  article-title: Three-dimensional volcano-acoustic source localization at Karymsky Volcano, Kamchatka, Russia
  publication-title: J. Volc. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2014.06.015
– volume: 39
  start-page: 169
  year: 2014
  ident: 2022010314001573900_bib7
  article-title: Chapter 9: Thermal, acoustic and seismic signals from pyroclastic density currents and Vulcanian explosions at Soufrière Hills Volcano, Montserrat
  publication-title: Geol. Soc. Lond., Mem.
  doi: 10.1144/M39.9
– volume: 24
  start-page: 145
  year: 2005
  ident: 2022010314001573900_bib16
  article-title: Infrasound emission from wind turbines
  publication-title: J. Low Freq. Noise Vib. Act. Control
  doi: 10.1260/026309205775374451
– volume: 45
  start-page: 8931
  year: 2018
  ident: 2022010314001573900_bib49
  article-title: Azimuth estimations from a small aperture infrasonic array: test observations at Stromboli Volcano, Italy
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL078851
– volume: 185
  start-page: 253
  year: 2011
  ident: 2022010314001573900_bib1
  article-title: Clustering and classification of infrasonic events at Mount Etna using pattern recognition techniques
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.04951.x
– volume: 114
  start-page: 1
  year: 2009
  ident: 2022010314001573900_bib2
  article-title: Characterization and location of infrasonic sources in active volcanoes: mount Etna, September-November 2007
  publication-title: J. geophys. Res.
  doi: 10.1029/2008JB006007
– volume: 6
  start-page: 357
  year: 2007
  ident: 2022010314001573900_bib38
  article-title: CLEAN based on spatial source coherence
  publication-title: Int. J. Aeroacoust.
  doi: 10.1260/147547207783359459
– volume: 124
  start-page: 9299
  year: 2019
  ident: 2022010314001573900_bib39
  article-title: A three-dimensional array for the study of infrasound propagation through the atmospheric boundary layer
  publication-title: J. geophys. Res.
  doi: 10.1029/2019JD030386
– volume: 15
  start-page: 417
  year: 1974
  ident: 2022010314001573900_bib13
  article-title: Aperture synthesis with a non-regular distribution of interferometer baselines
  publication-title: Astron. astrophys., Suppl. ser.
SSID ssj0014148
Score 2.4001718
Snippet SUMMARY This study tested a very-small-aperture 3-D (VSA-3D) infrasonic array. A 3-D array is ideal for resolving the back elevation angle (BEL), which has...
This study tested a very-small-aperture 3-D (VSA-3D) infrasonic array. A 3-D array is ideal for resolving the back elevation angle (BEL), which has become...
SourceID unpaywall
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 459
Title Very-small-aperture 3-D infrasonic array for volcanic jet observation at Stromboli Volcano
URI http://hdl.handle.net/2158/1256437
UnpaywallVersion submittedVersion
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 1365-246X
  databaseCode: KQ8
  dateStart: 19580301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 1365-246X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-NAEB-0cpwvp3ee6J0f-6Avwto2-9HkUfxAFD1FK_Feym46W9TalDTlqH-9s01aRKXcSyDhBwk7w85vMzO_AdiR0jkXoOJB2yGneC145OhWaGHIZzCIxtMaLi71aVOexSqeg8nUtXfyAhSPwiqFYJ9dmocFrYhvV2CheXl1cD8R0SPKEU-bq6SOyyY8OqlXO48P1U7HWOkL5t6EnaKV7euw1zejf6bbfRNRTpbgcNKXUxSSPO0Pc7ufvHyUaZzxscvwrSSU7KDwgO8wh70f8GVc2JkMVuDvHWYjPnim93PTx8wnDJjgR4w8KzMDL4zLTJaZESP2ymivoqWmR4-Ys9RO_9gyk7ObPEufbdp9YHdjVPoTmifHt4envJynwI2Iajmvm1C5wIlIO6EwtKpmvNyeQ-3qqmFlA-vWKu0SDAOZOJkEVmKDDJa0G047FKtQ6aU9XAOmBR1blIermnRoQy_rlYTWaOUsmmgd9ibL3UpKsXE_86LbKpLeokW2aZW2WYedKbhfaGx8Dtsmu81G7E5tOgv36z9xv2Ex8N0O40KdDajk2RA3iYPkdgvmz69Dut7-ibdKh3wF4oHd9Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60InrxLb7dg16EtW320eQoPhBBEbRSvZTdOFvU2pQ0Reqvd7ZJi6gUj1k-yLLfkJnNzHwDcCClcy5AxYNnh5z8teCRo0ehhSGbwSAaTmu4vtGXdXnVUI0pGE1d-yEvQP4oLJML9tmlaZjRiuLtEszUb25PHkciehRyNMbNVVI3iiY8uqmXW68v5VbLWOkL5r65nbyVba7f6ZrBh2m3v3mUi0U4HfXl5IUkb8f9zB7Hn79lGidsdgkWioCSneQWsAxT2FmB2WFhZ9xbhacHTAe8907v56aLqU8YMMHPGFlWanpeGJeZNDUDRtEro28VHTUtvWLGEjv-Y8tMxu6yNHm3SfuFPQxRyRrUL87vTy95MU-BGxFVMl41oXKBE5F2QmFoVcV4uT2H2lVVzcoaVq1V2sUYBjJ2Mg6sxBoRFj_XnHYo1qHUSTq4AUwLurYoD1cV6dCGXtYrDq3Rylk00SYcjY67GRdi437mRbuZJ71Fk7hpFtxswsEY3M01Nv6G7RNvkxGHY04n4bb-iduG-cB3OwwLdXaglKV93KUYJLN7hRF-AYwI2-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very-small-aperture+3-D+infrasonic+array+for+volcanic+jet+observation+at+Stromboli+Volcano&rft.jtitle=Geophysical+journal+international&rft.au=Yamakawa%2C+Kazuya&rft.au=Ichihara%2C+Mie&rft.au=Lacanna%2C+Giorgio&rft.au=S%C3%A1nchez%2C+Claudia&rft.date=2022-04-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=229&rft.issue=1&rft.spage=459&rft.epage=471&rft_id=info:doi/10.1093%2Fgji%2Fggab487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggab487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon