Prolonged parallel chronology of distinct TTG types in the Lake Inari terrain, Arctic Fennoscandia: Implications for a stationary plume-related source

•Long-term migmatization produced two types of TTGs between 2.9 and 2.6 Ga.•TTGs derived from sources related to a stationary plume.•Partial melting of TTGs produced porphyritic granitoids at 2.6–2.5 Ga.•The 1.9 Ga orogeny did not influence the Archaean migmatite morphology.•The Lake Inari TTGs peak...

Full description

Saved in:
Bibliographic Details
Published inPrecambrian research Vol. 408; p. 107418
Main Authors Joshi, Kumar Batuk, Halla, Jaana, Kurhila, Matti, Heilimo, Esa
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2024
Subjects
Online AccessGet full text
ISSN0301-9268
1872-7433
DOI10.1016/j.precamres.2024.107418

Cover

Abstract •Long-term migmatization produced two types of TTGs between 2.9 and 2.6 Ga.•TTGs derived from sources related to a stationary plume.•Partial melting of TTGs produced porphyritic granitoids at 2.6–2.5 Ga.•The 1.9 Ga orogeny did not influence the Archaean migmatite morphology.•The Lake Inari TTGs peak ca. 100 Ma before the Kenorland supercontinent. Revealing Archaean crust-formation processes requires understanding of geochemical and chronological differences in granitoids. During the early evolution of Earth’s felsic crust, large amounts of tonalite-trondhjemite-granodiorites (TTGs) were formed, making up most of the Archaean crust preserved until today. TTGs have two geochemical endmembers, the low-HREE and high-HREE (heavy rare earth elements) TTGs. The genesis of TTGs has been explained by the dehydration melting of basaltic crust, but the formation of the different types of TTGs is a subject of debate. This study provides new U–Pb zircon ages for deciphering the temporal relationships between the different TTG types in the Lake Inari terrain, Arctic Fennoscandia. The interpretation of the FIRE (Finnish Reflection Experiment) 4A line shows the existence of two tectonic blocks for the terrain. Our results from zircon populations of low- and high-HREE TTGs and adjacent porphyritic granitoids show a large time spread suggesting a prolonged migmatization in the Lake Inari terrain from 2900 to 2600 Ma. This supports a long-term source of heat such as a stationary plume related to stagnant or sluggish lid -tectonics. The high- and low-HREE TTGs show parallel ages and occur intermingled, which points to a common source instead of different tectonic settings. There is no distinct age difference between the two tectonic blocks identified in the FIRE 4A seismic reflection profile. Prolonged melting episodes of thickened felsic crust produced porphyritic granites between 2650–2500 Ma. The ∼ 1.9 Ga Lapland-Kola orogeny caused minor zircon recrystallization but did not influence Archaean migmatite morphology. The Lake Inari TTGs peak approximately at 2.8 Ga, i.e., 100 Ma before the formation of the suggested Kenorland supercontinent.
AbstractList •Long-term migmatization produced two types of TTGs between 2.9 and 2.6 Ga.•TTGs derived from sources related to a stationary plume.•Partial melting of TTGs produced porphyritic granitoids at 2.6–2.5 Ga.•The 1.9 Ga orogeny did not influence the Archaean migmatite morphology.•The Lake Inari TTGs peak ca. 100 Ma before the Kenorland supercontinent. Revealing Archaean crust-formation processes requires understanding of geochemical and chronological differences in granitoids. During the early evolution of Earth’s felsic crust, large amounts of tonalite-trondhjemite-granodiorites (TTGs) were formed, making up most of the Archaean crust preserved until today. TTGs have two geochemical endmembers, the low-HREE and high-HREE (heavy rare earth elements) TTGs. The genesis of TTGs has been explained by the dehydration melting of basaltic crust, but the formation of the different types of TTGs is a subject of debate. This study provides new U–Pb zircon ages for deciphering the temporal relationships between the different TTG types in the Lake Inari terrain, Arctic Fennoscandia. The interpretation of the FIRE (Finnish Reflection Experiment) 4A line shows the existence of two tectonic blocks for the terrain. Our results from zircon populations of low- and high-HREE TTGs and adjacent porphyritic granitoids show a large time spread suggesting a prolonged migmatization in the Lake Inari terrain from 2900 to 2600 Ma. This supports a long-term source of heat such as a stationary plume related to stagnant or sluggish lid -tectonics. The high- and low-HREE TTGs show parallel ages and occur intermingled, which points to a common source instead of different tectonic settings. There is no distinct age difference between the two tectonic blocks identified in the FIRE 4A seismic reflection profile. Prolonged melting episodes of thickened felsic crust produced porphyritic granites between 2650–2500 Ma. The ∼ 1.9 Ga Lapland-Kola orogeny caused minor zircon recrystallization but did not influence Archaean migmatite morphology. The Lake Inari TTGs peak approximately at 2.8 Ga, i.e., 100 Ma before the formation of the suggested Kenorland supercontinent.
ArticleNumber 107418
Author Joshi, Kumar Batuk
Halla, Jaana
Heilimo, Esa
Kurhila, Matti
Author_xml – sequence: 1
  givenname: Kumar Batuk
  surname: Joshi
  fullname: Joshi, Kumar Batuk
  organization: Solid Earth Research Group, National Centre for Earth Science Studies, India
– sequence: 2
  givenname: Jaana
  orcidid: 0000-0003-0599-1897
  surname: Halla
  fullname: Halla, Jaana
  email: jaana.halla@helsinki.fi
  organization: Geosciences Unit, Finnish Museum of Natural History, University of Helsinki, Finland
– sequence: 3
  givenname: Matti
  surname: Kurhila
  fullname: Kurhila, Matti
  organization: Geological Survey of Finland, Finland
– sequence: 4
  givenname: Esa
  surname: Heilimo
  fullname: Heilimo, Esa
  organization: Department of Geography and Geology, University of Turku, Finland
BookMark eNqNkE1uFDEQhS0UJCaBM1AHoAf_dLrdSCxGEQkjjQSLYW0V7nLiwWO3bAdpLsJ5cRjEgg2s6kf1nl59l-wipkiMvRZ8LbgY3h7WSyaLx0xlLbns23bshX7GVkKPsht7pS7YiisuukkO-gW7LOXAORf9oFfsx-ecQor3NMOCGUOgAPYhp9i29ydIDmZfqo-2wn5_B_W0UAEfoT4Q7PAbwTZi9lApZ_TxDWyyrd7CLcWYisU4e3wH2-MSvMXqUyzgUgaEUn-NmE-whMcjdZkC1paipMds6SV77jAUevW7XrEvtx_2Nx-73ae77c1m16HSY-30V6FQk5x7pyY9orTXNCjnlJwm17rJCsLBkp6sHTSim64lWRJauUHQJNUVG8--NqdSMjmzZH9sqYzg5gmvOZg_eM0TXnPG25Tv_1Jaf_6pNhLhP_Sbs57ae989ZVOsp2hp9u2-mjn5f3r8BJ5MosA
CitedBy_id crossref_primary_10_1016_j_precamres_2024_107491
crossref_primary_10_1016_j_precamres_2024_107407
crossref_primary_10_1016_j_precamres_2025_107767
Cites_doi 10.2113/gselements.11.2.99
10.3389/feart.2020.00252
10.1007/BF00373959
10.2113/2022/3099822
10.1016/j.lithos.2014.06.014
10.1016/j.lithos.2010.09.015
10.1007/s00410-022-01978-7
10.1146/annurev-earth-060614-105049
10.1038/s41561-019-0520-6
10.1038/ngeo469
10.1016/j.earscirev.2022.104274
10.1016/0012-821X(75)90088-6
10.1016/j.precamres.2024.107407
10.1130/G46834.1
10.1126/sciadv.add3761
10.1016/j.precamres.2019.04.022
10.17741/bgsf/78.1.004
10.1144/GSL.MEM.2006.032.01.35
10.1016/j.earscirev.2021.103778
10.1130/G32729.1
10.1007/s11430-019-9538-2
10.1111/j.1751-908X.2016.00379.x
10.18814/epiiugs/2020/020096
10.1016/j.gr.2022.10.008
10.2113/2022/6956845
10.1038/s41586-023-06024-5
10.1016/j.chemgeo.2023.121868
10.1038/s41598-021-84300-y
10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2
10.1144/SP449.8
10.3390/geosciences8090353
10.1016/j.lithos.2014.08.021
10.1016/j.precamres.2009.07.008
10.1130/G45840.1
10.1016/j.jseaes.2017.02.009
10.17741/bgsf/81.1.001
10.1016/j.lithos.2012.06.010
10.1039/B805995K
10.1016/j.precamres.2019.105436
10.1029/2020GC009507
10.1017/S0263593300010117
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.precamres.2024.107418
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-7433
ExternalDocumentID 10_1016_j_precamres_2024_107418
S0301926824001311
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
LY3
OHT
R2-
SEP
SSH
UHS
WUQ
XJT
XOL
ZY4
ID FETCH-LOGICAL-a387t-8b13a8e2d4f3987a2c5e63ff3299fe639c1ea6ce89cc68aaf952ece183f61e923
IEDL.DBID AIKHN
ISSN 0301-9268
IngestDate Tue Jul 01 04:24:50 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
Sat Jun 01 15:42:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stationary mantle plume
U–Pb geochronology
High-HREE TTG
Low-HREE TTG
Porphyritic granitoid
Archaean
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a387t-8b13a8e2d4f3987a2c5e63ff3299fe639c1ea6ce89cc68aaf952ece183f61e923
ORCID 0000-0003-0599-1897
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0301926824001311
ParticipantIDs crossref_primary_10_1016_j_precamres_2024_107418
crossref_citationtrail_10_1016_j_precamres_2024_107418
elsevier_sciencedirect_doi_10_1016_j_precamres_2024_107418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Precambrian research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lahtinen, Huhma (b0125) 2019; 330
Cisneros de León, Schmitt, Kutterolf, Schindlbeck-Belo, Hernández, Sims, Garrison, Kant, Weber, Wang, Lee (b0020) 2021; 22
Chen, Liu, Chen, Peng (b0010) 2017; 139
Condie, Puetz, Spencer, Roberts (b0025) 2024; 644
Halla (b0055) 2018; 8
Joshi, Singh, Halla, Ahmad, Rai (b0120) 2022; 2022
Patison, N.L., Korja, A., Lahtinen, R., Ojala, V.J., the FIRE working Group, 2006. FIRE seismic reflection profiles 4, 4A and 4B: Insights into the Crustal Structure of Northern Finland from Ranua to Näätämö. Geological Survey of Finland, Special Paper 43, 161–222.
Horstwood, Košler, Gehrels, Jackson, McLean, Paton, Pearson, Sircombe, Sylvester, Vermeesch, Bowring, Condon, Schoene (b0090) 2016; 40
Huhma, Mänttäri, Peltonen, Kontinen, Halkoaho, Hanski, Hokkanen, Hölttä, Juopperi, Konnunaho, Layahe, Luukkonen, Pietikäinen, Pulkkinen, Sorjonen-Ward, Vaasjoki, Whitehouse (b0095) 2012; 54
Patchett, Kouvo (b0180) 1986; 92
Halla, van Hunen, Heilimo, Hölttä (b0070) 2009; 174
Johnson, Yakymchuk, Brown (b0105) 2021; 221
Joshi, Banerji, Dubey, Oliveira (b0115) 2022; 2022
Mitra, Dey, Zong, Liu, Mitra (bib225) 2019; 335
Ducea, Saleeby, Bergantz (b0050) 2015; 43
Hernández-Montenegro, Palin, Zuluaga, Hernández-Uribe (b0085) 2021; 11
Laurent, Björnsen, Wotzlaw, Bretscher, Pimenta Silva, Moyen, Ulmer, Bachmann (b0130) 2020; 13
Barham, Kirkland, Hollis (b0005) 2019; 47
Debon, Le Fort (b0035) 1983; 73
Ludwig, K.R., 2012. User’s Manual for Isoplot 4.15, A Geochronological Toolkit for Microsoft Excel. Berkeley, CA: Berkeley Geochronology Center Special Publication no. 5, 75p.
Halla, Joshi, Luttinen, Heilimo, Kurhila (bib224) 2024; 407
Chen, Wang, Liang, Wan, Liun (b0015) 2020; 3
Weinberg, Hasalová (b0220) 2015; 212
Li, Shan, Liu, Zhang, Liu, Cheng, Wang, Zhao, Yu (b0135) 2023; 115
Moyen, Martin (b0160) 2012; 148
Sotiriou, Polat, Windley, Kusky (b0195) 2023; 236
Nagel, Hoffmann, Münker (b0170) 2012; 40
Joshi, Bhattacharjee, Rai, Halla, Ahmad, Kurhila, Heilimo, Choudhary (b0110) 2017; 449
Tarduno, Cottrell, Bono, Rayner, Davis, Zhou, Nimmo, Hofmann, Jodder, Ibañez-Mejia, Watkeys, Oda, Mitra (b0205) 2023; 618
DeCelles, Ducea, Kapp, Zandt (b0040) 2009; 2
Martin, Moyen (b0145) 2002; 30
Joshi, Sorcar, Pant, Nandakumar, Ahmad, Tomson (bib226) 2021; 44
Müller, Shelley, Miller, Broude (b0165) 2009; 24
Daly, J.S., Balagansky, V.V., Timmerman, M.J., Whitehouse, M.J., 2006. The Lapland Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee, D.G., Stephenson, R.A. (Eds.), European Lithosphere Dynamics. Geological Society, London, Memoirs, pp. 561–578.
Heilimo, Halla, Lauri, Rämö, Huhma, Kurhila, Front (b0075) 2009; 81
Meriläinen (b0150) 1976; 289
.
Rollinson (b0190) 2023; 178
Stacey, Kramers (b0200) 1975; 26
Ducea, Paterson, DeCelles (b0045) 2015; 11
Taylor, Johnson, Clark, Harrison (bib222) 2020; 48
Halla (b0060) 2020; 8
Huhma, H., 2019. Isotope results from Lapland-Kola province in Finland. Geological Survey of Finland, Open file research report 37
Tuisku, Mikkola, Huhma (b0210) 2006; 78
Van Achterbergh, E., Ryan C., Jackson, S., Griffin W., 2001. Data reduction software for LA-ICP-MS, in: Laser-Ablation ICPMS in the Earth Sciences – Principles and applications, Mineralogical Association of Canada short course series, 29, St John, Newfoundland, 239−243.
Moyen (b0155) 2011; 123
Heilimo, Elburg, Andersen (b0080) 2014; 205
Naif, Miller, Shillington, Bécel, Lizarralde, Bassett, Hemming (bib221) 2023; 9
10.1016/j.precamres.2024.107418_b0030
DeCelles (10.1016/j.precamres.2024.107418_b0040) 2009; 2
Joshi (10.1016/j.precamres.2024.107418_bib226) 2021; 44
Cisneros de León (10.1016/j.precamres.2024.107418_b0020) 2021; 22
Heilimo (10.1016/j.precamres.2024.107418_b0080) 2014; 205
Sotiriou (10.1016/j.precamres.2024.107418_b0195) 2023; 236
Müller (10.1016/j.precamres.2024.107418_b0165) 2009; 24
Hernández-Montenegro (10.1016/j.precamres.2024.107418_b0085) 2021; 11
Horstwood (10.1016/j.precamres.2024.107418_b0090) 2016; 40
Barham (10.1016/j.precamres.2024.107418_b0005) 2019; 47
Taylor (10.1016/j.precamres.2024.107418_bib222) 2020; 48
Meriläinen (10.1016/j.precamres.2024.107418_b0150) 1976; 289
Halla (10.1016/j.precamres.2024.107418_b0060) 2020; 8
Joshi (10.1016/j.precamres.2024.107418_b0115) 2022; 2022
Johnson (10.1016/j.precamres.2024.107418_b0105) 2021; 221
Ducea (10.1016/j.precamres.2024.107418_b0045) 2015; 11
Huhma (10.1016/j.precamres.2024.107418_b0095) 2012; 54
Lahtinen (10.1016/j.precamres.2024.107418_b0125) 2019; 330
Nagel (10.1016/j.precamres.2024.107418_b0170) 2012; 40
Rollinson (10.1016/j.precamres.2024.107418_b0190) 2023; 178
Stacey (10.1016/j.precamres.2024.107418_b0200) 1975; 26
Halla (10.1016/j.precamres.2024.107418_b0055) 2018; 8
Martin (10.1016/j.precamres.2024.107418_b0145) 2002; 30
Laurent (10.1016/j.precamres.2024.107418_b0130) 2020; 13
10.1016/j.precamres.2024.107418_b0140
Li (10.1016/j.precamres.2024.107418_b0135) 2023; 115
Weinberg (10.1016/j.precamres.2024.107418_b0220) 2015; 212
Halla (10.1016/j.precamres.2024.107418_b0070) 2009; 174
Moyen (10.1016/j.precamres.2024.107418_b0155) 2011; 123
Halla (10.1016/j.precamres.2024.107418_bib224) 2024; 407
Joshi (10.1016/j.precamres.2024.107418_b0110) 2017; 449
Mitra (10.1016/j.precamres.2024.107418_bib225) 2019; 335
Tarduno (10.1016/j.precamres.2024.107418_b0205) 2023; 618
Ducea (10.1016/j.precamres.2024.107418_b0050) 2015; 43
10.1016/j.precamres.2024.107418_b0185
Moyen (10.1016/j.precamres.2024.107418_b0160) 2012; 148
10.1016/j.precamres.2024.107418_b0100
10.1016/j.precamres.2024.107418_b0215
Chen (10.1016/j.precamres.2024.107418_b0010) 2017; 139
Debon (10.1016/j.precamres.2024.107418_b0035) 1983; 73
Heilimo (10.1016/j.precamres.2024.107418_b0075) 2009; 81
Naif (10.1016/j.precamres.2024.107418_bib221) 2023; 9
Tuisku (10.1016/j.precamres.2024.107418_b0210) 2006; 78
Joshi (10.1016/j.precamres.2024.107418_b0120) 2022; 2022
Chen (10.1016/j.precamres.2024.107418_b0015) 2020; 3
Condie (10.1016/j.precamres.2024.107418_b0025) 2024; 644
Patchett (10.1016/j.precamres.2024.107418_b0180) 1986; 92
References_xml – reference: Patison, N.L., Korja, A., Lahtinen, R., Ojala, V.J., the FIRE working Group, 2006. FIRE seismic reflection profiles 4, 4A and 4B: Insights into the Crustal Structure of Northern Finland from Ranua to Näätämö. Geological Survey of Finland, Special Paper 43, 161–222.
– volume: 174
  start-page: 155
  year: 2009
  end-page: 162
  ident: b0070
  article-title: Geochemical and numerical constraints on Neoarchean plate tectonics
  publication-title: Precambr. Res.
– volume: 2022
  start-page: 6956845
  year: 2022
  ident: b0120
  article-title: Neodymium Isotope constraints on the origin of TTGs and High-K Granitoids in the Bundelkhand Craton, Central India: implications for Archaean crustal evolution
  publication-title: Lithosphere
– volume: 2022
  start-page: 3099822
  year: 2022
  ident: b0115
  article-title: Detrital Zircons in Crustal Evolution: A Perspective from the Indian Subcontinent
  publication-title: Lithosphere
– volume: 73
  start-page: 135
  year: 1983
  end-page: 149
  ident: b0035
  article-title: A chemical-mineralogical classification of common plutonic rocks and associations
  publication-title: Trans. R. Soc. Edinb. Earth Sci.
– volume: 43
  start-page: 299
  year: 2015
  end-page: 331
  ident: b0050
  article-title: The architecture, chemistry, and evolution of continental magmatic arcs
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 8
  start-page: 252
  year: 2020
  ident: b0060
  article-title: The TTG-amphibolite terrains of arctic fennoscandia: infinite networks of amphibolite metatexite-diatexite transitions
  publication-title: Front. Earth Sci.
– volume: 330
  start-page: 1
  year: 2019
  end-page: 19
  ident: b0125
  article-title: A revised geodynamic model for the Lapland-Kola orogen
  publication-title: Precambr. Res.
– volume: 81
  start-page: 7
  year: 2009
  end-page: 36
  ident: b0075
  article-title: The Paleoproterozoic Nattanen-type granites in northern Finland and vicinity – a postcollisional oxidized A-type suite
  publication-title: Bull. Geol. Soc. Finl.
– volume: 205
  start-page: 112
  year: 2014
  end-page: 126
  ident: b0080
  article-title: Crustal growth and reworking during Lapland-Kola orogeny in northern Fennoscandia: U-Pb and Lu-Hf data from the Nattanen and Litsa-Aragub-type granites
  publication-title: Lithos
– volume: 3
  start-page: 315
  year: 2020
  end-page: 328
  ident: b0015
  article-title: Subduction tectonics vs. plume tectonics—Discussion on driving forces for plate motion
  publication-title: Sci. China Earth Sci.
– volume: 92
  start-page: 1
  year: 1986
  end-page: 12
  ident: b0180
  article-title: Origin of continental crust of 1.9-1.7 Ga age: Nd isotopes and U-Pb zircon ages in the Svecokarelian terrain of south Finland
  publication-title: Contrib. Miner. Petrol.
– volume: 644
  year: 2024
  ident: b0025
  article-title: Four billion years of secular compositional change in granitoids
  publication-title: Chem. Geol.
– volume: 449
  start-page: 123
  year: 2017
  end-page: 157
  ident: b0110
  article-title: The diversification of granitoids and plate tectonic implications at the Archaean-Proterozoic boundary in the Bundelkhand Craton, Central India
  publication-title: Geol. Soc. Lond. Spec. Publ.
– volume: 335
  start-page: 105436
  year: 2019
  ident: bib225
  article-title: Building the core of a Paleoarchean continent: Evidence from granitoids of Singhbhum Craton, eastern India
  publication-title: Precambr. Res.
– reference: Daly, J.S., Balagansky, V.V., Timmerman, M.J., Whitehouse, M.J., 2006. The Lapland Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee, D.G., Stephenson, R.A. (Eds.), European Lithosphere Dynamics. Geological Society, London, Memoirs, pp. 561–578.
– volume: 123
  start-page: 1
  year: 2011
  end-page: 36
  ident: b0155
  article-title: The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth
  publication-title: Lithos
– volume: 44
  start-page: 443
  year: 2021
  end-page: 466
  ident: bib226
  article-title: Characterization of multiple episodes of melt generation from lower crust during Archaean using amphibole composition
  publication-title: Episodes J. Int. Geosci.
– volume: 115
  start-page: 201
  year: 2023
  end-page: 223
  ident: b0135
  article-title: Late Neoarchean TTG and monzogranite in the northeastern North China Craton: Implications for partial melting of a thickened lower crust
  publication-title: Gondw. Res.
– volume: 40
  start-page: 375
  year: 2012
  end-page: 378
  ident: b0170
  article-title: Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust
  publication-title: Geology
– volume: 40
  start-page: 311
  year: 2016
  end-page: 332
  ident: b0090
  article-title: Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology—Uncertainty propagation, age interpretation and data reporting
  publication-title: Geostand. Geoanal. Res.
– reference: Ludwig, K.R., 2012. User’s Manual for Isoplot 4.15, A Geochronological Toolkit for Microsoft Excel. Berkeley, CA: Berkeley Geochronology Center Special Publication no. 5, 75p.
– volume: 9
  start-page: eadd3761
  year: 2023
  ident: bib221
  article-title: Episodic intraplate magmatism fed by a long-lived melt channel of distal plume origin
  publication-title: Sci. Adv.
– volume: 178
  year: 2023
  ident: b0190
  article-title: The growth of the Zimbabwe craton during the Neoarchaean
  publication-title: Contribut. Mineral. Petrol.
– volume: 22
  year: 2021
  ident: b0020
  article-title: Zircon and melt extraction from a long-lived and vertically extensive magma system underneath Ilopango Caldera (El Salvador)
  publication-title: Geochem. Geophys. Geosyst.
– volume: 618
  start-page: 531
  year: 2023
  end-page: 536
  ident: b0205
  article-title: Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism
  publication-title: Nature
– volume: 78
  start-page: 71
  year: 2006
  end-page: 105
  ident: b0210
  article-title: Evolution of migmatitic granulite complexes: Implications from Lapland granulite belt, part I: Metamorphic geology
  publication-title: Bull. Geol. Soc. Finl.
– volume: 26
  start-page: 207
  year: 1975
  end-page: 221
  ident: b0200
  article-title: Approximation of terrestrial lead isotope evolution by a two-stage model
  publication-title: Earth Planet. Sci. Lett.
– volume: 48
  start-page: 221
  year: 2020
  end-page: 225
  ident: bib222
  article-title: Persistence of melt-bearing Archean lower crust for> 200 my—An example from the Lewisian Complex, northwest Scotland
  publication-title: Geology
– volume: 47
  start-page: 435
  year: 2019
  end-page: 439
  ident: b0005
  article-title: Spot the difference: zircon disparity tracks crustal evolution
  publication-title: Geology
– volume: 11
  start-page: 5263
  year: 2021
  ident: b0085
  article-title: Archean continental crust formed by magma hybridization and voluminous partial melting
  publication-title: Sci. Rep.
– volume: 289
  start-page: 129 pp
  year: 1976
  ident: b0150
  article-title: The granulite complex and adjacent rocks in Lapland, northern Finland
  publication-title: Bull. Geol. Soc. Finl.
– reference: Huhma, H., 2019. Isotope results from Lapland-Kola province in Finland. Geological Survey of Finland, Open file research report 37
– reference: Van Achterbergh, E., Ryan C., Jackson, S., Griffin W., 2001. Data reduction software for LA-ICP-MS, in: Laser-Ablation ICPMS in the Earth Sciences – Principles and applications, Mineralogical Association of Canada short course series, 29, St John, Newfoundland, 239−243.
– reference: .
– volume: 221
  year: 2021
  ident: b0105
  article-title: Crustal melting and suprasolidus phase equilibria: From first principles to the state-of-the-art
  publication-title: Earth Sci. Rev.
– volume: 13
  start-page: 163
  year: 2020
  end-page: 169
  ident: b0130
  article-title: Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions
  publication-title: Nat. Geosci.
– volume: 30
  start-page: 319
  year: 2002
  end-page: 322
  ident: b0145
  article-title: Secular changes in TTG composition as markers of the progressive cooling of the Earth
  publication-title: Geology
– volume: 2
  start-page: 251
  year: 2009
  end-page: 257
  ident: b0040
  article-title: Cyclicity in Cordilleran orogenic systems
  publication-title: Nat. Geosci.
– volume: 148
  start-page: 312
  year: 2012
  end-page: 336
  ident: b0160
  article-title: Forty years of TTG research
  publication-title: Lithos
– volume: 11
  start-page: 99
  year: 2015
  end-page: 104
  ident: b0045
  article-title: High-volume magmatic events in subduction systems
  publication-title: Elements
– volume: 24
  start-page: 209
  year: 2009
  end-page: 214
  ident: b0165
  article-title: Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell
  publication-title: J. Anal. At. Spectrom
– volume: 236
  year: 2023
  ident: b0195
  article-title: Temporal variations in the incompatible trace element systematics of Archean TTGs: Implications for crustal growth and tectonic processes in the early Earth
  publication-title: Earth Sci. Rev.
– volume: 8
  start-page: 353
  year: 2018
  ident: b0055
  article-title: Highlights on geochemical changes in Archaean Granitoids and their implications for early earth geodynamics
  publication-title: Geosciences
– volume: 407
  start-page: 107407
  year: 2024
  ident: bib224
  article-title: On the origin of Archaean TTGs by migmatization of mantle plume-related metabasalts: Insights from the Lake Inari terrain, Arctic Fennoscandia
  publication-title: Precambr. Res.
– volume: 139
  start-page: 192
  year: 2017
  end-page: 201
  ident: b0010
  article-title: Rheological transitions in progressive melting of rock and their geological constraints from the Fuhu metatexite-diatexite profile in Guangdong Province, SE China
  publication-title: J. Asian Earth Sci.
– volume: 212
  start-page: 158
  year: 2015
  end-page: 188
  ident: b0220
  article-title: Water-fluxed melting of the continental crust: a review
  publication-title: Lithos
– volume: 54
  start-page: 74
  year: 2012
  end-page: 175
  ident: b0095
  article-title: The age of the Archaean greenstone belts in Finland
  publication-title: Geol. Surv. Finland Spec. Pap.
– volume: 11
  start-page: 99
  issue: 2
  year: 2015
  ident: 10.1016/j.precamres.2024.107418_b0045
  article-title: High-volume magmatic events in subduction systems
  publication-title: Elements
  doi: 10.2113/gselements.11.2.99
– volume: 8
  start-page: 252
  year: 2020
  ident: 10.1016/j.precamres.2024.107418_b0060
  article-title: The TTG-amphibolite terrains of arctic fennoscandia: infinite networks of amphibolite metatexite-diatexite transitions
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2020.00252
– volume: 92
  start-page: 1
  year: 1986
  ident: 10.1016/j.precamres.2024.107418_b0180
  article-title: Origin of continental crust of 1.9-1.7 Ga age: Nd isotopes and U-Pb zircon ages in the Svecokarelian terrain of south Finland
  publication-title: Contrib. Miner. Petrol.
  doi: 10.1007/BF00373959
– volume: 2022
  start-page: 3099822
  issue: Special 8
  year: 2022
  ident: 10.1016/j.precamres.2024.107418_b0115
  article-title: Detrital Zircons in Crustal Evolution: A Perspective from the Indian Subcontinent
  publication-title: Lithosphere
  doi: 10.2113/2022/3099822
– volume: 205
  start-page: 112
  year: 2014
  ident: 10.1016/j.precamres.2024.107418_b0080
  article-title: Crustal growth and reworking during Lapland-Kola orogeny in northern Fennoscandia: U-Pb and Lu-Hf data from the Nattanen and Litsa-Aragub-type granites
  publication-title: Lithos
  doi: 10.1016/j.lithos.2014.06.014
– volume: 123
  start-page: 1
  year: 2011
  ident: 10.1016/j.precamres.2024.107418_b0155
  article-title: The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth
  publication-title: Lithos
  doi: 10.1016/j.lithos.2010.09.015
– ident: 10.1016/j.precamres.2024.107418_b0215
– volume: 178
  year: 2023
  ident: 10.1016/j.precamres.2024.107418_b0190
  article-title: The growth of the Zimbabwe craton during the Neoarchaean
  publication-title: Contribut. Mineral. Petrol.
  doi: 10.1007/s00410-022-01978-7
– volume: 54
  start-page: 74
  year: 2012
  ident: 10.1016/j.precamres.2024.107418_b0095
  article-title: The age of the Archaean greenstone belts in Finland
  publication-title: Geol. Surv. Finland Spec. Pap.
– ident: 10.1016/j.precamres.2024.107418_b0100
– ident: 10.1016/j.precamres.2024.107418_b0140
– volume: 43
  start-page: 299
  year: 2015
  ident: 10.1016/j.precamres.2024.107418_b0050
  article-title: The architecture, chemistry, and evolution of continental magmatic arcs
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-060614-105049
– volume: 13
  start-page: 163
  year: 2020
  ident: 10.1016/j.precamres.2024.107418_b0130
  article-title: Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0520-6
– volume: 2
  start-page: 251
  issue: 4
  year: 2009
  ident: 10.1016/j.precamres.2024.107418_b0040
  article-title: Cyclicity in Cordilleran orogenic systems
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo469
– volume: 236
  year: 2023
  ident: 10.1016/j.precamres.2024.107418_b0195
  article-title: Temporal variations in the incompatible trace element systematics of Archean TTGs: Implications for crustal growth and tectonic processes in the early Earth
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2022.104274
– volume: 26
  start-page: 207
  year: 1975
  ident: 10.1016/j.precamres.2024.107418_b0200
  article-title: Approximation of terrestrial lead isotope evolution by a two-stage model
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(75)90088-6
– volume: 407
  start-page: 107407
  year: 2024
  ident: 10.1016/j.precamres.2024.107418_bib224
  article-title: On the origin of Archaean TTGs by migmatization of mantle plume-related metabasalts: Insights from the Lake Inari terrain, Arctic Fennoscandia
  publication-title: Precambr. Res.
  doi: 10.1016/j.precamres.2024.107407
– volume: 48
  start-page: 221
  issue: 3
  year: 2020
  ident: 10.1016/j.precamres.2024.107418_bib222
  article-title: Persistence of melt-bearing Archean lower crust for> 200 my—An example from the Lewisian Complex, northwest Scotland
  publication-title: Geology
  doi: 10.1130/G46834.1
– volume: 9
  start-page: eadd3761
  issue: 23
  year: 2023
  ident: 10.1016/j.precamres.2024.107418_bib221
  article-title: Episodic intraplate magmatism fed by a long-lived melt channel of distal plume origin
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add3761
– volume: 289
  start-page: 129 pp
  year: 1976
  ident: 10.1016/j.precamres.2024.107418_b0150
  article-title: The granulite complex and adjacent rocks in Lapland, northern Finland
  publication-title: Bull. Geol. Soc. Finl.
– volume: 330
  start-page: 1
  year: 2019
  ident: 10.1016/j.precamres.2024.107418_b0125
  article-title: A revised geodynamic model for the Lapland-Kola orogen
  publication-title: Precambr. Res.
  doi: 10.1016/j.precamres.2019.04.022
– volume: 78
  start-page: 71
  year: 2006
  ident: 10.1016/j.precamres.2024.107418_b0210
  article-title: Evolution of migmatitic granulite complexes: Implications from Lapland granulite belt, part I: Metamorphic geology
  publication-title: Bull. Geol. Soc. Finl.
  doi: 10.17741/bgsf/78.1.004
– ident: 10.1016/j.precamres.2024.107418_b0030
  doi: 10.1144/GSL.MEM.2006.032.01.35
– volume: 221
  year: 2021
  ident: 10.1016/j.precamres.2024.107418_b0105
  article-title: Crustal melting and suprasolidus phase equilibria: From first principles to the state-of-the-art
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2021.103778
– volume: 40
  start-page: 375
  issue: 4
  year: 2012
  ident: 10.1016/j.precamres.2024.107418_b0170
  article-title: Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust
  publication-title: Geology
  doi: 10.1130/G32729.1
– volume: 3
  start-page: 315
  year: 2020
  ident: 10.1016/j.precamres.2024.107418_b0015
  article-title: Subduction tectonics vs. plume tectonics—Discussion on driving forces for plate motion
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-019-9538-2
– volume: 40
  start-page: 311
  year: 2016
  ident: 10.1016/j.precamres.2024.107418_b0090
  article-title: Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology—Uncertainty propagation, age interpretation and data reporting
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/j.1751-908X.2016.00379.x
– volume: 44
  start-page: 443
  issue: 4
  year: 2021
  ident: 10.1016/j.precamres.2024.107418_bib226
  article-title: Characterization of multiple episodes of melt generation from lower crust during Archaean using amphibole composition
  publication-title: Episodes J. Int. Geosci.
  doi: 10.18814/epiiugs/2020/020096
– volume: 115
  start-page: 201
  year: 2023
  ident: 10.1016/j.precamres.2024.107418_b0135
  article-title: Late Neoarchean TTG and monzogranite in the northeastern North China Craton: Implications for partial melting of a thickened lower crust
  publication-title: Gondw. Res.
  doi: 10.1016/j.gr.2022.10.008
– volume: 2022
  start-page: 6956845
  issue: Special 8
  year: 2022
  ident: 10.1016/j.precamres.2024.107418_b0120
  article-title: Neodymium Isotope constraints on the origin of TTGs and High-K Granitoids in the Bundelkhand Craton, Central India: implications for Archaean crustal evolution
  publication-title: Lithosphere
  doi: 10.2113/2022/6956845
– volume: 618
  start-page: 531
  year: 2023
  ident: 10.1016/j.precamres.2024.107418_b0205
  article-title: Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism
  publication-title: Nature
  doi: 10.1038/s41586-023-06024-5
– volume: 644
  year: 2024
  ident: 10.1016/j.precamres.2024.107418_b0025
  article-title: Four billion years of secular compositional change in granitoids
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2023.121868
– volume: 11
  start-page: 5263
  issue: 1
  year: 2021
  ident: 10.1016/j.precamres.2024.107418_b0085
  article-title: Archean continental crust formed by magma hybridization and voluminous partial melting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84300-y
– volume: 30
  start-page: 319
  year: 2002
  ident: 10.1016/j.precamres.2024.107418_b0145
  article-title: Secular changes in TTG composition as markers of the progressive cooling of the Earth
  publication-title: Geology
  doi: 10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2
– volume: 449
  start-page: 123
  issue: 1
  year: 2017
  ident: 10.1016/j.precamres.2024.107418_b0110
  article-title: The diversification of granitoids and plate tectonic implications at the Archaean-Proterozoic boundary in the Bundelkhand Craton, Central India
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/SP449.8
– volume: 8
  start-page: 353
  issue: 9
  year: 2018
  ident: 10.1016/j.precamres.2024.107418_b0055
  article-title: Highlights on geochemical changes in Archaean Granitoids and their implications for early earth geodynamics
  publication-title: Geosciences
  doi: 10.3390/geosciences8090353
– volume: 212
  start-page: 158
  year: 2015
  ident: 10.1016/j.precamres.2024.107418_b0220
  article-title: Water-fluxed melting of the continental crust: a review
  publication-title: Lithos
  doi: 10.1016/j.lithos.2014.08.021
– volume: 174
  start-page: 155
  year: 2009
  ident: 10.1016/j.precamres.2024.107418_b0070
  article-title: Geochemical and numerical constraints on Neoarchean plate tectonics
  publication-title: Precambr. Res.
  doi: 10.1016/j.precamres.2009.07.008
– volume: 47
  start-page: 435
  year: 2019
  ident: 10.1016/j.precamres.2024.107418_b0005
  article-title: Spot the difference: zircon disparity tracks crustal evolution
  publication-title: Geology
  doi: 10.1130/G45840.1
– volume: 139
  start-page: 192
  year: 2017
  ident: 10.1016/j.precamres.2024.107418_b0010
  article-title: Rheological transitions in progressive melting of rock and their geological constraints from the Fuhu metatexite-diatexite profile in Guangdong Province, SE China
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2017.02.009
– volume: 81
  start-page: 7
  year: 2009
  ident: 10.1016/j.precamres.2024.107418_b0075
  article-title: The Paleoproterozoic Nattanen-type granites in northern Finland and vicinity – a postcollisional oxidized A-type suite
  publication-title: Bull. Geol. Soc. Finl.
  doi: 10.17741/bgsf/81.1.001
– ident: 10.1016/j.precamres.2024.107418_b0185
– volume: 148
  start-page: 312
  year: 2012
  ident: 10.1016/j.precamres.2024.107418_b0160
  article-title: Forty years of TTG research
  publication-title: Lithos
  doi: 10.1016/j.lithos.2012.06.010
– volume: 24
  start-page: 209
  year: 2009
  ident: 10.1016/j.precamres.2024.107418_b0165
  article-title: Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell
  publication-title: J. Anal. At. Spectrom
  doi: 10.1039/B805995K
– volume: 335
  start-page: 105436
  year: 2019
  ident: 10.1016/j.precamres.2024.107418_bib225
  article-title: Building the core of a Paleoarchean continent: Evidence from granitoids of Singhbhum Craton, eastern India
  publication-title: Precambr. Res.
  doi: 10.1016/j.precamres.2019.105436
– volume: 22
  issue: 5
  year: 2021
  ident: 10.1016/j.precamres.2024.107418_b0020
  article-title: Zircon and melt extraction from a long-lived and vertically extensive magma system underneath Ilopango Caldera (El Salvador)
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2020GC009507
– volume: 73
  start-page: 135
  year: 1983
  ident: 10.1016/j.precamres.2024.107418_b0035
  article-title: A chemical-mineralogical classification of common plutonic rocks and associations
  publication-title: Trans. R. Soc. Edinb. Earth Sci.
  doi: 10.1017/S0263593300010117
SSID ssj0001468
Score 2.4563541
Snippet •Long-term migmatization produced two types of TTGs between 2.9 and 2.6 Ga.•TTGs derived from sources related to a stationary plume.•Partial melting of TTGs...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107418
SubjectTerms Archaean
High-HREE TTG
Low-HREE TTG
Porphyritic granitoid
Stationary mantle plume
U–Pb geochronology
Title Prolonged parallel chronology of distinct TTG types in the Lake Inari terrain, Arctic Fennoscandia: Implications for a stationary plume-related source
URI https://dx.doi.org/10.1016/j.precamres.2024.107418
Volume 408
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6FREhcUFuKoC1oDj2yBK_tzZobQkDSFoTUIHGz1vtAgdSJknDg0p_B72UmdiIiVcqht7Wt0a521t98uzsPgO-uILNolBeFsU4kKilEEZQSZLwjGwepreV45-sb1b1Lftyn9w04X8TCsFtljf0Vps_Run7TrmezPR4M2r-ZzGdSafaC5KQxG9CSZO11E1pnvZ_dmyUgc3RRdZkQCRZYcfMaUyfmD21taa8ok2P2T-QCIP8yUu8Mz-UH2K4ZI55Vg_oIDV9-gs2reUXelx14vZ1Qq3zwDjmN93Doh2g54-38O44COv6NSzvDfv8K-ch1ioMSifjhL_PksVfSdhlperlYxBH1w1FTSKu3HE0tB72YU-y98ztHorlocFrd4ZvJC44Z4MQ8KoZGUV0HfIa7y4v-eVfUxRaEiXVnJnQRxUZ76ZIQZ7pjpE29ikOIyV4FamU28kZZrzNrlTYmZKn01hMiBBV5oom70CxHpd8DDJZ4lHNErZxOTEcXNo1U6kwivSSADPugFrOb2zoTORfEGOYLl7PHfKmWnNWSV2rZh5Ol4LhKxrFe5HShvnxlXeVkMtYJf_kf4a-wxU98Dhyl36A5mzz7AyIws-IQNo7_Rof1Mn0DInT0vw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyNBEC40Iu5FdF0x66sOHu2N8-r0eBNRE41hwQjehp5-SDROQpI9-Ef291qVmQQFwYO3Zpqim66er77urgfAkc3JLGrpRK6NFbGMc5F7KQUZ78BEPlTGcLzzbVe27uPrh-RhCc7nsTDsVllhf4npM7SuvjSq1WyM-v3GHZP5NJSKvSA5acwyrMRc1LoGK2ftm1Z3AcgcXVQ-JgSCBT64eY1oEP1CR1s6K4bxH_ZP5AIgnxmpd4bncgPWK8aIZ-WkNmHJFT9h9WpWkfd1C_7_HVOreHQWOY33YOAGaDjj7awfhx4t_8aFmWKvd4V85TrBfoFE_LCjnx22CzouIy0vF4s4pnE4agpp9xbDieGgF32K7Xd-50g0FzVOyjd8PX7FEQOcmEXF0CzK54BfcH950TtviarYgtCRak6FyoNIKxfa2EepaurQJE5G3kdkrzy1UhM4LY1TqTFSae3TJHTGESJ4GTiiidtQK4aF2wH0hniUtUStrIp1U-UmCWRidRy6kADS10HOVzczVSZyLogxyOYuZ0_ZQi0ZqyUr1VKHk4XgqEzG8bXI6Vx92Yd9lZHJ-Er493eED2Gt1bvtZJ1292YXfnAP3wkHyR7UpuN_bp_IzDQ_qDbrG-eP9qU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prolonged+parallel+chronology+of+distinct+TTG+types+in+the+Lake+Inari+terrain%2C+Arctic+Fennoscandia%3A+Implications+for+a+stationary+plume-related+source&rft.jtitle=Precambrian+research&rft.au=Joshi%2C+Kumar+Batuk&rft.au=Halla%2C+Jaana&rft.au=Kurhila%2C+Matti&rft.au=Heilimo%2C+Esa&rft.date=2024-07-15&rft.issn=0301-9268&rft.volume=408&rft.spage=107418&rft_id=info:doi/10.1016%2Fj.precamres.2024.107418&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precamres_2024_107418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9268&client=summon