Bayesian analysis with Python unleash the power and flexibility of the Bayesian framework

The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of t...

Full description

Saved in:
Bibliographic Details
Main Author Martin, Osvaldo
Format eBook Book
LanguageEnglish
Published Birmingham PACKT Publishing 2016
Packt Publishing
Packt Publishing, Limited
Packt Publishing Limited
Edition1st ed.
Subjects
Online AccessGet full text
ISBN1785889850
1785883801
9781785889851
9781785883804
DOI10.0000/9781785889851

Cover

Abstract The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.
AbstractList The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.
Author Martin, Osvaldo
Author_xml – sequence: 1
  fullname: Martin, Osvaldo
BackLink https://cir.nii.ac.jp/crid/1130282271778724864$$DView record in CiNii
BookMark eNpVkDtPwzAQx414iFI6MiJ1QAKGQvyKz2MblYeoRIcyR45rt4bglDhVlW-PqyAEN9zdX_rd8wwd-cobhC5wcpdEu5cCsAAOIIHjA3T2K5LDv-IE9WQKKeUM4BQNQniPxRiIpIL00OVEtSY45YfKq7INLgx3rlkP522zrvw5OraqDGbwE_vo7WG6yJ5Gs9fH52w8GykKgoiRUMxobK2UlnEqlkCWAmvQlqdcFspwY4lOCk00wykYbKMAQ22MStqC9tFt13enysbUS7Oqt21M8k9V6_zfoZG97thNXX1tTWhyU1TVhza-qVWZTycZE0xSyiN51ZHeuVy7vceYJgQIEViIuDmDlEXspsPcarMtShfWzq_yTe3i8Dafj7OXxf5jBHP6DXIqals
ContentType eBook
Book
DBID PASLL
RYH
DEWEY 519.5
DOI 10.0000/9781785889851
DatabaseName Packt Publishing
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISBN 1785889850
9781785889851
Edition 1st ed.
1
ExternalDocumentID 9781785889851
EBC4749335
BB23125742
PACKT0001215
GroupedDBID -VX
20A
38.
AABBV
AAFKH
AAKGN
AANYM
AAZEP
AAZGR
ABARN
ABCYV
ABIWA
ABMRC
ABQPQ
ABRSK
ABWNX
ACBYE
ACLGV
ADBND
ADVEM
AECLD
AEHEP
AEIUR
AERYV
AFOJC
AFQEX
AHWGJ
AIXPE
AJFER
ALMA_UNASSIGNED_HOLDINGS
ALUEM
APVFW
ATDNW
AZZ
BBABE
BSWCA
CZZ
DUGUG
E2F
EBSCA
GEOUK
J-X
L7C
MYL
OHILO
OODEK
PASLL
PYZUL
QD8
UE6
ECOWB
RYH
XI1
AVGCG
ID FETCH-LOGICAL-a38727-7a4ec1ff99f4537d82d71c8cf5659bae5ef2c0bc2c4168e1fc0b8e3ffc0a9fb3
ISBN 1785889850
1785883801
9781785889851
9781785883804
IngestDate Sat Oct 25 00:57:14 EDT 2025
Wed Oct 29 00:35:03 EDT 2025
Thu Jun 26 23:30:40 EDT 2025
Fri Aug 08 02:35:47 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA76.73.P98
LCCallNum_Ident QA76.73.P98
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a38727-7a4ec1ff99f4537d82d71c8cf5659bae5ef2c0bc2c4168e1fc0b8e3ffc0a9fb3
Notes Description based on online resource; title from cover (Safari, viewed December 15, 2016)
Includes bibliographical references and index
OCLC 968635488
PQID EBC4749335
PageCount 282
ParticipantIDs walterdegruyter_marc_9781785889851
proquest_ebookcentral_EBC4749335
nii_cinii_1130282271778724864
igpublishing_primary_PACKT0001215
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2016.
2016
[2016]
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
– name: Birmingham, UK
PublicationYear 2016
Publisher PACKT Publishing
Packt Publishing
Packt Publishing, Limited
Packt Publishing Limited
Publisher_xml – name: PACKT Publishing
– name: Packt Publishing
– name: Packt Publishing, Limited
– name: Packt Publishing Limited
RestrictionsOnAccess restricted access
SSID ssj0001829372
Score 1.9954078
Snippet The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for...
SourceID walterdegruyter
proquest
nii
igpublishing
SourceType Publisher
SubjectTerms Bayesian statistical decision theory
Big Data and Business Intelligence
COM018000 COMPUTERS / Data Processing
COMPUTERS / Data Modeling & Design
COMPUTERS / Mathematical & Statistical Software
Natural language processing (Computer science)
Python (Computer program language)
SubjectTermsDisplay Big Data and Business Intelligence
Subtitle unleash the power and flexibility of the Bayesian framework
TableOfContents Bayesian analysis with Python : unleash the power and flexibility of the Bayesian framework -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Thinking Probabilistically - A Bayesian Inference Primer -- Chapter 2: Programming Probabilistically – A PyMC3 Primer -- Chapter 3: Juggling with Multi-Parametric and Hierarchical Models -- Chapter 4: Understanding and Predicting Data with Linear Regression Models -- Chapter 5: Classifying Outcomes with Logistic Regression -- Chapter 6: Model Comparison -- Chapter 7: Mixture Models -- Chapter 8: Gaussian Processes -- Index.
Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Thinking Probabilistically - A Bayesian Inference Primer -- Statistics as a form of modeling -- Exploratory data analysis -- Inferential statistics -- Probabilities and uncertainty -- Probability distributions -- Bayes' theorem and statistical inference -- Single parameter inference -- The coin-flipping problem -- The general model -- Choosing the likelihood -- Choosing the prior -- Getting the posterior -- Computing and plotting the posterior -- Influence of the prior and how to choose one -- Communicating a Bayesian analysis -- Model notation and visualization -- Summarizing the posterior -- Highest posterior density -- Posterior predictive checks -- Installing the necessary Python packages -- Summary -- Exercises -- Chapter 2: Programming Probabilistically - A PyMC3 Primer -- Probabilistic programming -- Inference engines -- Non-Markovian methods -- Markovian methods -- PyMC3 introduction -- Coin-flipping, the computational approach -- Model specification -- Pushing the inference button -- Diagnosing the sampling process -- Summarizing the posterior -- Posterior-based decisions -- ROPE -- Loss functions -- Summary -- Keep reading -- Exercises -- Chapter 3: Juggling with Multi-Parametric and Hierarchical Models -- Nuisance parameters and marginalized distributions -- Gaussians, Gaussians, Gaussians everywhere -- Gaussian inferences -- Robust inferences -- Student's t-distribution -- Comparing groups -- The tips dataset -- Cohen's d -- Probability of superiority -- Hierarchical models -- Shrinkage -- Summary -- Keep reading -- Exercises -- Chapter 4: Understanding and Predicting Data with Linear Regression Models -- Simple linear regression -- The machine learning connection
The core of linear regression models -- Linear models and high autocorrelation -- Modifying the data before running -- Changing the sampling method -- Interpreting and visualizing the posterior -- Pearson correlation coefficient -- Pearson coefficient from a multivariate Gaussian -- Robust linear regression -- Hierarchical linear regression -- Correlation, causation, and the messiness of life -- Polynomial regression -- Interpreting the parameters of a polynomial regression -- Polynomial regression - the ultimate model? -- Multiple linear regression -- Confounding variables and redundant variables -- Multicollinearity or when the correlation is too high -- Masking effect variables -- Adding interactions -- The GLM module -- Summary -- Keep reading -- Exercises -- Chapter 5: Classifying Outcomes with Logistic Regression -- Logistic regression -- The logistic model -- The iris dataset -- The logistic model applied to the iris dataset -- Making predictions -- Multiple logistic regression -- The boundary decision -- Implementing the model -- Dealing with correlated variables -- Dealing with unbalanced classes -- How do we solve this problem? -- Interpreting the coefficients of a logistic regression -- Generalized linear models -- Softmax regression or multinomial logistic regression -- Discriminative and generative models -- Summary -- Keep reading -- Exercises -- Chapter 6: Model Comparison -- Occam's razor - simplicity and accuracy -- Too many parameters leads to overfitting -- Too few parameters leads to underfitting -- The balance between simplicity and accuracy -- Regularizing priors -- Regularizing priors and hierarchical models -- Predictive accuracy measures -- Cross-validation -- Information criteria -- The log-likelihood and the deviance -- Akaike information criterion -- Deviance information criterion
Widely available information criterion -- Pareto smoothed importance sampling leave-one-out cross-validation -- Bayesian information criterion -- Computing information criteria with PyMC3 -- A note on the reliability of WAIC and LOO computations -- Interpreting and using information criteria measures -- Posterior predictive checks -- Bayes factors -- Analogy with information criteria -- Computing Bayes factors -- Common problems computing Bayes factors -- Bayes factors and information criteria -- Summary -- Keep reading -- Exercises -- Chapter 7: Mixture Models -- Mixture models -- How to build mixture models -- Marginalized Gaussian mixture model -- Mixture models and count data -- The Poisson distribution -- The Zero-Inflated Poisson model -- Poisson regression and ZIP regression -- Robust logistic regression -- Model-based clustering -- Fixed component clustering -- Non-fixed component clustering -- Continuous mixtures -- Beta-binomial and negative binomial -- The Student's t-distribution -- Summary -- Keep reading -- Exercises -- Chapter 8: Gaussian Processes -- Non-parametric statistics -- Kernel-based models -- The Gaussian kernel -- Kernelized linear regression -- Overfitting and priors -- Gaussian processes -- Building the covariance matrix -- Sampling from a GP prior -- Using a parameterized kernel -- Making predictions from a GP -- Implementing a GP using PyMC3 -- Posterior predictive checks -- Periodic kernel -- Summary -- Keep reading -- Exercises -- Index
Bayesian Analysis with Python: Unleash the power and flexibility of the Bayesian framework
Title Bayesian analysis with Python
URI http://portal.igpublish.com/iglibrary/search/PACKT0001215.html
https://cir.nii.ac.jp/crid/1130282271778724864
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4749335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-6vfjitzh1UsXXatOka_KoYzKUyR422FtJ02QMYY7RIfOv95J-bC0-qC9pE9KU3LV3v0vuLgjdaSw6OoypS7H0XJooz401067yNWGKeUFiY6sGb53-mL5MgsnmkFQbXZLG9_Lrx7iS_3AV2oCvJkr2D5wtB4UGuAf-QgkchrIGfstqvv0q1spGP5Y5Rex66nBtMgFsG_K4bsgPhXxPtxefqhFOmcGHQxYwxlmWpLUu_ozyyTweqv2qaaZr4r90yqs8touaPgU01UBN0I-9wWbdigFACP0sXal54UPlOZPxdbooJwEaez6bVdD7_qf1A0jUdLlap8W-s1Xno0PUVCbG4wjtqPkxOihOtnByQXeC2gWBnYLAjiGwkxH4FI2fe6Nu380PknAFYQDQ3FBQJbHWnGsakDBhfhJiyaQGOMtjoQKlfenF0peAT5nCGipMEQ1XwXVMzlBj_jFX58jhCZjxAU-45ooCtGTwBwiDqSShHpW4hW625x8tspwh0fCx-zqyy344aKE2ECWSM1Nis3MMKA3MapCdPmUd2kJOQa7IbpnnfrpR76lLQ8oJgSFua2SMTOqTqMKLi990ukR7m4_xCjXS5Uq1AWel8XXO-m8FFSPD
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Bayesian+Analysis+with+Python&rft.date=2016-01-01&rft.pub=Packt+Publishing+Limited&rft.isbn=9781785889851&rft_id=info:doi/10.0000%2F9781785889851&rft.externalDBID=n%2Fa&rft.externalDocID=9781785889851
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FPACKT0001215_null_0_320.png