Prediction of Soil Composition from CPT Data Using General Regression Neural Network

Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification methods. In this study, a general regression neural network (GRNN) was developed for predicting soil composition from CPT data. Measured values of c...

Full description

Saved in:
Bibliographic Details
Published inJournal of computing in civil engineering Vol. 20; no. 4; pp. 281 - 289
Main Authors Kurup, Pradeep U, Griffin, Erin P
Format Journal Article
LanguageEnglish
Published Reston, VA American Society of Civil Engineers 01.07.2006
Subjects
Online AccessGet full text
ISSN0887-3801
1943-5487
DOI10.1061/(ASCE)0887-3801(2006)20:4(281)

Cover

Abstract Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification methods. In this study, a general regression neural network (GRNN) was developed for predicting soil composition from CPT data. Measured values of cone resistance and sleeve friction obtained from CPT soundings, together with grain-size distribution results of soil samples retrieved from adjacent standard penetration test boreholes, were used to train and test the network. The trained GRNN model was tested by presenting it with new, previously unseen CPT data, and the model predictions were compared with the reference particle-size distribution and the results of two existing CPT soil classification methods. The profiles of soil composition estimated by the GRNN generally compare very well with the actual grain-size distribution profiles, and overall the neural network had an 86% success rate at classifying soils as coarse grained or fine grained.
AbstractList Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification methods. In this study, a general regression neural network (GRNN) was developed for predicting soil composition from CPT data. Measured values of cone resistance and sleeve friction obtained from CPT soundings, together with grain-size distribution results of soil samples retrieved from adjacent standard penetration test boreholes, were used to train and test the network. The trained GRNN model was tested by presenting it with new, previously unseen CPT data, and the model predictions were compared with the reference particle-size distribution and the results of two existing CPT soil classification methods. The profiles of soil composition estimated by the GRNN generally compare very well with the actual grain-size distribution profiles, and overall the neural network had an 86% success rate at classifying soils as coarse grained or fine grained.
Soil type is typically inferred from the infromation collected during a cone penetratiion test (CPT) using one of the many available soil classification methods. In this study, a general regressiion neural network (GRNN) was developed for prediction soil composition from CPT data. Measured values of cone resistance and sleeve friction obtained from CPT soundings, together with grain-size distribution results of sil amples retrieved from adjacent standad penetration test boreholes, were used to traing and test the network. The trained GRNN model was tested by presenting it with new, previously unseeen CPT soil classification methods. The profiles of soil composition estimated by the GRNN generally compare very well with the actual grain-size distribution profiles, and overall the neural network had an 86% success rate at classifying soils as coarse grained or fine grained.
Author Griffin, Erin P
Kurup, Pradeep U
Author_xml – sequence: 1
  givenname: Pradeep U
  surname: Kurup
  fullname: Kurup, Pradeep U
  email: pradeep_kurup@uml.edu
  organization: Univ. of Massachusetts Lowell , Dept. of Civil and Environmental Engineering, , 1 University Ave., Lowell, MA 01854. E-mail
– sequence: 2
  givenname: Erin P
  surname: Griffin
  fullname: Griffin, Erin P
  email: erin_griffin@student.uml.edu
  organization: Univ. of Massachusetts Lowell , Dept. of Civil and Environmental Engineering, , 1 University Ave., Lowell, MA 01854. E-mail
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17864550$$DView record in Pascal Francis
BookMark eNp9kEFPwjAUxxuDiYB-h10kcJi2W9d1Jh7IRDQhSATOTdd2ZLit2G4xfns7IXjz8pq8_P7vvf4GoFfrWgEwQvAOQYLux9N1OptASmM_pBCNAwjJJIAPeBxQNLkAfZTg0I8wjXugf8auwMDaPYQwIDHug83KKFmIptC1p3NvrYvSS3V10Lb47eVGV1662nhPvOHe1hb1zpurWhleeu9qZ5S1HbZUbddZquZLm49rcJnz0qqb0zsE2-fZJn3xF2_z13S68HlISePnUiCYxZk7PEeI4owkoSBEEqloLKWIEHVcoCTJEsmhCMIMSklQllEeZSIMh2B0nHsw-rNVtmFVYYUqS14r3VrmPOAwwrEDb08gt4KXueG1KCw7mKLi5puhmBIcRdBxj0dOGG2tUfkfAlknnbFOOutsss4m66S7wnC3zOWTY96tUWyvW1O7_5_D_2Z_ADwliKc
CODEN JCCEE5
Cites_doi 10.1109/72.97934
10.1061/(ASCE)1090-0241(1999)125:3(179)
10.1061/(ASCE)1090-0241(2002)128:7(569)
10.1520/STP36328S
10.1139/t90-014
10.1080/02630259908970261
10.3141/1709-07
10.1680/geot.51.9.799.41033
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1061/(ASCE)0887-3801(2006)20:4(281)
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1943-5487
EndPage 289
ExternalDocumentID 17864550
10_1061__ASCE_0887_3801_2006_20_4_281
10_1061_ASCE_0887_3801_2006_20_4_281
GroupedDBID -0O
02
08R
0O
0R
29K
4.4
4S
5GY
AAIKC
ABBOT
ABDBF
ABEFU
ABFLS
ABPTK
ACDCL
ACIWK
ACKIV
ACNET
ACVYA
ADZKS
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARKUK
CS3
D-I
DU5
E70
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
GQVBS
HZ
I-F
L7B
O9-
O~X
P2P
RAC
RNS
RXW
TAE
TAF
TN5
TUS
TWZ
VH1
X
ZY4
-~X
.4S
.DC
0R~
2FS
AAELQ
AAMNW
AAYXX
ACGFO
ACUHS
ADNWM
ADVLX
AI.
AIRRX
ALNAR
CITATION
HZ~
MK~
ML~
WHG
XSW
~02
IQODW
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-a386t-fdc10b7b200f1184b693c66d6de87ddc5183862ed6b9da0c23b0dd61bb8a5bc33
ISSN 0887-3801
IngestDate Mon Jul 21 11:17:24 EDT 2025
Mon Jul 21 09:11:52 EDT 2025
Wed Oct 01 03:44:39 EDT 2025
Tue Jan 05 18:54:35 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CE Database subject headings: Neural networks
Cone penetration tests
Data analysis
Penetration test
Geotechnical engineering
Regression analysis
Compaction
Neural network
Forecast model
Soil classification
Recommendation
Soil test
Soil compaction
Classification
Predictions
Artificial intelligence
Geotechnics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a386t-fdc10b7b200f1184b693c66d6de87ddc5183862ed6b9da0c23b0dd61bb8a5bc33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28143547
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_28143547
pascalfrancis_primary_17864550
crossref_primary_10_1061__ASCE_0887_3801_2006_20_4_281
asce_journals_10_1061_ASCE_0887_3801_2006_20_4_281
ProviderPackageCode GQVBS
ABBOT
RAC
ACNET
ARKUK
ADZKS
-0O
E70
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Reston, VA
PublicationPlace_xml – name: Reston, VA
PublicationTitle Journal of computing in civil engineering
PublicationYear 2006
Publisher American Society of Civil Engineers
Publisher_xml – name: American Society of Civil Engineers
References Goh, A. T. C. 1999; 16
Kurup, P. U.; Dudani, N. K. 2002; 128
Juang, C. H.; Jiang, T.; Christopher, R. A. 2001; 51
Robertson, P. K. 1990; 27
Specht, D. F. 1991; 2
Penumadu, D.; Zhao, R. 1999; 24
Zhang, Z.; Tumay, M. T. 1999; 125
Penumadu D. (e_1_3_3_11_1) 1999; 24
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_15_1
e_1_3_3_3_1
e_1_3_3_10_1
e_1_3_3_2_1
Tumay M. T. (e_1_3_3_16_1) 2003
e_1_3_3_5_1
e_1_3_3_12_1
e_1_3_3_4_1
References_xml – volume: 2
  start-page: 568
  issn: 1045-9227
  year: 1991
  end-page: 576
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 125
  start-page: 179
  issn: 1090-0241
  year: 1999
  end-page: 186
  article-title: Statistical to fuzzy approach toward CPT soil classification
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(1999)125:3(179)
– volume: 51
  start-page: 799
  issn: 0016-8505
  year: 2001
  end-page: 809
  article-title: Three-dimensional site characterization: Neural network approach
  publication-title: Geotechnique
– volume: 27
  start-page: 151
  issn: 0008-3674
  year: 1990
  end-page: 158
  article-title: Soil classification using the cone penetration test
  publication-title: Can. Geotech. J.
– volume: 16
  start-page: 175
  issn: 1028-6628
  year: 1999
  end-page: 195
  article-title: Soil laboratory data interpretation using generalized regression neural network
  publication-title: Civ. Eng. Environ. Syst.
– volume: 128
  start-page: 569
  issn: 1090-0241
  year: 2002
  end-page: 579
  article-title: Neural networks for profiling stress history of clays from PCPT data
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2002)128:7(569)
– volume: 24
  start-page: 207
  issn: 1065-5131
  year: 1999
  end-page: 230
  article-title: Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
  publication-title: J. Enhanced Heat Transfer
– ident: e_1_3_3_5_1
– ident: e_1_3_3_2_1
– ident: e_1_3_3_8_1
  doi: 10.1061/(ASCE)1090-0241(2002)128:7(569)
– ident: e_1_3_3_15_1
  doi: 10.1109/72.97934
– volume: 24
  start-page: 207
  issue: 3
  year: 1999
  ident: e_1_3_3_11_1
  article-title: Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
  publication-title: J. Enhanced Heat Transfer
– ident: e_1_3_3_9_1
– ident: e_1_3_3_14_1
  doi: 10.1520/STP36328S
– volume-title: PClass-CPT program, version 3.0
  year: 2003
  ident: e_1_3_3_16_1
– ident: e_1_3_3_18_1
  doi: 10.1061/(ASCE)1090-0241(1999)125:3(179)
– ident: e_1_3_3_12_1
  doi: 10.1139/t90-014
– ident: e_1_3_3_3_1
  doi: 10.1080/02630259908970261
– ident: e_1_3_3_4_1
  doi: 10.3141/1709-07
– ident: e_1_3_3_10_1
– ident: e_1_3_3_7_1
– ident: e_1_3_3_17_1
– ident: e_1_3_3_13_1
– ident: e_1_3_3_6_1
  doi: 10.1680/geot.51.9.799.41033
SSID ssj0002674
Score 2.0622091
Snippet Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification...
Soil type is typically inferred from the infromation collected during a cone penetratiion test (CPT) using one of the many available soil classification...
SourceID proquest
pascalfrancis
crossref
asce
SourceType Aggregation Database
Index Database
Publisher
StartPage 281
SubjectTerms Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Geotechnics
Soil investigations. Testing
Structural analysis. Stresses
TECHNICAL PAPERS
Title Prediction of Soil Composition from CPT Data Using General Regression Neural Network
URI http://ascelibrary.org/doi/abs/10.1061/(ASCE)0887-3801(2006)20:4(281)
https://www.proquest.com/docview/28143547
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1943-5487
  dateEnd: 20140331
  omitProxy: true
  ssIdentifier: ssj0002674
  issn: 0887-3801
  databaseCode: ABDBF
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTkIgNGAw0QHDDwy1qlLy4ToOb13ZNCExVVor7c2yYwdNmtKqHzzwd_AHc5c4TbYBGnuJWkc5J_n9cne2z3eEfDBxopky2rNKGY_FnHtKJ9aLDI-DVOuYZ7h3-Ns5P5uxr5fDy1brVyNqabPWg_TnH_eVPARVaANccZfsfyC7FQoN8BvwhSMgDMd7YTxZ4jJL5fNdzK-ui-_bxWGVW0fGkylAu1b9MjjApZmG1_q9jIDN-5ifA1rOy4Dwv3iraVH9wW2ASa9-QFe2TmXYWBDaFAXvJktlrF30Z4M6wAdnh3Kne0HzDm5POMTVhENDLwnXZEu9mTCMsXC20ynW0G8QiDW1pAgaBjcsawjd0eXgaQAA4GePLsYnR2Gy7Rea8L6OsNAWAMLwvwiqmZMbKbVvmbptAGKx9M4DKVG2RMkSJWNRTg4HyWSI-_l3QrAVfpvsjI6_HJ9uLXzIy-ze1Q09Ih_dDX_qosDe9kwXBfZC_zPrgsAe2H21woFQwwd6uoAmdZ2VdVTuuASFnzN9TnYd5HRUsu0Fadl8jzxzgxXqTMFqjzxpZLJ8SaY1Fek8o0hF2qAiRSpSoCJFKtKCitRRkdZUpCUVqaPiKzI7PZmOzzxXsMNTkeBrLzNp4OtYw0NnMHBlmidRyrnhxorYmHQI9gNG0NZwnRjlp2GkfWN4oLVQQ51G0T5p5_PcviY0Fok2LBCJ4eAhMwbnlRCB5UGgRcbDDgnxTUr3Na5khei_AO0QXr13uSiTuch7MaFDDm-gVF8dC455ATrkfQWbBP2Mi24qt_PNCq-GEQmLDx7a9xvyuP4K35L2ermx78ARXutDx8vfyNmlyw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Soil+Composition+from+CPT+Data+Using+General+Regression+Neural+Network&rft.jtitle=Journal+of+computing+in+civil+engineering&rft.au=Kurup%2C+Pradeep+U.&rft.au=Griffin%2C+Erin+P.&rft.date=2006-07-01&rft.issn=0887-3801&rft.eissn=1943-5487&rft.volume=20&rft.issue=4&rft.spage=281&rft.epage=289&rft_id=info:doi/10.1061%2F%28ASCE%290887-3801%282006%2920%3A4%28281%29&rft.externalDBID=n%2Fa&rft.externalDocID=10_1061__ASCE_0887_3801_2006_20_4_281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3801&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3801&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3801&client=summon