Prediction of Soil Composition from CPT Data Using General Regression Neural Network
Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification methods. In this study, a general regression neural network (GRNN) was developed for predicting soil composition from CPT data. Measured values of c...
Saved in:
| Published in | Journal of computing in civil engineering Vol. 20; no. 4; pp. 281 - 289 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Reston, VA
American Society of Civil Engineers
01.07.2006
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0887-3801 1943-5487 |
| DOI | 10.1061/(ASCE)0887-3801(2006)20:4(281) |
Cover
| Abstract | Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification methods. In this study, a general regression neural network (GRNN) was developed for predicting soil composition from CPT data. Measured values of cone resistance and sleeve friction obtained from CPT soundings, together with grain-size distribution results of soil samples retrieved from adjacent standard penetration test boreholes, were used to train and test the network. The trained GRNN model was tested by presenting it with new, previously unseen CPT data, and the model predictions were compared with the reference particle-size distribution and the results of two existing CPT soil classification methods. The profiles of soil composition estimated by the GRNN generally compare very well with the actual grain-size distribution profiles, and overall the neural network had an 86% success rate at classifying soils as coarse grained or fine grained. |
|---|---|
| AbstractList | Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification methods. In this study, a general regression neural network (GRNN) was developed for predicting soil composition from CPT data. Measured values of cone resistance and sleeve friction obtained from CPT soundings, together with grain-size distribution results of soil samples retrieved from adjacent standard penetration test boreholes, were used to train and test the network. The trained GRNN model was tested by presenting it with new, previously unseen CPT data, and the model predictions were compared with the reference particle-size distribution and the results of two existing CPT soil classification methods. The profiles of soil composition estimated by the GRNN generally compare very well with the actual grain-size distribution profiles, and overall the neural network had an 86% success rate at classifying soils as coarse grained or fine grained. Soil type is typically inferred from the infromation collected during a cone penetratiion test (CPT) using one of the many available soil classification methods. In this study, a general regressiion neural network (GRNN) was developed for prediction soil composition from CPT data. Measured values of cone resistance and sleeve friction obtained from CPT soundings, together with grain-size distribution results of sil amples retrieved from adjacent standad penetration test boreholes, were used to traing and test the network. The trained GRNN model was tested by presenting it with new, previously unseeen CPT soil classification methods. The profiles of soil composition estimated by the GRNN generally compare very well with the actual grain-size distribution profiles, and overall the neural network had an 86% success rate at classifying soils as coarse grained or fine grained. |
| Author | Griffin, Erin P Kurup, Pradeep U |
| Author_xml | – sequence: 1 givenname: Pradeep U surname: Kurup fullname: Kurup, Pradeep U email: pradeep_kurup@uml.edu organization: Univ. of Massachusetts Lowell , Dept. of Civil and Environmental Engineering, , 1 University Ave., Lowell, MA 01854. E-mail – sequence: 2 givenname: Erin P surname: Griffin fullname: Griffin, Erin P email: erin_griffin@student.uml.edu organization: Univ. of Massachusetts Lowell , Dept. of Civil and Environmental Engineering, , 1 University Ave., Lowell, MA 01854. E-mail |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17864550$$DView record in Pascal Francis |
| BookMark | eNp9kEFPwjAUxxuDiYB-h10kcJi2W9d1Jh7IRDQhSATOTdd2ZLit2G4xfns7IXjz8pq8_P7vvf4GoFfrWgEwQvAOQYLux9N1OptASmM_pBCNAwjJJIAPeBxQNLkAfZTg0I8wjXugf8auwMDaPYQwIDHug83KKFmIptC1p3NvrYvSS3V10Lb47eVGV1662nhPvOHe1hb1zpurWhleeu9qZ5S1HbZUbddZquZLm49rcJnz0qqb0zsE2-fZJn3xF2_z13S68HlISePnUiCYxZk7PEeI4owkoSBEEqloLKWIEHVcoCTJEsmhCMIMSklQllEeZSIMh2B0nHsw-rNVtmFVYYUqS14r3VrmPOAwwrEDb08gt4KXueG1KCw7mKLi5puhmBIcRdBxj0dOGG2tUfkfAlknnbFOOutsss4m66S7wnC3zOWTY96tUWyvW1O7_5_D_2Z_ADwliKc |
| CODEN | JCCEE5 |
| Cites_doi | 10.1109/72.97934 10.1061/(ASCE)1090-0241(1999)125:3(179) 10.1061/(ASCE)1090-0241(2002)128:7(569) 10.1520/STP36328S 10.1139/t90-014 10.1080/02630259908970261 10.3141/1709-07 10.1680/geot.51.9.799.41033 |
| ContentType | Journal Article |
| Copyright | 2006 INIST-CNRS |
| Copyright_xml | – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1061/(ASCE)0887-3801(2006)20:4(281) |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1943-5487 |
| EndPage | 289 |
| ExternalDocumentID | 17864550 10_1061__ASCE_0887_3801_2006_20_4_281 10_1061_ASCE_0887_3801_2006_20_4_281 |
| GroupedDBID | -0O 02 08R 0O 0R 29K 4.4 4S 5GY AAIKC ABBOT ABDBF ABEFU ABFLS ABPTK ACDCL ACIWK ACKIV ACNET ACVYA ADZKS AENEX AFDAS ALMA_UNASSIGNED_HOLDINGS ARCSS ARKUK CS3 D-I DU5 E70 EAD EAP EBS EDO EJD EMK EST ESX GQVBS HZ I-F L7B O9- O~X P2P RAC RNS RXW TAE TAF TN5 TUS TWZ VH1 X ZY4 -~X .4S .DC 0R~ 2FS AAELQ AAMNW AAYXX ACGFO ACUHS ADNWM ADVLX AI. AIRRX ALNAR CITATION HZ~ MK~ ML~ WHG XSW ~02 IQODW 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-a386t-fdc10b7b200f1184b693c66d6de87ddc5183862ed6b9da0c23b0dd61bb8a5bc33 |
| ISSN | 0887-3801 |
| IngestDate | Mon Jul 21 11:17:24 EDT 2025 Mon Jul 21 09:11:52 EDT 2025 Wed Oct 01 03:44:39 EDT 2025 Tue Jan 05 18:54:35 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | CE Database subject headings: Neural networks Cone penetration tests Data analysis Penetration test Geotechnical engineering Regression analysis Compaction Neural network Forecast model Soil classification Recommendation Soil test Soil compaction Classification Predictions Artificial intelligence Geotechnics |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a386t-fdc10b7b200f1184b693c66d6de87ddc5183862ed6b9da0c23b0dd61bb8a5bc33 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 28143547 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_28143547 pascalfrancis_primary_17864550 crossref_primary_10_1061__ASCE_0887_3801_2006_20_4_281 asce_journals_10_1061_ASCE_0887_3801_2006_20_4_281 |
| ProviderPackageCode | GQVBS ABBOT RAC ACNET ARKUK ADZKS -0O E70 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-07-01 |
| PublicationDateYYYYMMDD | 2006-07-01 |
| PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Reston, VA |
| PublicationPlace_xml | – name: Reston, VA |
| PublicationTitle | Journal of computing in civil engineering |
| PublicationYear | 2006 |
| Publisher | American Society of Civil Engineers |
| Publisher_xml | – name: American Society of Civil Engineers |
| References | Goh, A. T. C. 1999; 16 Kurup, P. U.; Dudani, N. K. 2002; 128 Juang, C. H.; Jiang, T.; Christopher, R. A. 2001; 51 Robertson, P. K. 1990; 27 Specht, D. F. 1991; 2 Penumadu, D.; Zhao, R. 1999; 24 Zhang, Z.; Tumay, M. T. 1999; 125 Penumadu D. (e_1_3_3_11_1) 1999; 24 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_15_1 e_1_3_3_3_1 e_1_3_3_10_1 e_1_3_3_2_1 Tumay M. T. (e_1_3_3_16_1) 2003 e_1_3_3_5_1 e_1_3_3_12_1 e_1_3_3_4_1 |
| References_xml | – volume: 2 start-page: 568 issn: 1045-9227 year: 1991 end-page: 576 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 125 start-page: 179 issn: 1090-0241 year: 1999 end-page: 186 article-title: Statistical to fuzzy approach toward CPT soil classification publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(1999)125:3(179) – volume: 51 start-page: 799 issn: 0016-8505 year: 2001 end-page: 809 article-title: Three-dimensional site characterization: Neural network approach publication-title: Geotechnique – volume: 27 start-page: 151 issn: 0008-3674 year: 1990 end-page: 158 article-title: Soil classification using the cone penetration test publication-title: Can. Geotech. J. – volume: 16 start-page: 175 issn: 1028-6628 year: 1999 end-page: 195 article-title: Soil laboratory data interpretation using generalized regression neural network publication-title: Civ. Eng. Environ. Syst. – volume: 128 start-page: 569 issn: 1090-0241 year: 2002 end-page: 579 article-title: Neural networks for profiling stress history of clays from PCPT data publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2002)128:7(569) – volume: 24 start-page: 207 issn: 1065-5131 year: 1999 end-page: 230 article-title: Triaxial compression behavior of sand and gravel using artificial neural networks (ANN) publication-title: J. Enhanced Heat Transfer – ident: e_1_3_3_5_1 – ident: e_1_3_3_2_1 – ident: e_1_3_3_8_1 doi: 10.1061/(ASCE)1090-0241(2002)128:7(569) – ident: e_1_3_3_15_1 doi: 10.1109/72.97934 – volume: 24 start-page: 207 issue: 3 year: 1999 ident: e_1_3_3_11_1 article-title: Triaxial compression behavior of sand and gravel using artificial neural networks (ANN) publication-title: J. Enhanced Heat Transfer – ident: e_1_3_3_9_1 – ident: e_1_3_3_14_1 doi: 10.1520/STP36328S – volume-title: PClass-CPT program, version 3.0 year: 2003 ident: e_1_3_3_16_1 – ident: e_1_3_3_18_1 doi: 10.1061/(ASCE)1090-0241(1999)125:3(179) – ident: e_1_3_3_12_1 doi: 10.1139/t90-014 – ident: e_1_3_3_3_1 doi: 10.1080/02630259908970261 – ident: e_1_3_3_4_1 doi: 10.3141/1709-07 – ident: e_1_3_3_10_1 – ident: e_1_3_3_7_1 – ident: e_1_3_3_17_1 – ident: e_1_3_3_13_1 – ident: e_1_3_3_6_1 doi: 10.1680/geot.51.9.799.41033 |
| SSID | ssj0002674 |
| Score | 2.0622091 |
| Snippet | Soil type is typically inferred from the information collected during a cone penetration test (CPT) using one of the many available soil classification... Soil type is typically inferred from the infromation collected during a cone penetratiion test (CPT) using one of the many available soil classification... |
| SourceID | proquest pascalfrancis crossref asce |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 281 |
| SubjectTerms | Applied sciences Buildings. Public works Computation methods. Tables. Charts Exact sciences and technology Geotechnics Soil investigations. Testing Structural analysis. Stresses TECHNICAL PAPERS |
| Title | Prediction of Soil Composition from CPT Data Using General Regression Neural Network |
| URI | http://ascelibrary.org/doi/abs/10.1061/(ASCE)0887-3801(2006)20:4(281) https://www.proquest.com/docview/28143547 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1943-5487 dateEnd: 20140331 omitProxy: true ssIdentifier: ssj0002674 issn: 0887-3801 databaseCode: ABDBF dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTkIgNGAw0QHDDwy1qlLy4ToOb13ZNCExVVor7c2yYwdNmtKqHzzwd_AHc5c4TbYBGnuJWkc5J_n9cne2z3eEfDBxopky2rNKGY_FnHtKJ9aLDI-DVOuYZ7h3-Ns5P5uxr5fDy1brVyNqabPWg_TnH_eVPARVaANccZfsfyC7FQoN8BvwhSMgDMd7YTxZ4jJL5fNdzK-ui-_bxWGVW0fGkylAu1b9MjjApZmG1_q9jIDN-5ifA1rOy4Dwv3iraVH9wW2ASa9-QFe2TmXYWBDaFAXvJktlrF30Z4M6wAdnh3Kne0HzDm5POMTVhENDLwnXZEu9mTCMsXC20ynW0G8QiDW1pAgaBjcsawjd0eXgaQAA4GePLsYnR2Gy7Rea8L6OsNAWAMLwvwiqmZMbKbVvmbptAGKx9M4DKVG2RMkSJWNRTg4HyWSI-_l3QrAVfpvsjI6_HJ9uLXzIy-ze1Q09Ih_dDX_qosDe9kwXBfZC_zPrgsAe2H21woFQwwd6uoAmdZ2VdVTuuASFnzN9TnYd5HRUsu0Fadl8jzxzgxXqTMFqjzxpZLJ8SaY1Fek8o0hF2qAiRSpSoCJFKtKCitRRkdZUpCUVqaPiKzI7PZmOzzxXsMNTkeBrLzNp4OtYw0NnMHBlmidRyrnhxorYmHQI9gNG0NZwnRjlp2GkfWN4oLVQQ51G0T5p5_PcviY0Fok2LBCJ4eAhMwbnlRCB5UGgRcbDDgnxTUr3Na5khei_AO0QXr13uSiTuch7MaFDDm-gVF8dC455ATrkfQWbBP2Mi24qt_PNCq-GEQmLDx7a9xvyuP4K35L2ermx78ARXutDx8vfyNmlyw |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Soil+Composition+from+CPT+Data+Using+General+Regression+Neural+Network&rft.jtitle=Journal+of+computing+in+civil+engineering&rft.au=Kurup%2C+Pradeep+U.&rft.au=Griffin%2C+Erin+P.&rft.date=2006-07-01&rft.issn=0887-3801&rft.eissn=1943-5487&rft.volume=20&rft.issue=4&rft.spage=281&rft.epage=289&rft_id=info:doi/10.1061%2F%28ASCE%290887-3801%282006%2920%3A4%28281%29&rft.externalDBID=n%2Fa&rft.externalDocID=10_1061__ASCE_0887_3801_2006_20_4_281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3801&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3801&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3801&client=summon |