食品機能性成分としてのスフィンゴ脂質の消化と吸収
スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている。したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし, その分解効率は低く, 吸収率も低い。スフィンゴシンと比べて,...
Saved in:
Published in | Nihon Eiyō, Shokuryō Gakkai shi Vol. 66; no. 4; pp. 177 - 183 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 日本栄養・食糧学会
2013
日本栄養・食糧学会 |
Subjects | |
Online Access | Get full text |
ISSN | 0287-3516 1883-2849 |
DOI | 10.4327/jsnfs.66.177 |
Cover
Abstract | スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている。したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし, その分解効率は低く, 吸収率も低い。スフィンゴシンと比べて, それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため, 吸収はさらに低いことが示唆されている。スフィンゴ脂質の有効利用のためにも, その選択的吸収機構の詳細について, 今後明らかにされる必要がある。 |
---|---|
AbstractList | スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている。したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし, その分解効率は低く, 吸収率も低い。スフィンゴシンと比べて, それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため, 吸収はさらに低いことが示唆されている。スフィンゴ脂質の有効利用のためにも, その選択的吸収機構の詳細について, 今後明らかにされる必要がある。 スフィンゴ脂質は,真核生物の細胞膜構成成分の一つであり,細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年,食品機能成分としても注目されつつあり,とくに皮膚バリア向上作用が期待されている。したがって,経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは,その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は,小腸内で消化を受け,その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし,その分解効率は低く,吸収率も低い。スフィンゴシンと比べて,それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため,吸収はさらに低いことが示唆されている。スフィンゴ脂質の有効利用のためにも,その選択的吸収機構の詳細について,今後明らかにされる必要がある。 「要旨」:スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている. 近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている. したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる. グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる. しかし, その分解効率は低く, 吸収率も低い. スフィンゴシンと比べて, それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため, 吸収はさらに低いことが示唆されている. スフィンゴ脂質の有効利用のためにも, その選択的吸収機構の詳細について, 今後明らかにされる必要がある. |
Author | 菅原, 達也 |
Author_xml | – sequence: 1 fullname: 菅原, 達也 organization: 京都大学大学院農学研究科 |
BackLink | https://agriknowledge.affrc.go.jp/RN/2030853146$$DView record in AgriKnowledge |
BookMark | eNo1kc9q3DAQxkVJoZs0t76GtyPJO7JPpYQ2CQRyac9iIssbO44d7C2lt3q3lD2ENhDaHnMI9N8hl4TSHPo0wsv2LSqzKYIZmE_fb2akdbZWVqVl7BGHYSiFepw3ZdoMEYdcqXtswKNIBiIK4zU2ABGpQI44PmDrTZMDICpUA7bz9_KiO28XPy6Wsz-Lt98W87Nu_t613137xbVfXXvlprdu9slNL93s2k1vlu-my-ufvr74Ne9OP_ub3dnv7uOHh-x-SkVjN-_yBnv5_NmLrZ1gb397d-vpXkAyQhkgCsBEmJAMj0cH_iRpTAeQCMIEEckaiMNEcqlSA9KAiQkkpqOYh9xylBtMrbiUpnU20TSus6Oyel3YZGx1RZnuBaPHlc5PNHDtV43iEIR3bq-cxzbJDBVVWWSl1Xn1qi79xDohsFlzWGkBXPY2hNAnT_DP6UMkBcQoFHjSkxUpbybku57U2THVbzTVk8wUHtn_g0bUYR9693_FHFKtc5L_AIJ8m4k |
ContentType | Journal Article |
Copyright | 2013 公益社団法人 日本栄養・食糧学会 |
Copyright_xml | – notice: 2013 公益社団法人 日本栄養・食糧学会 |
CorporateAuthor | 京都大学大学院農学研究科 |
CorporateAuthor_xml | – name: 京都大学大学院農学研究科 |
DBID | N5S |
DOI | 10.4327/jsnfs.66.177 |
DatabaseName | AgriKnowledge(アグリナレッジ)AGROLib |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1883-2849 |
EndPage | 183 |
ExternalDocumentID | oai_affrc_go_jp_01_00689402 da0eisho_2013_006604_001_0177_01832096270 article_jsnfs_66_4_66_177_article_char_ja |
GroupedDBID | 2WC ALMA_UNASSIGNED_HOLDINGS EBS EJD JSF KQ8 MOJWN OK1 RJT N5S |
ID | FETCH-LOGICAL-a3863-66206d2c4ac195b5b5df9ab0d2a6d666aec094d3137fc03c0c9a036f59141e163 |
ISSN | 0287-3516 |
IngestDate | Fri Sep 19 12:24:26 EDT 2025 Thu Jul 10 16:14:56 EDT 2025 Wed Sep 03 06:29:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3863-66206d2c4ac195b5b5df9ab0d2a6d666aec094d3137fc03c0c9a036f59141e163 |
Notes | ZZ00014795 853146 |
OpenAccessLink | https://agriknowledge.affrc.go.jp/RN/2030853146 |
PageCount | 7 |
ParticipantIDs | affrit_agriknowledge_oai_affrc_go_jp_01_00689402 medicalonline_journals_da0eisho_2013_006604_001_0177_01832096270 jstage_primary_article_jsnfs_66_4_66_177_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20130000 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 20130000 |
PublicationDecade | 2010 |
PublicationTitle | Nihon Eiyō, Shokuryō Gakkai shi |
PublicationTitleAlternate | 日本栄養・食糧学会誌 |
PublicationYear | 2013 |
Publisher | 公益社団法人 日本栄養・食糧学会 日本栄養・食糧学会 |
Publisher_xml | – name: 公益社団法人 日本栄養・食糧学会 – name: 日本栄養・食糧学会 |
References | 35) Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124: 702-12. 20) Nilsson Å (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176: 339-47. 1) Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124: 615-20. 24) Wu J, Liu F, Nilsson Å, Duan RD (2004) Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol 287: G967-73. 26) Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248: 8170-3. 23) Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson Å, Duan RD (2005) Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta 1687: 94-102. 9) Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75: 1516-23. 30) Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281: 7324-31. 19) Nilsson Å (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164: 575-84. 21) Nilsson Å (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187: 113-21. 33) Gijiber S, Van der Hoeven G, Van Veldhoven PP (2001) Subcellular study of sphingoid base phosphorylation in rat tissues: evidence for multiple sphingosine kinases. Biochim Biophys Acta 1532: 37-50. 15) Sugawara T, Miyazawa T (1999) Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34: 1231-7. 29) Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson Å (2001) Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 36: 807-12. 8) Haruta-Ono Y, Setoguchi S, Ueno HM, Higurashi S, Ueda N, Kato K, Saito T, Matsunaga K, Takata J (2012) Orally administered sphingomyelin in bovine milk is incorporated into skin sphingolipids and is involved in the water-holding capacity of hairless mice. J Dermatol Sci 68: 56-62. 10) Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632: 1-15. 32) Van Veldhoven PP, Mannaerts GP (1993) Sphingosine-phosphate lyase. Adv Lipid Res 26: 69-98. 38) Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133: 2777-82. 6) Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y (2006) Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 44: 101-7. 16) Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2: 533-8. 4) Duan RD, Nilsson Å (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48: 62-72. 22) Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson Å (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278: 38528-36. 27) Kobayashi T, Suzuki K (1981) The glycosylceramidase in the murine intestine. Purification and substrate specificity. J Biol Chem 256: 7768-73. 11) Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129: 1239-50. 3) Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydradine-treated mice. J Oleo Sci 54: 45-9. 5) Hasegawa T, Shimada H, Uchiyama T, Ueda O,Nakashima M, Matsuoka Y (2011) Dietary glucosylceramide enhances cornified envelope formation via transglutaminase expression and involucrin production. Lipids 46: 529-35. 31) Buehrer BM, Bell RM (1993) Sphingosine kinase: properties and cellular functions. Adv Lipid Res 26: 59-67. 2) Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 130: 522-27. 34) Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A (2012) The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell 46: 461-71. 12) Blank ML, Cress EA, Smith ZL, Snyder F (1992) Meats and fish consumed in the American diet contain substantial amounts of ether-linked phospholipids. J Nutr 122: 1656-61. 14) Ohashi Y, Tanaka T, Akashi S, Morimoto S, Kishimoto Y, Nagai Y (2000) Squid nerve sphingomyelin containing an unusual sphingoid base. J Lipid Res 41: 1118-24. 37) Larson G, Falk P, Hoskins LC (1988) Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263: 10790-8. 28) Olsson M, Duan RD, Ohlsson L, Nilsson Å (2004) Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol 287: G929-37. 36) Nyberg L, Nilsson Å, Lundgren P, Duan RD (1997) Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem 8: 112-18. 18) Yunoki K, Ogawa T, Ono J, Miyashita R, Aida K, Oda Y, Ohnishi M (2008) Analysis of sphingolipid classes and their contents in meals. Biosci Biotechnol Biochem 72: 222-5. 40) Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68: 2541-6. 17) Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T (2010) Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 45: 451-5. 25) Brady RO, Kanfer J, Shapiro D (1965) The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 240: 39-43. 13) Hayashi A, Matsubara T (1970) On the occurrence of sphinga-4,8-dienine in oyster glycolipid. Biochim Biophys Acta 202: 228-30. 7) Duan J, Sugawara T, Aida K, Hirose M, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier function via up-regulation of ceramide synthases in the epidermis. Exp Dermatol 21: 448-52. 39) Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51: 1761-9. |
References_xml | – reference: 40) Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68: 2541-6. – reference: 14) Ohashi Y, Tanaka T, Akashi S, Morimoto S, Kishimoto Y, Nagai Y (2000) Squid nerve sphingomyelin containing an unusual sphingoid base. J Lipid Res 41: 1118-24. – reference: 7) Duan J, Sugawara T, Aida K, Hirose M, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier function via up-regulation of ceramide synthases in the epidermis. Exp Dermatol 21: 448-52. – reference: 24) Wu J, Liu F, Nilsson Å, Duan RD (2004) Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol 287: G967-73. – reference: 9) Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75: 1516-23. – reference: 38) Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133: 2777-82. – reference: 3) Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydradine-treated mice. J Oleo Sci 54: 45-9. – reference: 31) Buehrer BM, Bell RM (1993) Sphingosine kinase: properties and cellular functions. Adv Lipid Res 26: 59-67. – reference: 34) Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A (2012) The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell 46: 461-71. – reference: 27) Kobayashi T, Suzuki K (1981) The glycosylceramidase in the murine intestine. Purification and substrate specificity. J Biol Chem 256: 7768-73. – reference: 36) Nyberg L, Nilsson Å, Lundgren P, Duan RD (1997) Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem 8: 112-18. – reference: 8) Haruta-Ono Y, Setoguchi S, Ueno HM, Higurashi S, Ueda N, Kato K, Saito T, Matsunaga K, Takata J (2012) Orally administered sphingomyelin in bovine milk is incorporated into skin sphingolipids and is involved in the water-holding capacity of hairless mice. J Dermatol Sci 68: 56-62. – reference: 16) Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2: 533-8. – reference: 29) Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson Å (2001) Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 36: 807-12. – reference: 20) Nilsson Å (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176: 339-47. – reference: 30) Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281: 7324-31. – reference: 26) Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248: 8170-3. – reference: 37) Larson G, Falk P, Hoskins LC (1988) Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263: 10790-8. – reference: 25) Brady RO, Kanfer J, Shapiro D (1965) The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 240: 39-43. – reference: 32) Van Veldhoven PP, Mannaerts GP (1993) Sphingosine-phosphate lyase. Adv Lipid Res 26: 69-98. – reference: 12) Blank ML, Cress EA, Smith ZL, Snyder F (1992) Meats and fish consumed in the American diet contain substantial amounts of ether-linked phospholipids. J Nutr 122: 1656-61. – reference: 22) Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson Å (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278: 38528-36. – reference: 28) Olsson M, Duan RD, Ohlsson L, Nilsson Å (2004) Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol 287: G929-37. – reference: 21) Nilsson Å (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187: 113-21. – reference: 1) Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124: 615-20. – reference: 4) Duan RD, Nilsson Å (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48: 62-72. – reference: 6) Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y (2006) Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 44: 101-7. – reference: 10) Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632: 1-15. – reference: 2) Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 130: 522-27. – reference: 18) Yunoki K, Ogawa T, Ono J, Miyashita R, Aida K, Oda Y, Ohnishi M (2008) Analysis of sphingolipid classes and their contents in meals. Biosci Biotechnol Biochem 72: 222-5. – reference: 19) Nilsson Å (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164: 575-84. – reference: 33) Gijiber S, Van der Hoeven G, Van Veldhoven PP (2001) Subcellular study of sphingoid base phosphorylation in rat tissues: evidence for multiple sphingosine kinases. Biochim Biophys Acta 1532: 37-50. – reference: 5) Hasegawa T, Shimada H, Uchiyama T, Ueda O,Nakashima M, Matsuoka Y (2011) Dietary glucosylceramide enhances cornified envelope formation via transglutaminase expression and involucrin production. Lipids 46: 529-35. – reference: 17) Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T (2010) Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 45: 451-5. – reference: 13) Hayashi A, Matsubara T (1970) On the occurrence of sphinga-4,8-dienine in oyster glycolipid. Biochim Biophys Acta 202: 228-30. – reference: 39) Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51: 1761-9. – reference: 11) Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129: 1239-50. – reference: 15) Sugawara T, Miyazawa T (1999) Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34: 1231-7. – reference: 23) Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson Å, Duan RD (2005) Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta 1687: 94-102. – reference: 35) Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124: 702-12. |
SSID | ssj0066767 ssib002484672 ssib004238776 ssib002484671 ssib000872038 ssib004261863 ssib007833630 ssib005879711 ssib001525703 ssib003104427 ssib003171075 ssib016445864 ssib002483740 ssib020470628 ssib031740826 |
Score | 1.9271847 |
Snippet | スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注... 「要旨」:スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている. 近年, 食品機能成... スフィンゴ脂質は,真核生物の細胞膜構成成分の一つであり,細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年,食品機能成分としても注... |
SourceID | affrit medicalonline jstage |
SourceType | Open Access Repository Publisher |
StartPage | 177 |
SubjectTerms | グルコシルセラミド スフィンゴイド塩基 スフィンゴミエリン スフィンゴ脂質 セラミド |
Title | 食品機能性成分としてのスフィンゴ脂質の消化と吸収 |
URI | https://www.jstage.jst.go.jp/article/jsnfs/66/4/66_177/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=da0eisho/2013/006604/001&name=0177-0183j https://agriknowledge.affrc.go.jp/RN/2030853146 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 日本栄養・食糧学会誌, 2013, Vol.66(4), pp.177-183 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1883-2849 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0066767 issn: 0287-3516 databaseCode: KQ8 dateStart: 19830101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxQxdKj1Ioj4iesXezBeZGpmJpOZ3JzZTikeCkILvYX5rF10W9rtxZO7FelBtCDqReih4NfBS0X04K8Zdqn_wveS2XVaPNQiu2Tfvny8l5dM8pJJ3jOMm2ma2Q5LYhNmP24yPOaa0JiZSVwkPPP9DH7wtMUcn11g9xbdxYkT72qnlja6yVT6-K_3So7TqoCDdsVbsv_QsuNCAQEwtC-E0MIQHqmNSSRI4BAxQyKXCAe0QhJxEgiF8YnvkHAaMT4lgacAnwiKiQHwOYlUlsCvAOGNMOOoSAE2CYUCgJZbYYCuxoTOKA1TRBnCAAA-CGrlcBIqBpB6i4g6dRe5CnXUDPGjusaMGYGxwFVAiwQtVUeKhLD6QC4YcRLWBOIpBjwsM5hWNWIkBLoB8gaM-ePtYcU1kHUV_QhzQ7_DolAmTGVEkdY3SPTNVtWZVS5X8eURESp2POQrjFTNQiUqjuyg8AAfwPf2f69XbUi3cUh3rcr4t55yfN8xQUkQ9TlJe6Kpnj1Wm2CsyumN1lUs7QTo8DTIHBtfxLfXO8X6FOdT40wHDItX3VaqZJJzyTBA2--jGLz4J9uw-jhpe6DH4ZGH-_XFKuqu1qH_NWNxoA16qOxqvQgPUyvjBSMZ6GsoyOudOqegCsZFsbaMC702rJDQ9MXpR_qtpbYeU1MA588aZ6qVWzPQXJ8zJvLOeaMxvZx3m7ealXndh825kXeLC8bsr92dwave8NPO_ubP4ZMPw63twdazsvex7L0te-_L3pey_6PcfF32d8vNvbL_df9pf3_vM-CH37YGz99AysH298HLFxeNhZlovjVrVo5LzNjxuWNyblOe2SmLU0u4CXyyQsQJzeyYZ5zzOE-pYJljOV6RUielqYhBkyxcYTErhxXSJWOys9LJLxtNBzTy3MpyD1RzRkUshJ2nTgajq4jdnNOGQbW0ZLy09mcfXiqr8RCRyqUV2V6V1JJ4G0wwajcMX8tVrmqDNvLIPaFh3D3QErIaDNdlFlPozg9WJD6BSIpThudlgTA6E0DFgaKfL3rl-NSvGqds5YwGN0CvGZPdtY38OiwJuskN1TN_Ayb34q0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A3%9F%E5%93%81%E6%A9%9F%E8%83%BD%E6%80%A7%E6%88%90%E5%88%86%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E3%82%B9%E3%83%95%E3%82%A3%E3%83%B3%E3%82%B4%E8%84%82%E8%B3%AA%E3%81%AE%E6%B6%88%E5%8C%96%E3%81%A8%E5%90%B8%E5%8F%8E&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%A0%84%E9%A4%8A%E3%83%BB%E9%A3%9F%E7%B3%A7%E5%AD%A6%E4%BC%9A%E8%AA%8C&rft.au=%E8%8F%85%E5%8E%9F%2C+%E9%81%94%E4%B9%9F&rft.date=2013&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%A0%84%E9%A4%8A%E3%83%BB%E9%A3%9F%E7%B3%A7%E5%AD%A6%E4%BC%9A&rft.issn=0287-3516&rft.eissn=1883-2849&rft.volume=66&rft.issue=4&rft.spage=177&rft.epage=183&rft_id=info:doi/10.4327%2Fjsnfs.66.177&rft.externalDocID=article_jsnfs_66_4_66_177_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0287-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0287-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0287-3516&client=summon |