食品機能性成分としてのスフィンゴ脂質の消化と吸収

スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている。したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし, その分解効率は低く, 吸収率も低い。スフィンゴシンと比べて,...

Full description

Saved in:
Bibliographic Details
Published inNihon Eiyō, Shokuryō Gakkai shi Vol. 66; no. 4; pp. 177 - 183
Main Author 菅原, 達也
Format Journal Article
LanguageJapanese
Published 公益社団法人 日本栄養・食糧学会 2013
日本栄養・食糧学会
Subjects
Online AccessGet full text
ISSN0287-3516
1883-2849
DOI10.4327/jsnfs.66.177

Cover

Abstract スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている。したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし, その分解効率は低く, 吸収率も低い。スフィンゴシンと比べて, それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため, 吸収はさらに低いことが示唆されている。スフィンゴ脂質の有効利用のためにも, その選択的吸収機構の詳細について, 今後明らかにされる必要がある。
AbstractList スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている。したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし, その分解効率は低く, 吸収率も低い。スフィンゴシンと比べて, それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため, 吸収はさらに低いことが示唆されている。スフィンゴ脂質の有効利用のためにも, その選択的吸収機構の詳細について, 今後明らかにされる必要がある。
スフィンゴ脂質は,真核生物の細胞膜構成成分の一つであり,細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年,食品機能成分としても注目されつつあり,とくに皮膚バリア向上作用が期待されている。したがって,経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは,その食品機能性を理解する上でも重要といえる。グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は,小腸内で消化を受け,その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる。しかし,その分解効率は低く,吸収率も低い。スフィンゴシンと比べて,それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため,吸収はさらに低いことが示唆されている。スフィンゴ脂質の有効利用のためにも,その選択的吸収機構の詳細について,今後明らかにされる必要がある。
「要旨」:スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている. 近年, 食品機能成分としても注目されつつあり, とくに皮膚バリア向上作用が期待されている. したがって, 経口摂取されたスフィンゴ脂質の消化と吸収の機構を明らかにすることは, その食品機能性を理解する上でも重要といえる. グルコシルセラミドやスフィンゴミエリンなどのスフィンゴ脂質は, 小腸内で消化を受け, その構成要素であるスフィンゴイド塩基にまで加水分解された後に小腸上皮細胞に取り込まれる. しかし, その分解効率は低く, 吸収率も低い. スフィンゴシンと比べて, それ以外の化学構造のスフィンゴイド塩基はP-糖タンパク質による排出を受けやすいため, 吸収はさらに低いことが示唆されている. スフィンゴ脂質の有効利用のためにも, その選択的吸収機構の詳細について, 今後明らかにされる必要がある.
Author 菅原, 達也
Author_xml – sequence: 1
  fullname: 菅原, 達也
  organization: 京都大学大学院農学研究科
BackLink https://agriknowledge.affrc.go.jp/RN/2030853146$$DView record in AgriKnowledge
BookMark eNo1kc9q3DAQxkVJoZs0t76GtyPJO7JPpYQ2CQRyac9iIssbO44d7C2lt3q3lD2ENhDaHnMI9N8hl4TSHPo0wsv2LSqzKYIZmE_fb2akdbZWVqVl7BGHYSiFepw3ZdoMEYdcqXtswKNIBiIK4zU2ABGpQI44PmDrTZMDICpUA7bz9_KiO28XPy6Wsz-Lt98W87Nu_t613137xbVfXXvlprdu9slNL93s2k1vlu-my-ufvr74Ne9OP_ub3dnv7uOHh-x-SkVjN-_yBnv5_NmLrZ1gb397d-vpXkAyQhkgCsBEmJAMj0cH_iRpTAeQCMIEEckaiMNEcqlSA9KAiQkkpqOYh9xylBtMrbiUpnU20TSus6Oyel3YZGx1RZnuBaPHlc5PNHDtV43iEIR3bq-cxzbJDBVVWWSl1Xn1qi79xDohsFlzWGkBXPY2hNAnT_DP6UMkBcQoFHjSkxUpbybku57U2THVbzTVk8wUHtn_g0bUYR9693_FHFKtc5L_AIJ8m4k
ContentType Journal Article
Copyright 2013 公益社団法人 日本栄養・食糧学会
Copyright_xml – notice: 2013 公益社団法人 日本栄養・食糧学会
CorporateAuthor 京都大学大学院農学研究科
CorporateAuthor_xml – name: 京都大学大学院農学研究科
DBID N5S
DOI 10.4327/jsnfs.66.177
DatabaseName AgriKnowledge(アグリナレッジ)AGROLib
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1883-2849
EndPage 183
ExternalDocumentID oai_affrc_go_jp_01_00689402
da0eisho_2013_006604_001_0177_01832096270
article_jsnfs_66_4_66_177_article_char_ja
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
JSF
KQ8
MOJWN
OK1
RJT
N5S
ID FETCH-LOGICAL-a3863-66206d2c4ac195b5b5df9ab0d2a6d666aec094d3137fc03c0c9a036f59141e163
ISSN 0287-3516
IngestDate Fri Sep 19 12:24:26 EDT 2025
Thu Jul 10 16:14:56 EDT 2025
Wed Sep 03 06:29:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3863-66206d2c4ac195b5b5df9ab0d2a6d666aec094d3137fc03c0c9a036f59141e163
Notes ZZ00014795
853146
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2030853146
PageCount 7
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00689402
medicalonline_journals_da0eisho_2013_006604_001_0177_01832096270
jstage_primary_article_jsnfs_66_4_66_177_article_char_ja
PublicationCentury 2000
PublicationDate 20130000
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 20130000
PublicationDecade 2010
PublicationTitle Nihon Eiyō, Shokuryō Gakkai shi
PublicationTitleAlternate 日本栄養・食糧学会誌
PublicationYear 2013
Publisher 公益社団法人 日本栄養・食糧学会
日本栄養・食糧学会
Publisher_xml – name: 公益社団法人 日本栄養・食糧学会
– name: 日本栄養・食糧学会
References 35) Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124: 702-12.
20) Nilsson Å (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176: 339-47.
1) Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124: 615-20.
24) Wu J, Liu F, Nilsson Å, Duan RD (2004) Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol 287: G967-73.
26) Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248: 8170-3.
23) Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson Å, Duan RD (2005) Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta 1687: 94-102.
9) Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75: 1516-23.
30) Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281: 7324-31.
19) Nilsson Å (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164: 575-84.
21) Nilsson Å (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187: 113-21.
33) Gijiber S, Van der Hoeven G, Van Veldhoven PP (2001) Subcellular study of sphingoid base phosphorylation in rat tissues: evidence for multiple sphingosine kinases. Biochim Biophys Acta 1532: 37-50.
15) Sugawara T, Miyazawa T (1999) Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34: 1231-7.
29) Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson Å (2001) Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 36: 807-12.
8) Haruta-Ono Y, Setoguchi S, Ueno HM, Higurashi S, Ueda N, Kato K, Saito T, Matsunaga K, Takata J (2012) Orally administered sphingomyelin in bovine milk is incorporated into skin sphingolipids and is involved in the water-holding capacity of hairless mice. J Dermatol Sci 68: 56-62.
10) Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632: 1-15.
32) Van Veldhoven PP, Mannaerts GP (1993) Sphingosine-phosphate lyase. Adv Lipid Res 26: 69-98.
38) Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133: 2777-82.
6) Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y (2006) Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 44: 101-7.
16) Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2: 533-8.
4) Duan RD, Nilsson Å (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48: 62-72.
22) Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson Å (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278: 38528-36.
27) Kobayashi T, Suzuki K (1981) The glycosylceramidase in the murine intestine. Purification and substrate specificity. J Biol Chem 256: 7768-73.
11) Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129: 1239-50.
3) Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydradine-treated mice. J Oleo Sci 54: 45-9.
5) Hasegawa T, Shimada H, Uchiyama T, Ueda O,Nakashima M, Matsuoka Y (2011) Dietary glucosylceramide enhances cornified envelope formation via transglutaminase expression and involucrin production. Lipids 46: 529-35.
31) Buehrer BM, Bell RM (1993) Sphingosine kinase: properties and cellular functions. Adv Lipid Res 26: 59-67.
2) Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 130: 522-27.
34) Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A (2012) The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell 46: 461-71.
12) Blank ML, Cress EA, Smith ZL, Snyder F (1992) Meats and fish consumed in the American diet contain substantial amounts of ether-linked phospholipids. J Nutr 122: 1656-61.
14) Ohashi Y, Tanaka T, Akashi S, Morimoto S, Kishimoto Y, Nagai Y (2000) Squid nerve sphingomyelin containing an unusual sphingoid base. J Lipid Res 41: 1118-24.
37) Larson G, Falk P, Hoskins LC (1988) Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263: 10790-8.
28) Olsson M, Duan RD, Ohlsson L, Nilsson Å (2004) Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol 287: G929-37.
36) Nyberg L, Nilsson Å, Lundgren P, Duan RD (1997) Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem 8: 112-18.
18) Yunoki K, Ogawa T, Ono J, Miyashita R, Aida K, Oda Y, Ohnishi M (2008) Analysis of sphingolipid classes and their contents in meals. Biosci Biotechnol Biochem 72: 222-5.
40) Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68: 2541-6.
17) Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T (2010) Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 45: 451-5.
25) Brady RO, Kanfer J, Shapiro D (1965) The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 240: 39-43.
13) Hayashi A, Matsubara T (1970) On the occurrence of sphinga-4,8-dienine in oyster glycolipid. Biochim Biophys Acta 202: 228-30.
7) Duan J, Sugawara T, Aida K, Hirose M, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier function via up-regulation of ceramide synthases in the epidermis. Exp Dermatol 21: 448-52.
39) Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51: 1761-9.
References_xml – reference: 40) Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68: 2541-6.
– reference: 14) Ohashi Y, Tanaka T, Akashi S, Morimoto S, Kishimoto Y, Nagai Y (2000) Squid nerve sphingomyelin containing an unusual sphingoid base. J Lipid Res 41: 1118-24.
– reference: 7) Duan J, Sugawara T, Aida K, Hirose M, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier function via up-regulation of ceramide synthases in the epidermis. Exp Dermatol 21: 448-52.
– reference: 24) Wu J, Liu F, Nilsson Å, Duan RD (2004) Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol 287: G967-73.
– reference: 9) Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75: 1516-23.
– reference: 38) Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133: 2777-82.
– reference: 3) Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydradine-treated mice. J Oleo Sci 54: 45-9.
– reference: 31) Buehrer BM, Bell RM (1993) Sphingosine kinase: properties and cellular functions. Adv Lipid Res 26: 59-67.
– reference: 34) Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A (2012) The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell 46: 461-71.
– reference: 27) Kobayashi T, Suzuki K (1981) The glycosylceramidase in the murine intestine. Purification and substrate specificity. J Biol Chem 256: 7768-73.
– reference: 36) Nyberg L, Nilsson Å, Lundgren P, Duan RD (1997) Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem 8: 112-18.
– reference: 8) Haruta-Ono Y, Setoguchi S, Ueno HM, Higurashi S, Ueda N, Kato K, Saito T, Matsunaga K, Takata J (2012) Orally administered sphingomyelin in bovine milk is incorporated into skin sphingolipids and is involved in the water-holding capacity of hairless mice. J Dermatol Sci 68: 56-62.
– reference: 16) Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2: 533-8.
– reference: 29) Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson Å (2001) Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 36: 807-12.
– reference: 20) Nilsson Å (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176: 339-47.
– reference: 30) Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL (2006) Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281: 7324-31.
– reference: 26) Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248: 8170-3.
– reference: 37) Larson G, Falk P, Hoskins LC (1988) Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263: 10790-8.
– reference: 25) Brady RO, Kanfer J, Shapiro D (1965) The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 240: 39-43.
– reference: 32) Van Veldhoven PP, Mannaerts GP (1993) Sphingosine-phosphate lyase. Adv Lipid Res 26: 69-98.
– reference: 12) Blank ML, Cress EA, Smith ZL, Snyder F (1992) Meats and fish consumed in the American diet contain substantial amounts of ether-linked phospholipids. J Nutr 122: 1656-61.
– reference: 22) Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson Å (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278: 38528-36.
– reference: 28) Olsson M, Duan RD, Ohlsson L, Nilsson Å (2004) Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol 287: G929-37.
– reference: 21) Nilsson Å (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187: 113-21.
– reference: 1) Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124: 615-20.
– reference: 4) Duan RD, Nilsson Å (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48: 62-72.
– reference: 6) Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y (2006) Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 44: 101-7.
– reference: 10) Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632: 1-15.
– reference: 2) Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 130: 522-27.
– reference: 18) Yunoki K, Ogawa T, Ono J, Miyashita R, Aida K, Oda Y, Ohnishi M (2008) Analysis of sphingolipid classes and their contents in meals. Biosci Biotechnol Biochem 72: 222-5.
– reference: 19) Nilsson Å (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164: 575-84.
– reference: 33) Gijiber S, Van der Hoeven G, Van Veldhoven PP (2001) Subcellular study of sphingoid base phosphorylation in rat tissues: evidence for multiple sphingosine kinases. Biochim Biophys Acta 1532: 37-50.
– reference: 5) Hasegawa T, Shimada H, Uchiyama T, Ueda O,Nakashima M, Matsuoka Y (2011) Dietary glucosylceramide enhances cornified envelope formation via transglutaminase expression and involucrin production. Lipids 46: 529-35.
– reference: 17) Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T (2010) Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 45: 451-5.
– reference: 13) Hayashi A, Matsubara T (1970) On the occurrence of sphinga-4,8-dienine in oyster glycolipid. Biochim Biophys Acta 202: 228-30.
– reference: 39) Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T (2010) Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 51: 1761-9.
– reference: 11) Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129: 1239-50.
– reference: 15) Sugawara T, Miyazawa T (1999) Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34: 1231-7.
– reference: 23) Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson Å, Duan RD (2005) Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta 1687: 94-102.
– reference: 35) Schmelz EM, Crall KJ, Larocque R, Dillehay DL, Merrill AH Jr (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr 124: 702-12.
SSID ssj0066767
ssib002484672
ssib004238776
ssib002484671
ssib000872038
ssib004261863
ssib007833630
ssib005879711
ssib001525703
ssib003104427
ssib003171075
ssib016445864
ssib002483740
ssib020470628
ssib031740826
Score 1.9271847
Snippet スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年, 食品機能成分としても注...
「要旨」:スフィンゴ脂質は, 真核生物の細胞膜構成成分の一つであり, 細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている. 近年, 食品機能成...
スフィンゴ脂質は,真核生物の細胞膜構成成分の一つであり,細胞の分化やアポトーシスなどの生命現象に深く関わっていることが知られている。近年,食品機能成分としても注...
SourceID affrit
medicalonline
jstage
SourceType Open Access Repository
Publisher
StartPage 177
SubjectTerms グルコシルセラミド
スフィンゴイド塩基
スフィンゴミエリン
スフィンゴ脂質
セラミド
Title 食品機能性成分としてのスフィンゴ脂質の消化と吸収
URI https://www.jstage.jst.go.jp/article/jsnfs/66/4/66_177/_article/-char/ja
http://mol.medicalonline.jp/en/journal/download?GoodsID=da0eisho/2013/006604/001&name=0177-0183j
https://agriknowledge.affrc.go.jp/RN/2030853146
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本栄養・食糧学会誌, 2013, Vol.66(4), pp.177-183
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-2849
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0066767
  issn: 0287-3516
  databaseCode: KQ8
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxQxdKj1Ioj4iesXezBeZGpmJpOZ3JzZTikeCkILvYX5rF10W9rtxZO7FelBtCDqReih4NfBS0X04K8Zdqn_wveS2XVaPNQiu2Tfvny8l5dM8pJJ3jOMm2ma2Q5LYhNmP24yPOaa0JiZSVwkPPP9DH7wtMUcn11g9xbdxYkT72qnlja6yVT6-K_3So7TqoCDdsVbsv_QsuNCAQEwtC-E0MIQHqmNSSRI4BAxQyKXCAe0QhJxEgiF8YnvkHAaMT4lgacAnwiKiQHwOYlUlsCvAOGNMOOoSAE2CYUCgJZbYYCuxoTOKA1TRBnCAAA-CGrlcBIqBpB6i4g6dRe5CnXUDPGjusaMGYGxwFVAiwQtVUeKhLD6QC4YcRLWBOIpBjwsM5hWNWIkBLoB8gaM-ePtYcU1kHUV_QhzQ7_DolAmTGVEkdY3SPTNVtWZVS5X8eURESp2POQrjFTNQiUqjuyg8AAfwPf2f69XbUi3cUh3rcr4t55yfN8xQUkQ9TlJe6Kpnj1Wm2CsyumN1lUs7QTo8DTIHBtfxLfXO8X6FOdT40wHDItX3VaqZJJzyTBA2--jGLz4J9uw-jhpe6DH4ZGH-_XFKuqu1qH_NWNxoA16qOxqvQgPUyvjBSMZ6GsoyOudOqegCsZFsbaMC702rJDQ9MXpR_qtpbYeU1MA588aZ6qVWzPQXJ8zJvLOeaMxvZx3m7ealXndh825kXeLC8bsr92dwave8NPO_ubP4ZMPw63twdazsvex7L0te-_L3pey_6PcfF32d8vNvbL_df9pf3_vM-CH37YGz99AysH298HLFxeNhZlovjVrVo5LzNjxuWNyblOe2SmLU0u4CXyyQsQJzeyYZ5zzOE-pYJljOV6RUielqYhBkyxcYTErhxXSJWOys9LJLxtNBzTy3MpyD1RzRkUshJ2nTgajq4jdnNOGQbW0ZLy09mcfXiqr8RCRyqUV2V6V1JJ4G0wwajcMX8tVrmqDNvLIPaFh3D3QErIaDNdlFlPozg9WJD6BSIpThudlgTA6E0DFgaKfL3rl-NSvGqds5YwGN0CvGZPdtY38OiwJuskN1TN_Ayb34q0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A3%9F%E5%93%81%E6%A9%9F%E8%83%BD%E6%80%A7%E6%88%90%E5%88%86%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E3%82%B9%E3%83%95%E3%82%A3%E3%83%B3%E3%82%B4%E8%84%82%E8%B3%AA%E3%81%AE%E6%B6%88%E5%8C%96%E3%81%A8%E5%90%B8%E5%8F%8E&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%A0%84%E9%A4%8A%E3%83%BB%E9%A3%9F%E7%B3%A7%E5%AD%A6%E4%BC%9A%E8%AA%8C&rft.au=%E8%8F%85%E5%8E%9F%2C+%E9%81%94%E4%B9%9F&rft.date=2013&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%A0%84%E9%A4%8A%E3%83%BB%E9%A3%9F%E7%B3%A7%E5%AD%A6%E4%BC%9A&rft.issn=0287-3516&rft.eissn=1883-2849&rft.volume=66&rft.issue=4&rft.spage=177&rft.epage=183&rft_id=info:doi/10.4327%2Fjsnfs.66.177&rft.externalDocID=article_jsnfs_66_4_66_177_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0287-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0287-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0287-3516&client=summon