糖脂質の消化管吸収と栄養生理機能に関する研究

糖脂質は自然界に普遍的に存在し, 日常的に食品成分として摂取されている。にもかかわらず, その消化管吸収機構や栄養機能についてはほとんど知られていなかった。本研究では, 蒸散型光散乱検出―HPLC法を応用し, さまざまな骨格構造をもつ糖脂質の一斉定量検出に成功した。本法を応用してグリセロ糖脂質の消化管吸収機構を動物実験で調べ, 消化管内で脱アシル化されたガラクトシルグリセロールは消化も吸収もされないことを見出した。さらに継続的な植物糖脂質の摂取によって, 下部消化管 (盲腸や大腸) 内環境が改善されることが示唆された。一方, スフィンゴ糖脂質の消化管吸収において, 植物や真菌類に特徴的なスフィ...

Full description

Saved in:
Bibliographic Details
Published inNihon Eiyō, Shokuryō Gakkai shi Vol. 60; no. 1; pp. 11 - 17
Main Author 菅原, 達也
Format Journal Article
LanguageJapanese
Published 公益社団法人 日本栄養・食糧学会 2007
日本栄養・食糧学会
Subjects
Online AccessGet full text
ISSN0287-3516
1883-2849
DOI10.4327/jsnfs.60.11

Cover

Abstract 糖脂質は自然界に普遍的に存在し, 日常的に食品成分として摂取されている。にもかかわらず, その消化管吸収機構や栄養機能についてはほとんど知られていなかった。本研究では, 蒸散型光散乱検出―HPLC法を応用し, さまざまな骨格構造をもつ糖脂質の一斉定量検出に成功した。本法を応用してグリセロ糖脂質の消化管吸収機構を動物実験で調べ, 消化管内で脱アシル化されたガラクトシルグリセロールは消化も吸収もされないことを見出した。さらに継続的な植物糖脂質の摂取によって, 下部消化管 (盲腸や大腸) 内環境が改善されることが示唆された。一方, スフィンゴ糖脂質の消化管吸収において, 植物や真菌類に特徴的なスフィンゴイド塩基は小腸上皮細胞に吸収されにくいことを明らかにした。このスフィンゴイド塩基の吸収選択性には, P-糖タンパク質 (MDR1) が関与していることが強く示唆された。また, さまざまな食品成分由来のスフィンゴイド塩基による大腸がん細胞に対するアポトーシス誘導作用を明らかにし, トウモロコシや酵母由来セレブロシドによる1,2-ジメチルヒドラジン投与マウスの大腸腺種誘発抑制効果を示した。これら結果は, 糖脂質の新たな食品機能の可能性を示すものであり, 今後の研究の発展が期待される。
AbstractList 糖脂質は自然界に普遍的に存在し, 日常的に食品成分として摂取されている. にもかかわらず, その消化管吸収機構や栄養機能についてはほとんど知られていなかった. 本研究では, 蒸散型光散乱検出HPLC法を応用し, さまざまな骨格構造をもつ糖脂質の一斉定量検出に成功した. 本法を応用してグリセロ糖脂質の消化管吸収機構を動物実験で調べ, 消化管内で脱アシル化されたガラクトシルグリセロールは消化も吸収もされないことを見出した. さらに継続的な植物糖脂質の摂取によって, 下部消化管(盲腸や大腸)内環境が改善されることが示唆された. 一方, スフィンゴ糖脂質の消化管吸収において, 植物や真菌類に特徴的なスフィンゴイド塩基は小腸上皮細胞に吸収されにくいことを明らかにした. このスフィンゴイド塩基の吸収選択性には, P-糖タンパク質(MDR1)が関与していることが強く示唆された. また, さまざまな食品成分由来のスフィンゴイド塩基による大腸がん細胞に対するアポトーシス誘導作用を明らかにし, トウモロコシや酵母由来セレブロシドによる1, 2-ジメチルヒドラジン投与マウスの大腸腺種誘発抑制効果を示した. これら結果は, 糖脂質の新たな食品機能の可能性を示すものであり, 今後の研究の発展が期待される.
糖脂質は自然界に普遍的に存在し, 日常的に食品成分として摂取されている。にもかかわらず, その消化管吸収機構や栄養機能についてはほとんど知られていなかった。本研究では, 蒸散型光散乱検出―HPLC法を応用し, さまざまな骨格構造をもつ糖脂質の一斉定量検出に成功した。本法を応用してグリセロ糖脂質の消化管吸収機構を動物実験で調べ, 消化管内で脱アシル化されたガラクトシルグリセロールは消化も吸収もされないことを見出した。さらに継続的な植物糖脂質の摂取によって, 下部消化管 (盲腸や大腸) 内環境が改善されることが示唆された。一方, スフィンゴ糖脂質の消化管吸収において, 植物や真菌類に特徴的なスフィンゴイド塩基は小腸上皮細胞に吸収されにくいことを明らかにした。このスフィンゴイド塩基の吸収選択性には, P-糖タンパク質 (MDR1) が関与していることが強く示唆された。また, さまざまな食品成分由来のスフィンゴイド塩基による大腸がん細胞に対するアポトーシス誘導作用を明らかにし, トウモロコシや酵母由来セレブロシドによる1,2-ジメチルヒドラジン投与マウスの大腸腺種誘発抑制効果を示した。これら結果は, 糖脂質の新たな食品機能の可能性を示すものであり, 今後の研究の発展が期待される。
Author 菅原, 達也
Author_xml – sequence: 1
  fullname: 菅原, 達也
  organization: 京都大学大学院農学研究科応用生物科学専攻海洋生物生産利用学分野
BackLink https://agriknowledge.affrc.go.jp/RN/2010734120$$DView record in AgriKnowledge
BookMark eNo1kU9LG0EUwAeJYKqe_BybvpnZmdm9qaFNhYAXex4mu7Nxtuuu7KaUHpOGIlqqBwl40oqH2oIXQXrx0yzJxm_hxK2H9wcev9978N6gRpqlGqENDC2XEvE2LtKoaHFoYbyEmtjzqEM812-gJhBPOJRhvoLWi8L0AMATBKjXRNvV_WQ-Hs3v_5TDu9nD0fTHpLr7NT37Nz39WQ5_z67GTzfH1flldfZ9dns5__ZYDv8-Ta7L4UU5OqmuzqvbhzW0HKmk0Ov_6yr6-P7dXvuD093t7LS3uo6iHnOdiFPhcxoqYL7bCxjjPgHuatBYgM-oAIyFC8B6gtCQRgqHJCQ84CRgGHxKV5GovSqKcjOQqp-bT2n2JdFhX8tMGbkYBLKfyfhQApbWxUD4riU7NXmgQxOoJEsTk2oZZ5_z1F4s7U3aFPuZJADCYhxeaGIDLxosMPYZuMSaNmtTXAyU3XqYmwOVf5UqH5ggscrFDyQHietk8ddRsK9yGSv6DNXrlwU
ContentType Journal Article
Copyright 2007 公益社団法人 日本栄養・食糧学会
Copyright_xml – notice: 2007 公益社団法人 日本栄養・食糧学会
CorporateAuthor 京都大学大学院農学研究科応用生物科学専攻海洋生物生産利用学分野
CorporateAuthor_xml – name: 京都大学大学院農学研究科応用生物科学専攻海洋生物生産利用学分野
DBID ABELO
DOI 10.4327/jsnfs.60.11
DatabaseName AgriKnowledge (アグリナレッジ) JASI
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1883-2849
EndPage 17
ExternalDocumentID oai_affrc_go_jp_01_00550794
da0eisho_2007_006001_002_0011_00171195042
article_jsnfs_60_1_60_1_11_article_char_ja
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
JSF
KQ8
MOJWN
OK1
RJT
ABELO
ID FETCH-LOGICAL-a3854-f637963da0594bc55692064e0e170953701174005b723d3fa1d2d26c62c510933
ISSN 0287-3516
IngestDate Sat Oct 18 15:19:07 EDT 2025
Thu Jul 10 16:11:59 EDT 2025
Wed Sep 03 06:21:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3854-f637963da0594bc55692064e0e170953701174005b723d3fa1d2d26c62c510933
Notes 734120
ZZ00014795
OpenAccessLink https://www.jstage.jst.go.jp/article/jsnfs/60/1/60_1_11/_article/-char/ja
PageCount 7
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00550794
medicalonline_journals_da0eisho_2007_006001_002_0011_00171195042
jstage_primary_article_jsnfs_60_1_60_1_11_article_char_ja
PublicationCentury 2000
PublicationDate 20070000
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 20070000
PublicationDecade 2000
PublicationTitle Nihon Eiyō, Shokuryō Gakkai shi
PublicationTitleAlternate 日本栄養・食糧学会誌
PublicationYear 2007
Publisher 公益社団法人 日本栄養・食糧学会
日本栄養・食糧学会
Publisher_xml – name: 公益社団法人 日本栄養・食糧学会
– name: 日本栄養・食糧学会
References 28) Colsch B, Afonso C, Popa I, Portoukalian J, Fournier F, Tabet JC, Baumann N (2004) Characterization of the ceramide moieties of sphingoglycolipids from mouse brain by ESI-MS/MS: identification of ceramides containing sphingadienine. J Lipid Res 45 : 281-6.
38) Sugawara T, Kinoshita M, Ohnishi M, Miyazawa T (2002) Apoptosis induction by wheat-flour sphingoid bases in DLD-1 human colon cancer cells. Biosci Biotechnol Biochem 66 : 2228-31.
10) Sugawara T, Miyazawa T (2000) Digestion of plant monogalactosyldiacylglycerol and digalactosyldiacylglycerol in rat alimentary canal. J Nutr Biochem 11 : 147-52.
37) Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 130 : 522-27.
24) Lynch DV (1993) Sphingolipids. In: Lipid Metabolism in Plants (Moore TS, ed), p. 285-308. CRC Press, Florida.
12) Roediger WEW (1980) Role of anaerobic bacteria in the metabolism welfare of the colonic mucosa in man. Gut 21 : 193-98.
3) Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FESEB J 10 : 1388-97.
9) Ohlsson L, Blom M, Bohlinder K, Carlsson A, Nilsson Å (1998) Orally fed digalactosyldiacylglycerol is degraded during absorption in intact and lymphatic duct cannulated rats. J Nutr 128 : 239-45.
31) Nilsson Å (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187 : 113-21.
32) Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133 : 2777-82.
27) Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P, Chaminade P, Laprévote O (2005) Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem 382 : 1209-16.
41) Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydradine-treated mice. J Oleo Sci 54 : 45-9.
17) Wilpart M, Mainguest P, Maskens A, Roberfroid M (1983) Mutagenicity of 1,2-Dimethylhydrazine towards Salmonella typhimuruim, co-mutagenic effect of secondary biliary acids. Carcinogenesis 4 : 45-8.
21) Baijal PK, Fitzpatrick DW, Bird RP (1998) Comparative effects of secondary bile acids, deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postinitiation phases of colon carcinogenesis. Nutr Cancer 31 : 81-9.
33) Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68 : 2541-6.
18) Reddy BS, Mangat A, Sheinfil A, Weisburger JH, Wynder EL (1997) Effect of type and amount of dietary fat and 1,2-dimethylhydrazine on biliary bile acids, fecal bile acids, and neutral sterols on rats. Cancer Res 37 : 2132-7.
26) Renkonen O, Hirvisalo EL (1969) Structure of plasma sphingadienine. J Lipid Res 10 : 687-93.
7) Bajwa SS, Sastry PS (1974) Degradation of monogalactosyl diglyceride and digalactosyl diglyceride by sheep pancreatic enzymes. Biochem J 144 : 177-87.
40) Sugawara T, Zaima N, Yamamoto A, Noguchi R, Sakai S, Hirata T (2006) Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Biosci Biotechnol Biochem 70 : 2906-12.
29) Nilsson Å (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164 : 575-84.
13) Sakata T (1987) Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58 : 95-103.
22) Owen RW, Thompson MH, Hill MJ, Wilpart M, Maingunet P, Roberfroid M (1987) The importance of the ratio of lithocholic to deoxycholic acid in large bowel carcinogenesis. Nutr Cancer 9 : 67-71.
39) Aida K, Kinoshita M, Sugawara T, Ono J, Miyazawa T, Ohnishi M (2004) Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. J Oleo Sci 53 : 503-10.
14) Hague A, Manning AM, Hanlon KA, Huschtscha LI, Hart D, Paraskeva C (1993) Sodium butyrate induces apoptosis in human colonic tumor cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int J Cancer 55 : 498-505.
34) Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585 : 153-62.
4) Igarashi Y (1997) Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosine: in regard to membrane sphingolipid signaling pathways. J Biochem 122 : 1080-7.
23) Owen RW, Dodo M, Thompson MH, Hill MJ (1987) Fecal steroids and colorectal cancer. Nutr Cancer 9 : 73-80.
25) Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2 : 533-8.
36) Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124 : 615-20.
2) Hannun YA, Linardic CM (1993) Sphingolipids breakdown products: anti-proliferative and tumorsuppressor lipids. Biochim Biophys Acta 1154 : 223-36.
1) Harwood JL (1980) Plant acyl lipids: structure, distribution, and analysis. In: the Biochemistry of Plants (Stumpf PK, Conn EE, eds), Vol 4, p. 1-55. Academic Press, New York.
30) Nilsson Å (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176 : 339-47.
11) Sugawara T, Miyazawa T (2001) Beneficial effect of dietary wheat glycolipids on cecum short-chain fatty acid and secondary bile acid profiles in mice. J Nutr Sci Vitaminol 47 : 299-305.
20) Wilpart M, Roberfroid M (1986) Effect of secondary biliary acids on the mutagenicity of N-methyl-N '-nitro-N-nitrosoguanidine, 2-acetylaminofluorene and 2-nitrofluorene towards Salmonella typhimurium strains. Carcinogenesis 7 : 703-6.
35) Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585 : 114-25.
16) Weaver GA, Krause JA, Miller TL, Wolin MJ (1988) Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: ana association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29 : 1539-43.
8) Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, Nilsson Å (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36 : 1392-400.
15) McIntyre A, Gibson PR, Young GP (1993) Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34 : 386-91.
5) Charlesworth JM (1978) Evaporative analyser as a mass detector for liquid chromatography. Anal Chem 50 : 1414-20.
6) Sugawara T, Miyazawa T (1999) Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34 : 1231-7.
19) Reddy BS, Engle A, Katsifis S, Simi B, Bartram HP, Perrino P, Mahan C (1989) Biochemical epidemiology of colon cancer: effect of type of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer Res 49 : 4629-35.
References_xml – reference: 3) Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FESEB J 10 : 1388-97.
– reference: 24) Lynch DV (1993) Sphingolipids. In: Lipid Metabolism in Plants (Moore TS, ed), p. 285-308. CRC Press, Florida.
– reference: 27) Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P, Chaminade P, Laprévote O (2005) Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem 382 : 1209-16.
– reference: 14) Hague A, Manning AM, Hanlon KA, Huschtscha LI, Hart D, Paraskeva C (1993) Sodium butyrate induces apoptosis in human colonic tumor cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int J Cancer 55 : 498-505.
– reference: 20) Wilpart M, Roberfroid M (1986) Effect of secondary biliary acids on the mutagenicity of N-methyl-N '-nitro-N-nitrosoguanidine, 2-acetylaminofluorene and 2-nitrofluorene towards Salmonella typhimurium strains. Carcinogenesis 7 : 703-6.
– reference: 33) Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68 : 2541-6.
– reference: 36) Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124 : 615-20.
– reference: 39) Aida K, Kinoshita M, Sugawara T, Ono J, Miyazawa T, Ohnishi M (2004) Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. J Oleo Sci 53 : 503-10.
– reference: 30) Nilsson Å (1969) The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta 176 : 339-47.
– reference: 10) Sugawara T, Miyazawa T (2000) Digestion of plant monogalactosyldiacylglycerol and digalactosyldiacylglycerol in rat alimentary canal. J Nutr Biochem 11 : 147-52.
– reference: 32) Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133 : 2777-82.
– reference: 11) Sugawara T, Miyazawa T (2001) Beneficial effect of dietary wheat glycolipids on cecum short-chain fatty acid and secondary bile acid profiles in mice. J Nutr Sci Vitaminol 47 : 299-305.
– reference: 21) Baijal PK, Fitzpatrick DW, Bird RP (1998) Comparative effects of secondary bile acids, deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postinitiation phases of colon carcinogenesis. Nutr Cancer 31 : 81-9.
– reference: 34) Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585 : 153-62.
– reference: 31) Nilsson Å (1969) Metabolism of cerebroside in the intestinal tract of the rat. Biochim Biophys Acta 187 : 113-21.
– reference: 12) Roediger WEW (1980) Role of anaerobic bacteria in the metabolism welfare of the colonic mucosa in man. Gut 21 : 193-98.
– reference: 22) Owen RW, Thompson MH, Hill MJ, Wilpart M, Maingunet P, Roberfroid M (1987) The importance of the ratio of lithocholic to deoxycholic acid in large bowel carcinogenesis. Nutr Cancer 9 : 67-71.
– reference: 13) Sakata T (1987) Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58 : 95-103.
– reference: 18) Reddy BS, Mangat A, Sheinfil A, Weisburger JH, Wynder EL (1997) Effect of type and amount of dietary fat and 1,2-dimethylhydrazine on biliary bile acids, fecal bile acids, and neutral sterols on rats. Cancer Res 37 : 2132-7.
– reference: 9) Ohlsson L, Blom M, Bohlinder K, Carlsson A, Nilsson Å (1998) Orally fed digalactosyldiacylglycerol is degraded during absorption in intact and lymphatic duct cannulated rats. J Nutr 128 : 239-45.
– reference: 26) Renkonen O, Hirvisalo EL (1969) Structure of plasma sphingadienine. J Lipid Res 10 : 687-93.
– reference: 19) Reddy BS, Engle A, Katsifis S, Simi B, Bartram HP, Perrino P, Mahan C (1989) Biochemical epidemiology of colon cancer: effect of type of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer Res 49 : 4629-35.
– reference: 40) Sugawara T, Zaima N, Yamamoto A, Noguchi R, Sakai S, Hirata T (2006) Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Biosci Biotechnol Biochem 70 : 2906-12.
– reference: 28) Colsch B, Afonso C, Popa I, Portoukalian J, Fournier F, Tabet JC, Baumann N (2004) Characterization of the ceramide moieties of sphingoglycolipids from mouse brain by ESI-MS/MS: identification of ceramides containing sphingadienine. J Lipid Res 45 : 281-6.
– reference: 25) Takakuwa N, Kinoshita M, Oda Y, Ohnishi M (2002) Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res 2 : 533-8.
– reference: 5) Charlesworth JM (1978) Evaporative analyser as a mass detector for liquid chromatography. Anal Chem 50 : 1414-20.
– reference: 2) Hannun YA, Linardic CM (1993) Sphingolipids breakdown products: anti-proliferative and tumorsuppressor lipids. Biochim Biophys Acta 1154 : 223-36.
– reference: 17) Wilpart M, Mainguest P, Maskens A, Roberfroid M (1983) Mutagenicity of 1,2-Dimethylhydrazine towards Salmonella typhimuruim, co-mutagenic effect of secondary biliary acids. Carcinogenesis 4 : 45-8.
– reference: 7) Bajwa SS, Sastry PS (1974) Degradation of monogalactosyl diglyceride and digalactosyl diglyceride by sheep pancreatic enzymes. Biochem J 144 : 177-87.
– reference: 1) Harwood JL (1980) Plant acyl lipids: structure, distribution, and analysis. In: the Biochemistry of Plants (Stumpf PK, Conn EE, eds), Vol 4, p. 1-55. Academic Press, New York.
– reference: 29) Nilsson Å (1968) Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta 164 : 575-84.
– reference: 6) Sugawara T, Miyazawa T (1999) Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34 : 1231-7.
– reference: 4) Igarashi Y (1997) Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosine: in regard to membrane sphingolipid signaling pathways. J Biochem 122 : 1080-7.
– reference: 37) Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1,2-dimethylhydrazine-treated CF1 mice. J Nutr 130 : 522-27.
– reference: 38) Sugawara T, Kinoshita M, Ohnishi M, Miyazawa T (2002) Apoptosis induction by wheat-flour sphingoid bases in DLD-1 human colon cancer cells. Biosci Biotechnol Biochem 66 : 2228-31.
– reference: 8) Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, Nilsson Å (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36 : 1392-400.
– reference: 16) Weaver GA, Krause JA, Miller TL, Wolin MJ (1988) Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: ana association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29 : 1539-43.
– reference: 35) Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585 : 114-25.
– reference: 15) McIntyre A, Gibson PR, Young GP (1993) Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34 : 386-91.
– reference: 23) Owen RW, Dodo M, Thompson MH, Hill MJ (1987) Fecal steroids and colorectal cancer. Nutr Cancer 9 : 73-80.
– reference: 41) Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydradine-treated mice. J Oleo Sci 54 : 45-9.
SSID ssib000872038
ssib004261863
ssib005879711
ssib001525703
ssib003104427
ssib003171075
ssib020470628
ssj0066767
ssib007833630
ssib002484672
ssib016445864
ssib004238776
ssib002484671
ssib002483740
ssib031740826
Score 1.710127
Snippet 糖脂質は自然界に普遍的に存在し, 日常的に食品成分として摂取されている。にもかかわらず, その消化管吸収機構や栄養機能についてはほとんど知られていなかった。本研...
糖脂質は自然界に普遍的に存在し, 日常的に食品成分として摂取されている. にもかかわらず, その消化管吸収機構や栄養機能についてはほとんど知られていなかった. 本研...
SourceID affrit
medicalonline
jstage
SourceType Open Access Repository
Publisher
StartPage 11
SubjectTerms グリセロ糖脂質
スフィンゴ糖脂質
大腸がん
消化管吸収
糖脂質
Title 糖脂質の消化管吸収と栄養生理機能に関する研究
URI https://www.jstage.jst.go.jp/article/jsnfs/60/1/60_1_11/_article/-char/ja
http://mol.medicalonline.jp/en/journal/download?GoodsID=da0eisho/2007/006001/002&name=0011-0017j
https://agriknowledge.affrc.go.jp/RN/2010734120
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本栄養・食糧学会誌, 2007/02/10, Vol.60(1), pp.11-17
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-2849
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0066767
  issn: 0287-3516
  databaseCode: KQ8
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB9qvQgifuL6xR4cL2VrMpNkJjeTbWoRLAgt9BYmu9nuh3ZLd3vQ29YioqI9lIKnVhG0Cr0Uihf_mqXd9r_wvUxisyJivWRnXzIfeW_y5r35-D1CbseuGTFWsUuK87hkQVtLSgmzpJiIrapjOTKJsfRw2pmatR7M2XMjI59zu5aWu9F45dkfz5X8j1SBBnLFU7InkOyvQoEAaZAvXEHCcP0nGdNAUJ9T16GBpBKsQoYJoHgeDTgYidQLaOBQ36FS0sCmspw8LJDumUhxDerrW5NUBlkuibk8A8sMXOpByR7mci3qTiYJuOUkz7gJBWrn1J_IsvuYCyryWEpx3STBqPST2g0sChMutC1vH0836tAdg8bTNi2XsXqcnK23WyD5lDJ2X7VaqjHWqTeyzpLUD823k_cIsEWQDduAVUNFFvWxnUMzHCKnAhmqQFufxsz0tY4_MNQvtfJNtbYexvWJ0N8HCIszXKJudhZqnXGcVzOPx8FhxO1abakSzrfD5mJomCFClRmguk6R0wwnfnD1_1HejsXV7PzyIwYHzNtBkoscqA7Y1JbFcn6cCYaeGPZrZQ4XzZbCFTlFLCTnOVw3cHktOwezzwxL4NnY7D8Uj3HFncxEwX3NCY5Axl59cBWZczfHGjDKkA0NdLma4KsgCMXZJ3r9UOO45EyxmfPkXOpDFT39QVwgI011kRQmGnG3eKeYAt0-Lk5ncSYuEX-wu3G4unK4-7Xf2znYe7n_ZmOw82F_7fv-u7f93peDrdWjT68G65uDtRcH25uHz3_0e9-ONj72e-_7K68HW-uD7b3LZHYymClPldLgIaB1pG2Vag4XMLhUFQISRRXbdlwG5ndsxKZAjEWBYIgwgNmRYLzKa8qssipzKg4oLoRY41fI6EJ7Ib5KijUpBAcOV9DfULVqJCLOVSSZMlUcGdUCMTSfQjW_dDwXHv6lHxWIqzkaLmpQmTBVImHC_9AB11xfwD_PbuE5zLCpCuTekBDCVCN1QnjZuNGptzG2LG4rQWcGfliycTVMoLEw6rPFrp28xdfJGb2sgbOPN8hod2k5vgn2eDe6lXwLPwHPYMKN
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%B3%96%E8%84%82%E8%B3%AA%E3%81%AE%E6%B6%88%E5%8C%96%E7%AE%A1%E5%90%B8%E5%8F%8E%E3%81%A8%E6%A0%84%E9%A4%8A%E7%94%9F%E7%90%86%E6%A9%9F%E8%83%BD%E3%81%AB%E9%96%A2%E3%81%99%E3%82%8B%E7%A0%94%E7%A9%B6&rft.jtitle=Nihon+Eiyo%CC%84%2C+Shokuryo%CC%84+Gakkai+shi&rft.au=%E8%8F%85%E5%8E%9F%2C+%E9%81%94%E4%B9%9F&rft.date=2007&rft.issn=0287-3516&rft.volume=60&rft.issue=1&rft.spage=11&rft.epage=17&rft_id=info:doi/10.4327%2Fjsnfs.60.11&rft.externalDocID=oai_affrc_go_jp_01_00550794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0287-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0287-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0287-3516&client=summon