IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics

One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying o...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 22; no. 9; pp. 2827 - 2835
Main Authors Postoenko, Valeriy I., Garibova, Leyla A., Levitsky, Lev I., Bubis, Julia A., Gorshkov, Mikhail V., Ivanov, Mark V.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.09.2023
Subjects
Online AccessGet full text
ISSN1535-3893
1535-3907
1535-3907
DOI10.1021/acs.jproteome.3c00075

Cover

Abstract One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.
AbstractList One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.
One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.
One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.
Author Garibova, Leyla A.
Levitsky, Lev I.
Bubis, Julia A.
Ivanov, Mark V.
Postoenko, Valeriy I.
Gorshkov, Mikhail V.
AuthorAffiliation V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
National Research University
Moscow Institute of Physics and Technology
AuthorAffiliation_xml – name: National Research University
– name: Moscow Institute of Physics and Technology
– name: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
Author_xml – sequence: 1
  givenname: Valeriy I.
  orcidid: 0000-0003-4967-9037
  surname: Postoenko
  fullname: Postoenko, Valeriy I.
  organization: National Research University
– sequence: 2
  givenname: Leyla A.
  surname: Garibova
  fullname: Garibova, Leyla A.
  organization: National Research University
– sequence: 3
  givenname: Lev I.
  orcidid: 0000-0002-4048-0876
  surname: Levitsky
  fullname: Levitsky, Lev I.
  organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
– sequence: 4
  givenname: Julia A.
  surname: Bubis
  fullname: Bubis, Julia A.
  organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
– sequence: 5
  givenname: Mikhail V.
  orcidid: 0000-0001-9572-3452
  surname: Gorshkov
  fullname: Gorshkov, Mikhail V.
  organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
– sequence: 6
  givenname: Mark V.
  orcidid: 0000-0003-4762-2846
  surname: Ivanov
  fullname: Ivanov, Mark V.
  email: markmipt@gmail.com
  organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37579078$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uGyEURlGVqPlpH6EVy27swgAe3K6s2GktxUqqNmsE-JISzYADjJS8fUnH7qIbr0DifJer812gkxADIPSBkiklDf2sbZ4-7lIsEHuYMksIacUbdE4FExM2J-3J4S7n7Axd5PxICBUtYW_RGWtFWxF5jp7WPzabxRe8cs5bD6HgzU-K16FAyL684NVzSdoWHwO-8zvofAB8n314wJuhK37XAb4GXYYEeAkFRnLRPcTky-8-YxcTXi4X-G7c1Nv8Dp063WV4vz8v0f316tfV98nN7bf11eJmopnkZeKgpe3WaemIlkzQLTfczbg0gjMnyFaAkKxtZ6ANt6YxglJitDSNkI2ZS80u0adxbpX0NEAuqvfZQtfpAHHIihFOuOR8Lo6ijazTeUPErKIf9-hgetiqXfK9Ti_qYLQCX0fApphzAqesL_pVSxXpO0WJeu1P1f7Uv_7Uvr-aFv-lDx8cy9Ex9_c5DilUtUcyfwCFjLUU
CitedBy_id crossref_primary_10_1021_acs_jproteome_4c00677
Cites_doi 10.1002/mas.21595
10.1002/0471250953.bi1323s44
10.1074/mcp.RA119.001705
10.1021/pr2002116
10.1021/acs.analchem.9b05095
10.3390/ijms21082873
10.1074/mcp.O117.067728
10.1021/jasms.0c00281
10.1002/rcm.9045
10.9754/journal.wplus.2013.0052
10.1038/nmeth.1714
10.1038/nbt.1592
10.1074/mcp.TIR119.001720
10.1002/pmic.201000595
10.1038/s41597-022-01216-6
10.1074/mcp.R113.027797
10.1074/mcp.RA118.001018
10.3389/fonc.2020.543997
10.1021/pr501045t
10.1021/pr300992u
10.1007/978-1-0716-1967-4_16
10.1007/978-1-4939-6747-6_23
10.1021/acs.jproteome.6b00016
10.1002/pmic.201800280
10.1038/nmeth.4256
10.1074/mcp.M111.007690
10.1074/mcp.R600008-MCP200
10.1186/s12014-020-09283-w
10.1021/acs.jproteome.9b00492
10.1038/ncomms6277
10.1074/mcp.M112.026500
10.1021/acs.jproteome.7b00248
10.1074/mcp.TIR120.002048
10.1021/pr060161n
10.1021/pr9006365
10.1371/journal.pone.0277122
10.1016/j.molcel.2016.12.005
10.1021/acs.jproteome.7b00640
10.1074/mcp.M113.031591
10.3390/cancers13215268
10.15252/msb.20178126
10.1074/mcp.M500061-MCP200
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jproteome.3c00075
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1535-3907
EndPage 2835
ExternalDocumentID 37579078
10_1021_acs_jproteome_3c00075
b9926818
Genre Journal Article
GroupedDBID ---
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a384t-fe717dfa8f0a8351d4b4f648b543f50d5e583776eab4cb2b5110ba8b2582b98a3
IEDL.DBID ACS
ISSN 1535-3893
1535-3907
IngestDate Wed Oct 01 14:07:44 EDT 2025
Fri Jul 11 17:03:54 EDT 2025
Mon Jul 21 05:55:12 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 01:32:14 EDT 2025
Mon Sep 04 05:32:46 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords feature detection
mass spectrometry
protein quantitation
bioinformatics
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a384t-fe717dfa8f0a8351d4b4f648b543f50d5e583776eab4cb2b5110ba8b2582b98a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9572-3452
0000-0003-4762-2846
0000-0002-4048-0876
0000-0003-4967-9037
PMID 37579078
PQID 2851142056
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3040484495
proquest_miscellaneous_2851142056
pubmed_primary_37579078
crossref_citationtrail_10_1021_acs_jproteome_3c00075
crossref_primary_10_1021_acs_jproteome_3c00075
acs_journals_10_1021_acs_jproteome_3c00075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1002/mas.21595
– ident: ref24/cit24
  doi: 10.1002/0471250953.bi1323s44
– ident: ref12/cit12
  doi: 10.1074/mcp.RA119.001705
– ident: ref25/cit25
  doi: 10.1021/pr2002116
– ident: ref39/cit39
  doi: 10.1021/acs.analchem.9b05095
– ident: ref27/cit27
  doi: 10.3390/ijms21082873
– ident: ref37/cit37
  doi: 10.1074/mcp.O117.067728
– ident: ref38/cit38
  doi: 10.1021/jasms.0c00281
– ident: ref14/cit14
  doi: 10.1002/rcm.9045
– ident: ref26/cit26
  doi: 10.9754/journal.wplus.2013.0052
– ident: ref6/cit6
  doi: 10.1038/nmeth.1714
– ident: ref9/cit9
  doi: 10.1038/nbt.1592
– ident: ref17/cit17
  doi: 10.1074/mcp.TIR119.001720
– ident: ref22/cit22
  doi: 10.1002/pmic.201000595
– ident: ref31/cit31
  doi: 10.1038/s41597-022-01216-6
– ident: ref21/cit21
  doi: 10.1074/mcp.R113.027797
– ident: ref20/cit20
  doi: 10.1074/mcp.RA118.001018
– ident: ref28/cit28
  doi: 10.3389/fonc.2020.543997
– ident: ref30/cit30
  doi: 10.1021/pr501045t
– ident: ref19/cit19
  doi: 10.1021/pr300992u
– ident: ref29/cit29
  doi: 10.1007/978-1-0716-1967-4_16
– ident: ref33/cit33
  doi: 10.1007/978-1-4939-6747-6_23
– ident: ref34/cit34
  doi: 10.1021/acs.jproteome.6b00016
– ident: ref36/cit36
  doi: 10.1002/pmic.201800280
– ident: ref41/cit41
  doi: 10.1038/nmeth.4256
– ident: ref23/cit23
  doi: 10.1074/mcp.M111.007690
– ident: ref2/cit2
  doi: 10.1074/mcp.R600008-MCP200
– ident: ref1/cit1
  doi: 10.1186/s12014-020-09283-w
– ident: ref40/cit40
  doi: 10.1021/acs.jproteome.9b00492
– ident: ref42/cit42
  doi: 10.1038/ncomms6277
– ident: ref4/cit4
  doi: 10.1074/mcp.M112.026500
– ident: ref13/cit13
  doi: 10.1021/acs.jproteome.7b00248
– ident: ref18/cit18
  doi: 10.1074/mcp.TIR120.002048
– ident: ref7/cit7
  doi: 10.1021/pr060161n
– ident: ref10/cit10
  doi: 10.1021/pr9006365
– ident: ref15/cit15
  doi: 10.1371/journal.pone.0277122
– ident: ref5/cit5
  doi: 10.1016/j.molcel.2016.12.005
– ident: ref35/cit35
  doi: 10.1021/acs.jproteome.7b00640
– ident: ref16/cit16
  doi: 10.1074/mcp.M113.031591
– ident: ref32/cit32
  doi: 10.3390/cancers13215268
– ident: ref3/cit3
  doi: 10.15252/msb.20178126
– ident: ref8/cit8
  doi: 10.1074/mcp.M500061-MCP200
SSID ssj0015703
Score 2.4271698
Snippet One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and...
One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2827
SubjectTerms algorithms
Escherichia coli
glioblastoma
humans
peptides
proteome
proteomics
yeasts
Title IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics
URI http://dx.doi.org/10.1021/acs.jproteome.3c00075
https://www.ncbi.nlm.nih.gov/pubmed/37579078
https://www.proquest.com/docview/2851142056
https://www.proquest.com/docview/3040484495
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS online
  customDbUrl:
  eissn: 1535-3907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015703
  issn: 1535-3893
  databaseCode: ACS
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8cBexs-xAkOexBNSssaxE2dvUdtpIGUqGpP2FtnOeRS2djSpBPz1s-OkEpqqwWtk54d9zn2n--47gA8RF6mRLAqQog1QkkQE0jhmThRlKklVojJX71ycJacX7PMlv9yCow0ZfBodSV2H31vRgsUNhrFuvdwjeEyTNHUcvnx0vk4bODkpL5DKA-eJ-5KdTbdxLknXf7ukDTiz9TcnT2HaV-14msmPcNWoUP-5L-L4r5_yDHY77ElybyzPYQvnL-DJqG_59hJ-fvpSFPkxmbS6EtYdkeI8Ih3LvflNJr-apS-EINPZratkR9JyDkjR8RKJg5SrJZIxNuhH5tdXi-Ws-XZTEwuQyXick6l_uZmuX8HFyeTr6DToejIEMhasCQza-K8yUpihtOAtqphiJmFCcRYbPqw4chvypglKxbSiyuK5oZJCUS6oyoSM92B7vpjjPhBkBp2hUIOcqUrLKuaVzrJKqsy1whnAR7tgZXem6rJNl9OobC_2q1h2qzgA1u9hqTt1c9dk4_qhaeF62q2X93howmFvIKXdHJddkXNcrOqSOuzKqAWUm8fE9pfJBLNB6QBee-taPzZOeZpZwPbmfz77LexQi7o86e0dbDfLFR5YlNSo9-3JuAPlQhDU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8x9sBe-BjbKGPMSDxNSlc7tuPsLWqLykYQE6DxFtmJPcqgZU0qbfvrZztJJyZViFfLdvxxzv1Od_c7gEPMRGQkxYEm2hoonItAGheZg3GseKS4il2-c3rKR5f08xW7WgHe5sLYRZR2ptI78f-xC-CPru3GcxdM73Q3zL2yewbPGafYGV1J_3zhPXCsUjVPKgucQm4zd5ZN4zRTXj7UTEvgplc7RxvwbbFgH23yozuvVDf_8x-X49N3tAnrDRJFSS06W7CiJy9hrd8WgNuGn8df0zT5hIaeZcIqJ5SeY9TEvFe_0fBXNavTItDZ-N7ltWvkIxBQ2kQpIgcw5zONBrrSdc_k9vt0Nq6u70pk4TIaDBJ0Vi9unJev4PJoeNEfBU2FhkCGglaB0dYaLIwUpictlMMFVdRwKhSjoWG9gmlmDeCIa6loroiy6K6npFCECaJiIcPXsDqZTvQOIE2NdmJDjGZUFbksQlbkcVxIFbvCOB34YA8sa15YmXnnOcGZb2xPMWtOsQO0vcosb7jOXcmN28eGdRfD7muyj8cGHLRyktnLcb4WOdHTeZkRh2QpsfByeZ_Q_kCpoNZE7cCbWsgWnw0jFsUWvu0-ZdvvYW10kZ5kJ8enX97CC2LxWB0Otwer1Wyu31n8VKl9_1j-AnwHGTY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSLAXxvgYZYMZiSeklMaxE4e3qh_agExFY9IkHiI7OUNha0uTSht__c6OUwmkaoJXy3b8cZf7WXf3O0LehEImRvEwAAb4QIljGShjI3PCMNVxomOd2nzn7CQ-OuMfzsW5j6q0uTC4iApnqpwT32r1ojSeYSB8Z9t_OP6C-SV0o8IZvLvknohR3S0sGpyuPQiWWarhShWBNcpt9s6maax1Kqo_rdMGyOlMz3iHfF0v2kWc_Oyuat0tfv_F5_h_u3pEHnpESvuNCO2SOzB7TB4M2kJwT8iv489Z1n9PR45tAo0UzU5D6mPf62s6uqqXTXoEnUwXNr8dqItEoJmPVqQWaK6WQIdQQ9Ozf_FtvpzW3y8rirCZDod9OmkWNy2qp-RsPPoyOAp8pYZARZLXgQF8FZZGSdNTCOnCkmtuYi614JERvVKAwIdwEoPSvNBMI8rraSU1E5LpVKroGdmazWfwnFDgBqz4MAOC67JQZSTKIk1LpVNbIKdD3uKB5V7Tqtw50VmYu8b2FHN_ih3C2-vMC895bktvXNw2rLsetmhIP24b8LqVlRwvx_pc1AzmqypnFtFyhjBzc58If6RccnyqdsheI2jrz0aJSFKEcS_-ZduH5P5kOM4_HZ983CfbDGFZExV3QLbq5QpeIoyq9SunLzdmWhu5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IQMMA%3A+Efficient+MS1+Intensity+Extraction+Pipeline+Using+Multiple+Feature+Detection+Algorithms+for+DDA+Proteomics&rft.jtitle=Journal+of+proteome+research&rft.au=Postoenko%2C+Valeriy+I.&rft.au=Garibova%2C+Leyla+A.&rft.au=Levitsky%2C+Lev+I.&rft.au=Bubis%2C+Julia+A.&rft.date=2023-09-01&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=22&rft.issue=9&rft.spage=2827&rft.epage=2835&rft_id=info:doi/10.1021%2Facs.jproteome.3c00075&rft.externalDocID=b9926818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon