IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics
One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying o...
Saved in:
| Published in | Journal of proteome research Vol. 22; no. 9; pp. 2827 - 2835 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
01.09.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1535-3893 1535-3907 1535-3907 |
| DOI | 10.1021/acs.jproteome.3c00075 |
Cover
| Abstract | One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license. |
|---|---|
| AbstractList | One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and
digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license. One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license.One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license. One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and matching them to MS/MS-based peptide identifications. A number of peptide feature detection tools became available in recent years, each relying on its own matching algorithm. Here, we provide an integrated solution, the intensity-based Quantitative Mix and Match Approach (IQMMA), which integrates a number of untargeted peptide feature detection algorithms and returns the most probable intensity values for the MS/MS-based identifications. IQMMA was tested using available proteomic data acquired for both well-characterized (ground truth) and real-world biological samples, including a mix of Yeast and E. coli digests spiked at different concentrations into the Human K562 digest used as a background, and a set of glioblastoma cell lines. Three open-source feature detection algorithms were integrated: Dinosaur, biosaur2, and OpenMS FeatureFinder. None of them was found optimal when applied individually to all the data sets employed in this work; however, their combined use in IQMMA improved efficiency of subsequent protein quantitation. The software implementing IQMMA is freely available at https://github.com/PostoenkoVI/IQMMA under Apache 2.0 license. |
| Author | Garibova, Leyla A. Levitsky, Lev I. Bubis, Julia A. Ivanov, Mark V. Postoenko, Valeriy I. Gorshkov, Mikhail V. |
| AuthorAffiliation | V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences National Research University Moscow Institute of Physics and Technology |
| AuthorAffiliation_xml | – name: National Research University – name: Moscow Institute of Physics and Technology – name: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences |
| Author_xml | – sequence: 1 givenname: Valeriy I. orcidid: 0000-0003-4967-9037 surname: Postoenko fullname: Postoenko, Valeriy I. organization: National Research University – sequence: 2 givenname: Leyla A. surname: Garibova fullname: Garibova, Leyla A. organization: National Research University – sequence: 3 givenname: Lev I. orcidid: 0000-0002-4048-0876 surname: Levitsky fullname: Levitsky, Lev I. organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences – sequence: 4 givenname: Julia A. surname: Bubis fullname: Bubis, Julia A. organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences – sequence: 5 givenname: Mikhail V. orcidid: 0000-0001-9572-3452 surname: Gorshkov fullname: Gorshkov, Mikhail V. organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences – sequence: 6 givenname: Mark V. orcidid: 0000-0003-4762-2846 surname: Ivanov fullname: Ivanov, Mark V. email: markmipt@gmail.com organization: V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37579078$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uGyEURlGVqPlpH6EVy27swgAe3K6s2GktxUqqNmsE-JISzYADjJS8fUnH7qIbr0DifJer812gkxADIPSBkiklDf2sbZ4-7lIsEHuYMksIacUbdE4FExM2J-3J4S7n7Axd5PxICBUtYW_RGWtFWxF5jp7WPzabxRe8cs5bD6HgzU-K16FAyL684NVzSdoWHwO-8zvofAB8n314wJuhK37XAb4GXYYEeAkFRnLRPcTky-8-YxcTXi4X-G7c1Nv8Dp063WV4vz8v0f316tfV98nN7bf11eJmopnkZeKgpe3WaemIlkzQLTfczbg0gjMnyFaAkKxtZ6ANt6YxglJitDSNkI2ZS80u0adxbpX0NEAuqvfZQtfpAHHIihFOuOR8Lo6ijazTeUPErKIf9-hgetiqXfK9Ti_qYLQCX0fApphzAqesL_pVSxXpO0WJeu1P1f7Uv_7Uvr-aFv-lDx8cy9Ex9_c5DilUtUcyfwCFjLUU |
| CitedBy_id | crossref_primary_10_1021_acs_jproteome_4c00677 |
| Cites_doi | 10.1002/mas.21595 10.1002/0471250953.bi1323s44 10.1074/mcp.RA119.001705 10.1021/pr2002116 10.1021/acs.analchem.9b05095 10.3390/ijms21082873 10.1074/mcp.O117.067728 10.1021/jasms.0c00281 10.1002/rcm.9045 10.9754/journal.wplus.2013.0052 10.1038/nmeth.1714 10.1038/nbt.1592 10.1074/mcp.TIR119.001720 10.1002/pmic.201000595 10.1038/s41597-022-01216-6 10.1074/mcp.R113.027797 10.1074/mcp.RA118.001018 10.3389/fonc.2020.543997 10.1021/pr501045t 10.1021/pr300992u 10.1007/978-1-0716-1967-4_16 10.1007/978-1-4939-6747-6_23 10.1021/acs.jproteome.6b00016 10.1002/pmic.201800280 10.1038/nmeth.4256 10.1074/mcp.M111.007690 10.1074/mcp.R600008-MCP200 10.1186/s12014-020-09283-w 10.1021/acs.jproteome.9b00492 10.1038/ncomms6277 10.1074/mcp.M112.026500 10.1021/acs.jproteome.7b00248 10.1074/mcp.TIR120.002048 10.1021/pr060161n 10.1021/pr9006365 10.1371/journal.pone.0277122 10.1016/j.molcel.2016.12.005 10.1021/acs.jproteome.7b00640 10.1074/mcp.M113.031591 10.3390/cancers13215268 10.15252/msb.20178126 10.1074/mcp.M500061-MCP200 |
| ContentType | Journal Article |
| Copyright | 2023 American Chemical Society |
| Copyright_xml | – notice: 2023 American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1021/acs.jproteome.3c00075 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1535-3907 |
| EndPage | 2835 |
| ExternalDocumentID | 37579078 10_1021_acs_jproteome_3c00075 b9926818 |
| Genre | Journal Article |
| GroupedDBID | --- 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F ZA5 AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-a384t-fe717dfa8f0a8351d4b4f648b543f50d5e583776eab4cb2b5110ba8b2582b98a3 |
| IEDL.DBID | ACS |
| ISSN | 1535-3893 1535-3907 |
| IngestDate | Wed Oct 01 14:07:44 EDT 2025 Fri Jul 11 17:03:54 EDT 2025 Mon Jul 21 05:55:12 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 01:32:14 EDT 2025 Mon Sep 04 05:32:46 EDT 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | feature detection mass spectrometry protein quantitation bioinformatics |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a384t-fe717dfa8f0a8351d4b4f648b543f50d5e583776eab4cb2b5110ba8b2582b98a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9572-3452 0000-0003-4762-2846 0000-0002-4048-0876 0000-0003-4967-9037 |
| PMID | 37579078 |
| PQID | 2851142056 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3040484495 proquest_miscellaneous_2851142056 pubmed_primary_37579078 crossref_citationtrail_10_1021_acs_jproteome_3c00075 crossref_primary_10_1021_acs_jproteome_3c00075 acs_journals_10_1021_acs_jproteome_3c00075 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of proteome research |
| PublicationTitleAlternate | J. Proteome Res |
| PublicationYear | 2023 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
| References_xml | – ident: ref11/cit11 doi: 10.1002/mas.21595 – ident: ref24/cit24 doi: 10.1002/0471250953.bi1323s44 – ident: ref12/cit12 doi: 10.1074/mcp.RA119.001705 – ident: ref25/cit25 doi: 10.1021/pr2002116 – ident: ref39/cit39 doi: 10.1021/acs.analchem.9b05095 – ident: ref27/cit27 doi: 10.3390/ijms21082873 – ident: ref37/cit37 doi: 10.1074/mcp.O117.067728 – ident: ref38/cit38 doi: 10.1021/jasms.0c00281 – ident: ref14/cit14 doi: 10.1002/rcm.9045 – ident: ref26/cit26 doi: 10.9754/journal.wplus.2013.0052 – ident: ref6/cit6 doi: 10.1038/nmeth.1714 – ident: ref9/cit9 doi: 10.1038/nbt.1592 – ident: ref17/cit17 doi: 10.1074/mcp.TIR119.001720 – ident: ref22/cit22 doi: 10.1002/pmic.201000595 – ident: ref31/cit31 doi: 10.1038/s41597-022-01216-6 – ident: ref21/cit21 doi: 10.1074/mcp.R113.027797 – ident: ref20/cit20 doi: 10.1074/mcp.RA118.001018 – ident: ref28/cit28 doi: 10.3389/fonc.2020.543997 – ident: ref30/cit30 doi: 10.1021/pr501045t – ident: ref19/cit19 doi: 10.1021/pr300992u – ident: ref29/cit29 doi: 10.1007/978-1-0716-1967-4_16 – ident: ref33/cit33 doi: 10.1007/978-1-4939-6747-6_23 – ident: ref34/cit34 doi: 10.1021/acs.jproteome.6b00016 – ident: ref36/cit36 doi: 10.1002/pmic.201800280 – ident: ref41/cit41 doi: 10.1038/nmeth.4256 – ident: ref23/cit23 doi: 10.1074/mcp.M111.007690 – ident: ref2/cit2 doi: 10.1074/mcp.R600008-MCP200 – ident: ref1/cit1 doi: 10.1186/s12014-020-09283-w – ident: ref40/cit40 doi: 10.1021/acs.jproteome.9b00492 – ident: ref42/cit42 doi: 10.1038/ncomms6277 – ident: ref4/cit4 doi: 10.1074/mcp.M112.026500 – ident: ref13/cit13 doi: 10.1021/acs.jproteome.7b00248 – ident: ref18/cit18 doi: 10.1074/mcp.TIR120.002048 – ident: ref7/cit7 doi: 10.1021/pr060161n – ident: ref10/cit10 doi: 10.1021/pr9006365 – ident: ref15/cit15 doi: 10.1371/journal.pone.0277122 – ident: ref5/cit5 doi: 10.1016/j.molcel.2016.12.005 – ident: ref35/cit35 doi: 10.1021/acs.jproteome.7b00640 – ident: ref16/cit16 doi: 10.1074/mcp.M113.031591 – ident: ref32/cit32 doi: 10.3390/cancers13215268 – ident: ref3/cit3 doi: 10.15252/msb.20178126 – ident: ref8/cit8 doi: 10.1074/mcp.M500061-MCP200 |
| SSID | ssj0015703 |
| Score | 2.4271698 |
| Snippet | One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called “features”, in MS1 spectra and... One of the key steps in data dependent acquisition (DDA) proteomics is detection of peptide isotopic clusters, also called "features", in MS1 spectra and... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2827 |
| SubjectTerms | algorithms Escherichia coli glioblastoma humans peptides proteome proteomics yeasts |
| Title | IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics |
| URI | http://dx.doi.org/10.1021/acs.jproteome.3c00075 https://www.ncbi.nlm.nih.gov/pubmed/37579078 https://www.proquest.com/docview/2851142056 https://www.proquest.com/docview/3040484495 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: ACS online customDbUrl: eissn: 1535-3907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015703 issn: 1535-3893 databaseCode: ACS dateStart: 20020201 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8cBexs-xAkOexBNSssaxE2dvUdtpIGUqGpP2FtnOeRS2djSpBPz1s-OkEpqqwWtk54d9zn2n--47gA8RF6mRLAqQog1QkkQE0jhmThRlKklVojJX71ycJacX7PMlv9yCow0ZfBodSV2H31vRgsUNhrFuvdwjeEyTNHUcvnx0vk4bODkpL5DKA-eJ-5KdTbdxLknXf7ukDTiz9TcnT2HaV-14msmPcNWoUP-5L-L4r5_yDHY77ElybyzPYQvnL-DJqG_59hJ-fvpSFPkxmbS6EtYdkeI8Ih3LvflNJr-apS-EINPZratkR9JyDkjR8RKJg5SrJZIxNuhH5tdXi-Ws-XZTEwuQyXick6l_uZmuX8HFyeTr6DToejIEMhasCQza-K8yUpihtOAtqphiJmFCcRYbPqw4chvypglKxbSiyuK5oZJCUS6oyoSM92B7vpjjPhBkBp2hUIOcqUrLKuaVzrJKqsy1whnAR7tgZXem6rJNl9OobC_2q1h2qzgA1u9hqTt1c9dk4_qhaeF62q2X93howmFvIKXdHJddkXNcrOqSOuzKqAWUm8fE9pfJBLNB6QBee-taPzZOeZpZwPbmfz77LexQi7o86e0dbDfLFR5YlNSo9-3JuAPlQhDU |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8x9sBe-BjbKGPMSDxNSlc7tuPsLWqLykYQE6DxFtmJPcqgZU0qbfvrZztJJyZViFfLdvxxzv1Od_c7gEPMRGQkxYEm2hoonItAGheZg3GseKS4il2-c3rKR5f08xW7WgHe5sLYRZR2ptI78f-xC-CPru3GcxdM73Q3zL2yewbPGafYGV1J_3zhPXCsUjVPKgucQm4zd5ZN4zRTXj7UTEvgplc7RxvwbbFgH23yozuvVDf_8x-X49N3tAnrDRJFSS06W7CiJy9hrd8WgNuGn8df0zT5hIaeZcIqJ5SeY9TEvFe_0fBXNavTItDZ-N7ltWvkIxBQ2kQpIgcw5zONBrrSdc_k9vt0Nq6u70pk4TIaDBJ0Vi9unJev4PJoeNEfBU2FhkCGglaB0dYaLIwUpictlMMFVdRwKhSjoWG9gmlmDeCIa6loroiy6K6npFCECaJiIcPXsDqZTvQOIE2NdmJDjGZUFbksQlbkcVxIFbvCOB34YA8sa15YmXnnOcGZb2xPMWtOsQO0vcosb7jOXcmN28eGdRfD7muyj8cGHLRyktnLcb4WOdHTeZkRh2QpsfByeZ_Q_kCpoNZE7cCbWsgWnw0jFsUWvu0-ZdvvYW10kZ5kJ8enX97CC2LxWB0Otwer1Wyu31n8VKl9_1j-AnwHGTY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSLAXxvgYZYMZiSeklMaxE4e3qh_agExFY9IkHiI7OUNha0uTSht__c6OUwmkaoJXy3b8cZf7WXf3O0LehEImRvEwAAb4QIljGShjI3PCMNVxomOd2nzn7CQ-OuMfzsW5j6q0uTC4iApnqpwT32r1ojSeYSB8Z9t_OP6C-SV0o8IZvLvknohR3S0sGpyuPQiWWarhShWBNcpt9s6maax1Kqo_rdMGyOlMz3iHfF0v2kWc_Oyuat0tfv_F5_h_u3pEHnpESvuNCO2SOzB7TB4M2kJwT8iv489Z1n9PR45tAo0UzU5D6mPf62s6uqqXTXoEnUwXNr8dqItEoJmPVqQWaK6WQIdQQ9Ozf_FtvpzW3y8rirCZDod9OmkWNy2qp-RsPPoyOAp8pYZARZLXgQF8FZZGSdNTCOnCkmtuYi614JERvVKAwIdwEoPSvNBMI8rraSU1E5LpVKroGdmazWfwnFDgBqz4MAOC67JQZSTKIk1LpVNbIKdD3uKB5V7Tqtw50VmYu8b2FHN_ih3C2-vMC895bktvXNw2rLsetmhIP24b8LqVlRwvx_pc1AzmqypnFtFyhjBzc58If6RccnyqdsheI2jrz0aJSFKEcS_-ZduH5P5kOM4_HZ983CfbDGFZExV3QLbq5QpeIoyq9SunLzdmWhu5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IQMMA%3A+Efficient+MS1+Intensity+Extraction+Pipeline+Using+Multiple+Feature+Detection+Algorithms+for+DDA+Proteomics&rft.jtitle=Journal+of+proteome+research&rft.au=Postoenko%2C+Valeriy+I.&rft.au=Garibova%2C+Leyla+A.&rft.au=Levitsky%2C+Lev+I.&rft.au=Bubis%2C+Julia+A.&rft.date=2023-09-01&rft.pub=American+Chemical+Society&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=22&rft.issue=9&rft.spage=2827&rft.epage=2835&rft_id=info:doi/10.1021%2Facs.jproteome.3c00075&rft.externalDocID=b9926818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon |