Kelvin Probe Force Microscopy Imaging of Plasticity in Hydrogenated Perovskite Nickelate Multilevel Neuromorphic Devices

Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic mem...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 19; no. 7; pp. 6815 - 6825
Main Authors Dey, Tamal, Lai, Xinyuan, Manna, Sukriti, Patel, Karan, Patel, Ranjan Kumar, Bisht, Ravindra Singh, Zhou, Yue, Shah, Shaan, Andrei, Eva Y., Sankaranarayanan, Subramanian K. R. S., Kuzum, Duygu, Schuman, Catherine, Ramanathan, Shriram
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.02.2025
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.4c11567

Cover

Abstract Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic memory represents a formidable challenge. Here, we present Kelvin probe force microscopy imaging of hydrogen-doped perovskite nickelate device channels subject to high-speed electric field pulses to directly visualize proton distribution by monitoring surface potential changes spatially, which is also supported with finite element-based electric field distribution studies. First-principles calculations provide mechanistic insights into the origin of surface potential changes as a function of hydrogen donor doping that serves as the contrast mechanism. We demonstrate 128 (7-bit) nonvolatile conductance levels in such devices relevant to in-memory computing applications. The synaptic plasticity measurements are implemented in spiking neural networks and show promising results for classification (SciKit Learn’s Iris and Wine data sets) and control (OpenAI’s CartPole-v1 and BipedalWalker-v3) simulation tasks.
AbstractList Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic memory represents a formidable challenge. Here, we present Kelvin probe force microscopy imaging of hydrogen-doped perovskite nickelate device channels subject to high-speed electric field pulses to directly visualize proton distribution by monitoring surface potential changes spatially, which is also supported with finite element-based electric field distribution studies. First-principles calculations provide mechanistic insights into the origin of surface potential changes as a function of hydrogen donor doping that serves as the contrast mechanism. We demonstrate 128 (7-bit) nonvolatile conductance levels in such devices relevant to in-memory computing applications. The synaptic plasticity measurements are implemented in spiking neural networks and show promising results for classification (SciKit Learn’s Iris and Wine data sets) and control (OpenAI’s CartPole-v1 and BipedalWalker-v3) simulation tasks.
Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic memory represents a formidable challenge. Here, we present Kelvin probe force microscopy imaging of hydrogen-doped perovskite nickelate device channels subject to high-speed electric field pulses to directly visualize proton distribution by monitoring surface potential changes spatially, which is also supported with finite element-based electric field distribution studies. First-principles calculations provide mechanistic insights into the origin of surface potential changes as a function of hydrogen donor doping that serves as the contrast mechanism. We demonstrate 128 (7-bit) nonvolatile conductance levels in such devices relevant to in-memory computing applications. The synaptic plasticity measurements are implemented in spiking neural networks and show promising results for classification (SciKit Learn’s Iris and Wine data sets) and control (OpenAI’s CartPole-v1 and BipedalWalker-v3) simulation tasks.
Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic memory represents a formidable challenge. Here, we present Kelvin probe force microscopy imaging of hydrogen-doped perovskite nickelate device channels subject to high-speed electric field pulses to directly visualize proton distribution by monitoring surface potential changes spatially, which is also supported with finite element-based electric field distribution studies. First-principles calculations provide mechanistic insights into the origin of surface potential changes as a function of hydrogen donor doping that serves as the contrast mechanism. We demonstrate 128 (7-bit) nonvolatile conductance levels in such devices relevant to in-memory computing applications. The synaptic plasticity measurements are implemented in spiking neural networks and show promising results for classification (SciKit Learn's Iris and Wine data sets) and control (OpenAI's CartPole-v1 and BipedalWalker-v3) simulation tasks.Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic memory represents a formidable challenge. Here, we present Kelvin probe force microscopy imaging of hydrogen-doped perovskite nickelate device channels subject to high-speed electric field pulses to directly visualize proton distribution by monitoring surface potential changes spatially, which is also supported with finite element-based electric field distribution studies. First-principles calculations provide mechanistic insights into the origin of surface potential changes as a function of hydrogen donor doping that serves as the contrast mechanism. We demonstrate 128 (7-bit) nonvolatile conductance levels in such devices relevant to in-memory computing applications. The synaptic plasticity measurements are implemented in spiking neural networks and show promising results for classification (SciKit Learn's Iris and Wine data sets) and control (OpenAI's CartPole-v1 and BipedalWalker-v3) simulation tasks.
Author Kuzum, Duygu
Manna, Sukriti
Sankaranarayanan, Subramanian K. R. S.
Patel, Karan
Ramanathan, Shriram
Schuman, Catherine
Patel, Ranjan Kumar
Bisht, Ravindra Singh
Andrei, Eva Y.
Dey, Tamal
Lai, Xinyuan
Shah, Shaan
Zhou, Yue
AuthorAffiliation Department of Electrical Engineering & Computer Science
University of Tennessee, Knoxville
Department of Electrical and Computer Engineering
Center for Nanoscale Materials
Argonne National Laboratory
Department of Physics and Astronomy
University of California
Rutgers University
University of Illinois
Department of Mechanical and Industrial Engineering
AuthorAffiliation_xml – name: Center for Nanoscale Materials
– name: Department of Electrical Engineering & Computer Science
– name: University of California
– name: Department of Physics and Astronomy
– name: University of Tennessee, Knoxville
– name: Department of Electrical and Computer Engineering
– name: Argonne National Laboratory
– name: Department of Mechanical and Industrial Engineering
– name: Rutgers University
– name: University of Illinois
Author_xml – sequence: 1
  givenname: Tamal
  orcidid: 0000-0003-4862-8107
  surname: Dey
  fullname: Dey, Tamal
  organization: Department of Electrical and Computer Engineering
– sequence: 2
  givenname: Xinyuan
  surname: Lai
  fullname: Lai, Xinyuan
  organization: Rutgers University
– sequence: 3
  givenname: Sukriti
  surname: Manna
  fullname: Manna, Sukriti
  organization: University of Illinois
– sequence: 4
  givenname: Karan
  orcidid: 0000-0002-3653-6523
  surname: Patel
  fullname: Patel, Karan
  organization: University of Tennessee, Knoxville
– sequence: 5
  givenname: Ranjan Kumar
  orcidid: 0000-0002-5778-4606
  surname: Patel
  fullname: Patel, Ranjan Kumar
  organization: Department of Electrical and Computer Engineering
– sequence: 6
  givenname: Ravindra Singh
  orcidid: 0000-0002-8225-7306
  surname: Bisht
  fullname: Bisht, Ravindra Singh
  organization: Department of Electrical and Computer Engineering
– sequence: 7
  givenname: Yue
  surname: Zhou
  fullname: Zhou, Yue
  organization: University of California
– sequence: 8
  givenname: Shaan
  surname: Shah
  fullname: Shah, Shaan
  organization: University of California
– sequence: 9
  givenname: Eva Y.
  orcidid: 0000-0002-2516-2749
  surname: Andrei
  fullname: Andrei, Eva Y.
  organization: Rutgers University
– sequence: 10
  givenname: Subramanian K. R. S.
  surname: Sankaranarayanan
  fullname: Sankaranarayanan, Subramanian K. R. S.
  organization: University of Illinois
– sequence: 11
  givenname: Duygu
  surname: Kuzum
  fullname: Kuzum, Duygu
  organization: University of California
– sequence: 12
  givenname: Catherine
  surname: Schuman
  fullname: Schuman, Catherine
  organization: University of Tennessee, Knoxville
– sequence: 13
  givenname: Shriram
  orcidid: 0000-0002-6685-6798
  surname: Ramanathan
  fullname: Ramanathan, Shriram
  email: shriram.ramanathan@rutgers.edu
  organization: Department of Electrical and Computer Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39932424$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVARbbecuSEfkdC2duwkzgmhQj9EP_bQStwsx5ls3Tp2aieh-fe42qXAAYmTR5733sy8t492nHeA0DtKDinJ6JHS0SnnD7mmNC_KV2iPVqxYElF833mpc7qL9mO8JyQvRVm8QbusqljGM76Hnr6BnYzDq-BrwCc-aMCXRgcfte9nfN6ptXFr7Fu8sioORpthxgl_NjfBr8GpARq8guCn-GAGwFdGP4BNv_hytIOxMIHFVzAG3_nQ3xmNv8BkNMQD9LpVNsLb7btAtydfb47PlhfXp-fHny-Wigk-LFWVVXlTZ5ySvGHpHk6qMm9FIXhVs6bWmSrKDEoOgpCqLZUSbUMJ46VgVS0EWyCy0R1dr-YfylrZB9OpMEtK5LOJcmui3JqYKJ82lH6sO2g0uCGo3zSvjPy748ydXPtJ0owxxhlNCh-2CsE_jhAH2ZmowVrlwI9RMlrknOYkxbBA7_8c9jLlV0QJcLQBPIcSA7T_sf_HDSM15L0fg0sG_xP9EyNBtjQ
Cites_doi 10.1117/1.JEI.31.1.010901
10.1021/acsnano.8b03977
10.1021/acsaelm.1c00030
10.1063/5.0082917
10.1109/VLSI-TSA48913.2020.9203744
10.1021/cm950192a
10.1002/ADFM.201600243
10.48550/arXiv.2307.15232
10.1016/j.susc.2016.04.007
10.1063/1.4896760
10.1103/PhysRevB.46.7157
10.1021/acsnano.3c09281
10.1021/acsnano.0c00767
10.1016/j.susc.2014.08.017
10.1063/5.0084784
10.1002/ADMA.202202722
10.1063/1.125039
10.1002/marc.200900220
10.1002/adfm.201909114
10.1063/1.4944842
10.1016/j.surfrep.2010.10.001
10.1103/PhysRevMaterials.7.085003
10.1016/j.apsusc.2020.147190
10.1103/PhysRevB.80.085305
10.1088/2634-4386/ac45e7
10.1021/acs.chemrev.4c00071
10.1063/1.105227
10.1021/acs.nanolett.3c04411
10.1103/PhysRevLett.77.3865
10.1021/acs.nanolett.2c03229
10.1021/acsami.0c07186
10.1021/acsami.0c15724
10.1021/nn505176a
10.35848/1347-4065/ad297b
10.1002/adfm.202316536
10.1021/acs.nanolett.3c02076
10.1021/acs.nanolett.2c03676
10.35848/1882-0786/acae53
10.1073/pnas.1805029115
10.1038/s41467-024-46682-1
10.1103/PhysRevApplied.5.044018
10.1146/annurev-matsci-070115-032057
10.1021/acs.jpclett.2c02001
10.1038/ncomms5860
10.1021/acsaelm.2c00711
10.1186/s42649-021-00056-9
ContentType Journal Article
Copyright 2025 American Chemical Society
2025 American Chemical Society 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
– notice: 2025 American Chemical Society 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acsnano.4c11567
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 6825
ExternalDocumentID 10.1021/acsnano.4c11567
PMC12333431
39932424
10_1021_acsnano_4c11567
h73851941
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHGD
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
EJD
LG6
UNPAY
ID FETCH-LOGICAL-a384t-a9295db24105d393640975f86849b3dbc2a672e74e8009f7aa8fd10347839b883
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Sun Sep 07 11:23:36 EDT 2025
Thu Aug 21 18:28:05 EDT 2025
Wed Oct 01 14:53:18 EDT 2025
Mon Aug 11 01:31:26 EDT 2025
Wed Oct 01 05:37:18 EDT 2025
Fri Aug 08 03:10:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords nickelates
memory
Kelvin probe force microscopy
neural networks
synaptic plasticity
imaging
neuromorphic computing
Language English
License https://creativecommons.org/licenses/by/4.0
This article is licensed under CC-BY 4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a384t-a9295db24105d393640975f86849b3dbc2a672e74e8009f7aa8fd10347839b883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4862-8107
0000-0002-2516-2749
0000-0002-8225-7306
0000-0002-3653-6523
0000-0002-5778-4606
0000-0002-6685-6798
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acsnano.4c11567
PMID 39932424
PQID 3165415099
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1021_acsnano_4c11567
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12333431
proquest_miscellaneous_3165415099
pubmed_primary_39932424
crossref_primary_10_1021_acsnano_4c11567
acs_journals_10_1021_acsnano_4c11567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-25
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1117/1.JEI.31.1.010901
– ident: ref33/cit33
  doi: 10.1021/acsnano.8b03977
– ident: ref38/cit38
  doi: 10.1021/acsaelm.1c00030
– ident: ref9/cit9
  doi: 10.1063/5.0082917
– ident: ref1/cit1
  doi: 10.1109/VLSI-TSA48913.2020.9203744
– ident: ref5/cit5
  doi: 10.1021/cm950192a
– ident: ref41/cit41
  doi: 10.1002/ADFM.201600243
– ident: ref45/cit45
  doi: 10.48550/arXiv.2307.15232
– ident: ref43/cit43
  doi: 10.1016/j.susc.2016.04.007
– ident: ref23/cit23
  doi: 10.1063/1.4896760
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.46.7157
– ident: ref18/cit18
  doi: 10.1021/acsnano.3c09281
– ident: ref25/cit25
  doi: 10.1021/acsnano.0c00767
– ident: ref44/cit44
  doi: 10.1016/j.susc.2014.08.017
– ident: ref8/cit8
  doi: 10.1063/5.0084784
– ident: ref36/cit36
  doi: 10.1002/ADMA.202202722
– ident: ref28/cit28
  doi: 10.1063/1.125039
– ident: ref29/cit29
  doi: 10.1002/marc.200900220
– ident: ref32/cit32
  doi: 10.1002/adfm.201909114
– ident: ref10/cit10
  doi: 10.1063/1.4944842
– ident: ref27/cit27
  doi: 10.1016/j.surfrep.2010.10.001
– ident: ref21/cit21
  doi: 10.1103/PhysRevMaterials.7.085003
– ident: ref34/cit34
  doi: 10.1016/j.apsusc.2020.147190
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.80.085305
– ident: ref46/cit46
  doi: 10.1088/2634-4386/ac45e7
– ident: ref14/cit14
  doi: 10.1021/acs.chemrev.4c00071
– ident: ref26/cit26
  doi: 10.1063/1.105227
– ident: ref19/cit19
  doi: 10.1021/acs.nanolett.3c04411
– ident: ref40/cit40
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.2c03229
– ident: ref31/cit31
  doi: 10.1021/acsami.0c07186
– ident: ref15/cit15
  doi: 10.1021/acsami.0c15724
– ident: ref24/cit24
  doi: 10.1021/nn505176a
– ident: ref16/cit16
  doi: 10.35848/1347-4065/ad297b
– ident: ref20/cit20
  doi: 10.1002/adfm.202316536
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.3c02076
– ident: ref39/cit39
  doi: 10.1021/acs.nanolett.2c03676
– ident: ref11/cit11
  doi: 10.35848/1882-0786/acae53
– ident: ref4/cit4
  doi: 10.1073/pnas.1805029115
– ident: ref3/cit3
  doi: 10.1038/s41467-024-46682-1
– ident: ref35/cit35
  doi: 10.1103/PhysRevApplied.5.044018
– ident: ref7/cit7
  doi: 10.1146/annurev-matsci-070115-032057
– ident: ref6/cit6
  doi: 10.1021/acs.jpclett.2c02001
– ident: ref13/cit13
  doi: 10.1038/ncomms5860
– ident: ref17/cit17
  doi: 10.1021/acsaelm.2c00711
– ident: ref22/cit22
  doi: 10.1186/s42649-021-00056-9
SSID ssj0057876
Score 2.4804814
Snippet Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing...
Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6815
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5B9wAceD_CS0baAxxSNvEjznEFVAW0qx6oVE6RE9ui2m6yatKF8uuZSdJqS4WAW6SMLMczjr9kvvkG4NDKnCuZuDCPvA6F8jJMc-5DH1tKA_HEtR-KJ6dqPBWfZnLWiyRRLcxO_j6O3pqiLk1ZDUWB0EUl1-FASQTdAziYnk6Ov3Y5Y_wm1m2jxf5azbYiPnsj0ClU1Lun0B603GdI3liVF2b93SwWV46f0R0YbybesU7OhqsmHxY_f9N0_Icnuwu3ewjKjruYuQfXXHkfbl0RJnwAPz67xeW8ZBMqFmKjalk4dkLUPSpiWbOP521vI1Z5NkH0TcTsZs3Qfry2ywpDEgGsZRO3rC5r-jvMMN7OiHWHoxCBcUFMJdbqgpxX6Oh5wd679pX1EKajD1_ejcO-R0NouBZNaBBeSZvHxBa1HJef9LOk10oL9LnNi9ioJHaJcIhMU58Yo72NjrhIEJnlWvNHMCir0j0B5n1urDY2skYKb1UqvDbCCm2FPDJCBXCIa5b1e6zO2vR5HGX9Qmb9QgbweuPa7KJT7Piz6auN6zPcVZQqMaWrVnXGqcgLsXKaBvC4C4XtYATpqKgmAL0TJFsDUuzevVPOv7XK3QgTOEfIFsCbbTz9bZJP_8P2GdyMqT8xldzL5zBoliv3AkFTk7_sN8wvAwMWbw
  priority: 102
  providerName: Unpaywall
Title Kelvin Probe Force Microscopy Imaging of Plasticity in Hydrogenated Perovskite Nickelate Multilevel Neuromorphic Devices
URI http://dx.doi.org/10.1021/acsnano.4c11567
https://www.ncbi.nlm.nih.gov/pubmed/39932424
https://www.proquest.com/docview/3165415099
https://pubmed.ncbi.nlm.nih.gov/PMC12333431
https://doi.org/10.1021/acsnano.4c11567
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-086X
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgOwCHjd-EwWSkHeCQssSO7RyrQVVAmypBpXGK7NgW1bpkatJt3V_Pe0laVio0zrGs2O-z_SXve58JObCJYSKRLjSRVyEXPglTw3zoY4tpICZd86F4fCKGY_71NDn9Yxb9dwY_jj7qvCp0UfZ4DuRFyPtkOxZSonqvf_R9ueki7kSbQIYPZGARKxefjQ7wGMqr9WNog1tuSiQfzIsLvbjS0-mt82ew2yq3qsa2EGUnZ715bXr5zaap491De0x2OhZK-y1snpB7rnhKHt3yJnxGrr-56eWkoCOsF6KDcpY7eozqPaxjWdAv5831RrT0dAQEHLXZ9YJC--HCzkpAJXBYS0duVl5W-IOYAuTOUHgHvaCGcYpiJdpYg5yXEOtJTj-5Ztd6TsaDzz-OhmF3TUOomeJ1qIFhJdbEKBi1DAKAFlqJV0JxCLs1eayFjJ3kDshp6qXWytvokHEJ5MwoxV6QraIs3CtCvTfaKm0jqxPurUi5V5pbrixPDjUXATmAOcu6ZVZlTQY9jrJuIrNuIgPyfhnc7KI17fh303fL4GewsDBbogtXzquMYZ0X0OU0DcjLFgyrzpDVYV1NQNQaTFYN0LR7_Ukx-dWYdwNTYAxYW0A-rBB110u-_r9h75GHMd5OjAX3yRuyVc_m7i1QptrsN4tln2yPT0b9n78BMvkWbA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0a42HwwPdH-DTSHuAhpYkdx3mcBlXH1qmITdpb5MS2qNYlU5MOyq_n3jQNKxUCXhPLiu1j-zj33GOAXRNlXEax9bPAKV9IF_lJxp3vQkNhIB7b5qA4OpbDU_HpLDrbgv4qFwY_osKaqiaI_8tdIHiPzwpdlD2RI4eR8Q24GUkR0HFrb__Lau0l-MllHBnPyUgmOjOfjQpoN8qr9d1og2JuKiV35sWlXnzT0-m1bWhwFz53DWjUJ-e9eZ318h-_eTv-TwvvwZ2Wk7K9JYjuw5YtHsDta06FD-H7oZ1eTQo2puwhNihnuWUj0vJRVsuCHVw0lx2x0rEx0nFSatcLhuWHCzMrEaPIaA0b21l5VdHvYoYAPCcZHtZCisYpSZdYYxRyUeLIT3L2wTZr2CM4HXw82R_67aUNvuZK1L5GvhWZLCT5qOE4DmSoFTkllUAQmCwPtYxDGwuLVDVxsdbKmaDPRYxULVOKP4btoizsU2DOZdoobQKjI-GMTIRTWhihjIj6WkgPdrHP0nbSVWkTTw-DtO3ItO1ID96uxji9XFp4_LnomxUGUpxmFDvRhS3nVcop6wvJc5J48GSJia4y4niUZeOBWkNLV4AsvNffFJOvjZU38gbOkcN58K4D1t8-8tm_Nfs17AxPRkfp0cHx4XO4FdK9xZSKH72A7Xo2ty-RTNXZq2b-_ASL6R0e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkXgceBYwz0XqAQ4Ojffh9RG1RCmlVSSI1Ju19u6KqKkdxU4h_HpmHMdqiBBwtVejfXyz-9kz8y3AnpUZVzJ2Ydb3OhTKyzDJuA99ZCkMxGPXfCienKrhWHw6k2dtURjVwmAnKrRUNUF88uqZ9a3CQP89Pi9MUfZEjjxGxdfhhlTo6ESIDr6s91-CoFrFkvFbGQlFJ-izZYBOpLzaPJG2aOZ2tuStRTEzy-9mOr1yFA3uwbgbRJOBct5b1Fkv__mbvuP_jvI-3G25KfuwAtMDuOaKh3DnimLhI_hx7KaXk4KNqIqIDcp57tgJ5fRRdcuSHV00lx6x0rMR0nLK2K6XDNsPl3ZeIlaR2Vo2cvPysqLfxgyBeE7peGiFMhunlMLEGsGQixIRMMnZoWv2sl0YDz5-PRiG7eUNoeFa1KFB3iVtFlEaqeW4FiSsJb1WWiAYbJZHRsWRi4VDypr42BjtbX-fixgpW6Y1fww7RVm4p8C8z4zVxvatkcJblQivjbBCWyH3jVAB7OGcpa3zVWkTV4_6aTuRaTuRAbxdr3M6W0l5_LnpmzUOUnQ3iqGYwpWLKuVU_YUkOkkCeLLCRWeMuB5V2wSgNxDTNSAp7803xeRbI-mN_IFz5HIBvOvA9bdOPvu3Yb-Gm6PDQfr56PT4OdyO6PpiqsiXL2Cnni_cS-RUdfaqcaFflXYfoQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5B9wAceD_CS0baAxxSNvEjznEFVAW0qx6oVE6RE9ui2m6yatKF8uuZSdJqS4WAW6SMLMczjr9kvvkG4NDKnCuZuDCPvA6F8jJMc-5DH1tKA_HEtR-KJ6dqPBWfZnLWiyRRLcxO_j6O3pqiLk1ZDUWB0EUl1-FASQTdAziYnk6Ov3Y5Y_wm1m2jxf5azbYiPnsj0ClU1Lun0B603GdI3liVF2b93SwWV46f0R0YbybesU7OhqsmHxY_f9N0_Icnuwu3ewjKjruYuQfXXHkfbl0RJnwAPz67xeW8ZBMqFmKjalk4dkLUPSpiWbOP521vI1Z5NkH0TcTsZs3Qfry2ywpDEgGsZRO3rC5r-jvMMN7OiHWHoxCBcUFMJdbqgpxX6Oh5wd679pX1EKajD1_ejcO-R0NouBZNaBBeSZvHxBa1HJef9LOk10oL9LnNi9ioJHaJcIhMU58Yo72NjrhIEJnlWvNHMCir0j0B5n1urDY2skYKb1UqvDbCCm2FPDJCBXCIa5b1e6zO2vR5HGX9Qmb9QgbweuPa7KJT7Piz6auN6zPcVZQqMaWrVnXGqcgLsXKaBvC4C4XtYATpqKgmAL0TJFsDUuzevVPOv7XK3QgTOEfIFsCbbTz9bZJP_8P2GdyMqT8xldzL5zBoliv3AkFTk7_sN8wvAwMWbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kelvin+Probe+Force+Microscopy+Imaging+of+Plasticity+in+Hydrogenated+Perovskite+Nickelate+Multilevel+Neuromorphic+Devices&rft.jtitle=ACS+nano&rft.au=Dey%2C+Tamal&rft.au=Lai%2C+Xinyuan&rft.au=Manna%2C+Sukriti&rft.au=Patel%2C+Karan&rft.date=2025-02-25&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=19&rft.issue=7&rft.spage=6815&rft.epage=6825&rft_id=info:doi/10.1021%2Facsnano.4c11567&rft_id=info%3Apmid%2F39932424&rft.externalDocID=PMC12333431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon