Magnetoelectric Composites Materials, Structures, and Applications
Magnetoelectric Composites: Materials, Devices and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing magnetoelectric materials and structures and the techniques used to fabricate and characterize them.Part two of the book looks at magnetoelectr...
Saved in:
Main Authors | , , |
---|---|
Format | eBook |
Language | English |
Published |
Chantilly
Elsevier Science & Technology
2025
|
Edition | 2 |
Online Access | Get full text |
ISBN | 0443186065 9780443186066 |
Cover
Abstract | Magnetoelectric Composites: Materials, Devices and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing magnetoelectric materials and structures and the techniques used to fabricate and characterize them.Part two of the book looks at magnetoelectric devices. |
---|---|
AbstractList | Magnetoelectric Composites: Materials, Devices and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing magnetoelectric materials and structures and the techniques used to fabricate and characterize them.Part two of the book looks at magnetoelectric devices. |
Author | Sun, Nian Srinivasan, Gopalan Priya, Shashank |
Author_xml | – sequence: 1 fullname: Srinivasan, Gopalan – sequence: 2 fullname: Priya, Shashank – sequence: 3 fullname: Sun, Nian |
BookMark | eNpFjstOwzAQRV1BEaTtD7BiySbSePyIZwlReUhFbGBd2c4ERQ1xic3_UwkkNvfobI5uJc6nNPFCVKC1ks5Co87-xZoLUUmDxiIimEuxyXkIYEFLAqQrcf3iPyYuiUeOZR7iTZs-jykPhfNaLHs_Zt78cSXeH7Zv7VO9e318bu92tVdOU00QbN-w4tgFonhaww14iI4IiSx4ol75iOCtdMRaMwWH7DsGQtOplbj97R7n9PXNuew5pHSIPJXZj_vtfatQnv6DUz9miT-8 |
ContentType | eBook |
DEWEY | 620.11897 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 0443186073 9780443186073 |
Edition | 2 |
ExternalDocumentID | EBC32162208 |
GroupedDBID | 38. ALMA_UNASSIGNED_HOLDINGS |
ID | FETCH-LOGICAL-a3849-90b6f7e3ecdb99ccdb5e70a0c89929960a99f3ac20a6189e44e9b82eade0925d3 |
ISBN | 0443186065 9780443186066 |
IngestDate | Wed Sep 03 04:04:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3849-90b6f7e3ecdb99ccdb5e70a0c89929960a99f3ac20a6189e44e9b82eade0925d3 |
OCLC | 1525622205 |
PQID | EBC32162208 |
PageCount | 566 |
ParticipantIDs | proquest_ebookcentral_EBC32162208 |
PublicationCentury | 2000 |
PublicationDate | 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationPlace | Chantilly |
PublicationPlace_xml | – name: Chantilly |
PublicationYear | 2025 |
Publisher | Elsevier Science & Technology |
Publisher_xml | – name: Elsevier Science & Technology |
SSID | ssib060419029 ssib060421570 ssib060326294 ssib060306804 ssib060528073 |
Score | 2.4736545 |
Snippet | Magnetoelectric Composites: Materials, Devices and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing... |
SourceID | proquest |
SourceType | Publisher |
Subtitle | Materials, Structures, and Applications |
TableOfContents | 7.4.3 Self-biased magnetoelectric energy harvester -- 7.5 High-frequency energy harvesting from ME composite -- 7.5.1 NEMS ME sensors -- 7.5.2 ME antenna with acoustic actuation -- Acknowledgments -- References -- 8 - Magnetoelectric current/magnetic field sensor -- 8.1 Introduction -- 8.1.1 State-of-the-art current sensors -- 8.1.2 Magnetoelectric sensors -- 8.2 Material in bulk sensor -- 8.2.1 Bulk ME material -- 8.2.2 Bulk ME composites -- 8.3 Development of magnetoelectric sensors -- 8.3.1 Sensing mechanism -- 8.3.1.1 DC magnetic field-dependent response -- 8.3.1.2 AC magnetic field-dependent response -- 8.3.1.3 Delta-E effect -- 8.3.2 Theoretical model -- 8.3.3 Design concepts and challenges -- 8.4 Conventional ME composite-based sensor -- 8.4.1 Rectangular-shaped sensor -- 8.4.2 Ring-type sensor -- 8.4.3 Polymer-based flexible sensor -- 8.5 Self-biased ME composites-based current sensors -- 8.5.1 Self-biased ME composites -- 8.5.2 Application as current sensor -- 8.6 ME transformer-based current sensors -- 8.6.1 Epoxy-bonded ME transformer -- 8.6.2 Cofired ME transformer -- 8.7 Note on magnetic sensor detection limits and terminology (Liang et al., 2021) -- 8.8 Magnetic noise and elimination -- 8.8.1 Extrinsic noise -- 8.8.2 Intrinsic noise -- Acknowledgments -- References -- 9 - Magnetoelectric sensors based on magnetoelectric MEMS -- 9.1 The MEMS approach to magnetoelectric cantilever sensors -- 9.2 Converse magnetoelectric sensors -- 9.3 Magnetoelastic surface acoustic wave sensors -- References -- 10 - Magnetoelectric NEMS sensors -- 10.1 Magnetoelectric sensor overview -- 10.2 Magnetoelectric sensor operation scheme for magnetic sensing -- 10.3 Magnetoelectric sensor utilizing frequency modulation scheme -- 10.3.1 Magnetoelectric sensor utilizing magnetic frequency modulation scheme Front Cover -- MAGNETOELECTRIC COMPOSITES -- MAGNETOELECTRIC COMPOSITES: MATERIALS, STRUCTURES, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- 1 - Theory of magnetoelectric phenomena in composites -- 1.1 Introduction -- 1.2 Direct low-frequency ME effect in composites -- 1.2.1 Longitudinal modes -- 1.2.1.1 Symmetrical structures -- 1.2.1.2 Asymmetric structures -- 1.2.2 Bending mode -- 1.2.3 Longitudinal-shear modes -- 1.2.3.1 Symmetrical structures -- 1.2.3.2 Asymmetric structure -- 1.2.4 Torsional mode -- 1.2.5 Accuracy of resonance formulas -- 1.2.6 Quasi-static regime -- 1.2.6.1 Quasi-static regime of longitudinal and longitudinal-shear modes for symmetric ME composites -- 1.2.6.2 Quasi-static regime for asymmetric ME composites -- 1.3 Converse low frequency ME effect -- 1.4 Microwave ME effect -- 1.4.1 Ferromagnetic metal-piezoelectric structures -- 1.4.2 Ferrite-piezoelectric structures -- 1.4.3 "Substrate effect" in the microwave ME effect range -- 1.5 Conclusions -- 1.5.1 Theoretical and experimental research of "substrate effect" and "mismatch effect" -- 1.5.2 ME effect in the magnetoacoustic resonance range -- 1.5.3 Microwave ME effect -- References -- 2 - Magnetic, piezoelectric, and magnetoelectric materials and phenomena -- 2.1 Introduction -- 2.2 Piezoelectric/electrostrictive/ferroelectric material for magnetoelectric coupling -- 2.3 Magnetostrictive thin film materials for magnetoelectrics -- 2.4 Magnetostrictive multilayers for magnetoelectrics-Exchange bias for zero field operation -- 2.4.1 The antagonism of sensitivity versus noise-Magnetostrictive multilayers for magnetic domain control -- References -- 3 - Magnetoelectric characterization techniques -- 3.1 Introduction -- 3.2 Direct ME effects -- 3.2.1 Low-frequency ME effects -- 3.2.2 ME effects at acoustic resonance modes (1kHz-2MHz) 10.3.2 Magnetoelectric sensor utilizing electric frequency modulation scheme -- 10.4 Magnetoelectric sensor utilizing ΔE-effect scheme -- 10.5 Outlook of magnetoelectric sensor -- References -- 11 - Magnetoelectric antennas for VLF -- 11.1 Introduction -- 11.2 Background of very low frequency antenna -- 11.3 Acoustically actuated VLF ME antennas -- 11.3.1 Materials and structures -- 11.3.2 Field strength and efficiency -- 11.4 ME antenna impedance analysis -- 11.5 Bandwidth and nonlinear antenna modulation -- 11.6 VLF ME antenna array -- 11.7 Challenges -- 11.7.1 Challenges of the mechanical antenna -- 11.7.2 Challenges on antenna measurement -- References -- 12 - Magnetoelectric antennas for RF applications -- 12.1 Magnetoelectric antenna mechanism and highlight -- 12.2 Single radiofrequency magnetoelectric antenna -- 12.3 Radiofrequency magnetoelectric antenna array -- 12.4 Outlook of radiofrequency magnetoelectric antenna -- 12.5 Challenges of radiofrequency magnetoelectric antenna -- 12.5.1 Challenges on antenna simulation -- 12.5.2 Challenges on device fabrication -- 12.5.3 Challenges on improving antenna performance -- References -- 13 - Power, RF, microwave, and millimeter-wave magnetoelectric devices (tunable inductors, filters, and phase shifters) -- 13.1 Introduction -- 13.2 CME effect at ferromagnetic resonance -- 13.3 Hybrid spin-electromagnetic waves in composites -- 13.4 Composites for high-frequency devices -- 13.5 Multiferroic high-frequency devices -- 13.5.1 Strain-mediated E-tuning -- 13.5.1.1 Resonators -- 13.5.1.2 Filters -- 13.5.1.3 Phase shifters -- 13.5.1.4 Inductors -- 13.5.1.5 Hybrid spin-electromagnetic wave devices -- 13.5.2 Other multiferroic microwave device applications -- 13.6 Summary -- References -- 14 - Magnetoelectric composites for biomedical applications -- 14.1 Introduction 14.2 Application of ME nanoparticles for targeted drug delivery 3.2.3 Nonlinear ME effects -- 3.2.4 Static magnetic field induced ferroelectric polarization -- 3.2.5 Magneto-dielectric effects (MDE) -- 3.3 Converse ME effects -- 3.3.1 Low-frequency CME -- 3.3.2 Electric field induced magnetization -- 3.3.3 Static electric field tuning of inductance -- 3.3.4 Electrostatic tuning of ferromagnetic resonance (FMR) -- 3.4 Scanning probe microscopy techniques for ME effects in nanocomposites -- 3.5 Magnetostriction characterization of thin film -- Summary -- References -- 4 - Layered multiferroic laminates∗ -- Part A -- 4.1 Equivalent circuit analysis of magnetoelectric laminated composites -- 4.1.1 Multilayered longitudinal vibration modes -- 4.1.2 ME voltage coefficients at low frequency -- 4.1.3 ME coefficients at resonance frequency -- 4.2 Bilayer bending vibration mode -- 4.3 C-C radial vibration mode -- 4.4 Power conversion efficiency of ME gyration -- References -- Part B -- 4.5 Experiments on ME effects in thick film laminate composites -- 4.5.1 Ferromagnetic-ferroelectric composites -- 4.5.2 Direct magnetoelectric effects -- 4.5.2.1 Low-frequency ME effect -- 4.5.2.2 ME coupling at bending and electromechanical resonances -- 4.5.2.3 DME coupling in functionally graded composites -- 4.5.3 Converse ME effects -- 4.5.4 Nonlinear ME effects -- 4.5.5 Recent advances: ME laminates for gyrators -- 4.5.6 Conclusions -- References -- 5 - Recent advances in ferroic, multiferroic, and magnetoelectrics materials and phenomena -- 5.1 Introduction -- 5.2 Lead-free piezoelectrics-ferrite composites and similar systems -- 5.2.1 Sintered KNNLS-NZF particulate composites -- 5.2.2 Magnetoelectric effect of KNNLS-NZF/Ni laminates -- 5.3 Self-biased textured cofired laminate systems -- 5.4 Textured microstructures-piezoelectric layer in composites -- 5.5 Magnetoelectric nanoparticles and their properties 5.5.1 ME measurement procedure for core-shell magnetoelectric nanoparticles -- 5.5.2 Synthesis procedure of magnetoelectric nanoparticles -- 5.6 Polymer-based magnetoelectric materials -- 5.7 Future outlook and summary of magnetoelectric materials and phenomena -- References -- 6 - Multiferroic nanostructures -- 6.1 Introduction -- 6.1.1 Magnetic/piezoelectric heterostructures -- 6.1.1.1 Spin spray deposited ferrite film on piezo/ferroelectric substrate -- 6.1.1.2 Sputtering deposited magnetic alloy film on piezo/ferroelectric substrate -- 6.1.1.3 0-3 Type particulate nanocomposite films -- 6.1.1.4 1-3 type vertical heterostructures -- 6.1.1.5 2-2 type horizontal heterostructures -- 6.1.1.6 Recent advances in thin-film ME composites -- 6.1.2 Core-shell nanoparticle composites -- 6.1.3 Core-shell nanofibers -- 6.2 Summary -- References -- 7 - Magnetoelectric energy harvesting from kHz to GHz -- 7.1 Introduction -- 7.1.1 High-frequency magnetoelectric harvesters -- 7.2 Theoretical model for magnetoelectric composites -- 7.2.1 Constitutive relations -- 7.2.2 Resonance frequency -- 7.2.3 Coupled differential equations -- 7.2.4 Optimal voltage, geometry, and power output -- 7.3 Development of magnetoelectric harvesters -- 7.3.1 Working principle -- 7.3.2 Magnetoelectric composite -- 7.3.2.1 Classification -- 7.3.2.2 Materials selection -- 7.3.2.2.1 Piezoelectric materials -- 7.3.2.2.2 Magnetostrictive materials -- 7.3.2.3 Synthesis of ME composite -- 7.3.2.3.1 Epoxy bonding -- 7.3.2.3.2 Cofiring -- 7.3.2.3.3 Thin-film deposition -- 7.3.2.3.4 Thick-film printing -- 7.3.3 ME composite characterization -- 7.3.3.1 ME versus Hdc -- 7.3.3.2 ME versus fac -- 7.3.3.3 ME versus configuration -- 7.4 Self-biased magnetoelectric energy harvester -- 7.4.1 Development of self-biased ME composite -- 7.4.2 Working principle of Ni/PZT bilayer self-biased ME composite |
Title | Magnetoelectric Composites |
URI | https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=32162208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86L3ryE50fTPBaaZM0Ta6OueFBhG0wTyNJUzeQDlwn6F_vS9Y2o3pQL6EvlNL2l4_fe3kfCN2wVAGPjtIg0UwHNCZxoDJiAm4kU4YKzFOX7fORDcb0YRJPfP0EF11SqFv9-WNcyX9QhT7A1UbJ_gHZ-qHQAdeAL7SAMLQN8luLZe0l-ZKbYrGuYTPXblZb7yvvEDi0JzPvcrm2b_ZBNX714-Dpbf7hSONwJpczmdfROsPVOvyqGjOlOQDHDXNAHadSLQ12ADWs9JX2GFJgD9xqMH4zqF30enddgiOGsY2k3k4SV5y-_1zNVWZ1De5VOZAxw2JDpkA1PPUCGciFXxtAi7J5eIhLElC-RlwlRKpe69v-6Db90T7aMTYS5ABtmfwQ7W1kbjxC7QYCHY_AMRrf90bdQVCWmQgk4VQEIlQsSwwxOlVCaGhjk4Qy1KCKYpu8RgqREZvKUrKIC0OpEYpj62keChyn5AS18kVuTlFHaWBcUhmWpUCbQNNUQmdcRkxFOBUROUPX1QdN3WF46YE73fjb7V_cc452PfYXqFW8rcwlkKNCXTmUvgDpEglq |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Magnetoelectric+Composites&rft.au=Srinivasan%2C+Gopalan&rft.au=Priya%2C+Shashank&rft.au=Sun%2C+Nian&rft.date=2025-01-01&rft.pub=Elsevier+Science+%26+Technology&rft.isbn=9780443186066&rft.externalDocID=EBC32162208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780443186066/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780443186066/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780443186066/sc.gif&client=summon&freeimage=true |