Revealing the Structure of Stereociliary Actin by X‑ray Nanoimaging
Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for...
Saved in:
Published in | ACS nano Vol. 8; no. 12; pp. 12228 - 12237 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/nn5041526 |
Cover
Abstract | Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present. |
---|---|
AbstractList | Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present. Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present.Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present. Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present. Keywords: vestibular sensory hair cells; stereocilia; actin bundles; nanostructure; X-ray diffraction; ptychography; nanofocused beam |
Author | Diaz, Ana Maurer, Christian Burghammer, Manfred Köster, Sarah Piazza, Valeria Reynolds, Michael Weinhausen, Britta Dammann, Christian |
AuthorAffiliation | Ghent University European Synchrotron Radiation Facility Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Institute for X-ray Physics Paul Scherrer Institute Department of Analytical Chemistry Georg-August-University Göttingen |
AuthorAffiliation_xml | – name: Ghent University – name: Institute for X-ray Physics – name: Department of Analytical Chemistry – name: Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) – name: Paul Scherrer Institute – name: European Synchrotron Radiation Facility – name: Georg-August-University Göttingen |
Author_xml | – sequence: 1 givenname: Valeria surname: Piazza fullname: Piazza, Valeria – sequence: 2 givenname: Britta surname: Weinhausen fullname: Weinhausen, Britta – sequence: 3 givenname: Ana surname: Diaz fullname: Diaz, Ana – sequence: 4 givenname: Christian surname: Dammann fullname: Dammann, Christian – sequence: 5 givenname: Christian surname: Maurer fullname: Maurer, Christian – sequence: 6 givenname: Michael surname: Reynolds fullname: Reynolds, Michael – sequence: 7 givenname: Manfred surname: Burghammer fullname: Burghammer, Manfred – sequence: 8 givenname: Sarah surname: Köster fullname: Köster, Sarah email: sarah.koester@phys.uni-goettingen.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25415362$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctKAzEUBuAgFW2rC19AZiPoojaZXGZmWcQbFAUv0N2QSc9oyjSpSUbozlfwFX0SI61dSMFVEvj-w8k5PdQx1gBCRwSfE5ySoTEcM8JTsYO6pKBigHMx6WzunOyjnvczjHmWZ2IP7ac8cirSLrp8gHeQjTYvSXiF5DG4VoXWQWLr-AAHVulGS7dMRipok1TLZPL18enkMrmTxuq5fInZA7Rby8bD4frso-ery6eLm8H4_vr2YjQeSJrTMKjzqVSxC0E5l0BZqmqJoagYMJxOKXBKMihSxYqKV4oxTAivGM0KzKY5yTnto9NV3YWzby34UM61V9A00oBtfUkykWIhMkb-p4JhSgkjONLjNW2rOUzLhYvfcsvyd0oRnK2ActZ7B_WGEFz-bKDcbCDa4R-rdJBBWxOc1M3WxMkqIZUvZ7Z1Jo5wi_sGTy-Rvw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0165604 crossref_primary_10_1038_srep26249 crossref_primary_10_1364_BOE_462493 crossref_primary_10_1021_acsnano_7b03447 crossref_primary_10_1039_C7NR06798D crossref_primary_10_1016_j_bpj_2015_12_017 crossref_primary_10_1107_S1600577520006864 crossref_primary_10_1039_C9NR08075A crossref_primary_10_1063_5_0013065 crossref_primary_10_1107_S160057751900660X crossref_primary_10_1137_22M1527155 crossref_primary_10_1021_acsnano_6b05034 crossref_primary_10_1021_acsnano_5b07871 crossref_primary_10_1038_s41566_017_0072_5 crossref_primary_10_1088_1361_6420_abaf3a crossref_primary_10_1002_adbi_201800327 crossref_primary_10_1186_s43074_023_00084_6 |
Cites_doi | 10.1083/jcb.153.1.75 10.1103/PhysRevA.87.053850 10.1098/rspb.1973.0003 10.1371/journal.pgen.1001158 10.1088/1367-2630/14/6/063004 10.1088/1367-2630/12/3/035017 10.1073/pnas.0905846107 10.1364/OE.20.019232 10.1111/j.1432-1033.2004.04044.x 10.1073/pnas.0705898104 10.1126/science.1158573 10.1126/science.288.5473.2035 10.1016/j.elspec.2008.10.008 10.1098/rspb.1953.0017 10.1038/287291a0 10.1016/j.nima.2009.03.200 10.1038/nature10745 10.1103/PhysRevLett.112.088102 10.1242/jcs.110.6.765 10.1146/annurev.physchem.58.032806.104436 10.1103/PhysRevLett.91.148102 10.1039/C2LC41014A 10.1103/PhysRevLett.98.058105 10.1016/S0092-8674(00)00042-8 10.1016/0378-5955(87)90036-0 10.1038/347044a0 10.1152/jn.1996.76.2.995 10.1016/j.pmatsci.2012.03.001 10.1016/j.heares.2005.05.006 10.1083/jcb.138.4.771 10.1088/1367-2630/14/8/085013 10.1111/j.1365-2818.2012.03682.x 10.1086/499495 10.1063/1.3332591 10.1523/JNEUROSCI.1154-08.2008 10.1016/j.ultramic.2008.12.011 10.1088/0957-4484/21/29/295303 10.1016/S0006-3495(94)80728-3 10.1103/PhysRevLett.93.023903 10.1103/PhysRevLett.103.238102 10.1017/S1431927611012165 10.1016/0959-440X(95)80072-7 10.1063/1.1556960 10.1103/PhysRevLett.98.034801 10.1063/1.2053350 10.1073/pnas.1533355100 10.1016/0378-5955(82)90082-X 10.1073/pnas.0711149105 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/nn5041526 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12237 |
ExternalDocumentID | 25415362 10_1021_nn5041526 h42010603 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a383t-f8dac0056355ae342cfa0e9b4e402d3e5317e92c49b5bc440115b437904d81853 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 02:59:31 EDT 2025 Fri Jul 11 00:53:38 EDT 2025 Mon Jul 21 05:49:55 EDT 2025 Sun Jul 06 05:07:30 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Thu Aug 27 13:42:28 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | nanofocused beam actin bundles X-ray diffraction nanostructure stereocilia vestibular sensory hair cells ptychography |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a383t-f8dac0056355ae342cfa0e9b4e402d3e5317e92c49b5bc440115b437904d81853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/3501 |
PMID | 25415362 |
PQID | 1640331410 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1762066741 proquest_miscellaneous_1640331410 pubmed_primary_25415362 crossref_primary_10_1021_nn5041526 crossref_citationtrail_10_1021_nn5041526 acs_journals_10_1021_nn5041526 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2014-12-23 |
PublicationDateYYYYMMDD | 2014-12-23 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Zhang D.-S. (ref1/cit1) 2012; 481 Dierolf M. (ref46/cit46) 2010; 12 Faulkner H. L. M. (ref32/cit32) 2004; 93 McGough A. (ref40/cit40) 1997; 138 Huxley H. E. (ref6/cit6) 1994; 67 Weinhausen B. (ref26/cit26) 2012; 14 Derosier D. J. (ref3/cit3) 1980; 287 Thibault P. (ref49/cit49) 2009; 109 Sedlmair J. (ref25/cit25) 2011; 17 Chen P. Y. (ref2/cit2) 2012; 57 Pelletier O. (ref14/cit14) 2003; 91 Thibault P. (ref48/cit48) 2008; 321 Schroer C. G. (ref22/cit22) 2003; 82 Huxley H. E. (ref5/cit5) 1953; 141 Shin H. (ref20/cit20) 2009; 103 Huxley H. E. (ref4/cit4) 2004; 271 Wong G. C. L. (ref13/cit13) 2010; 61 Lieleg O. (ref18/cit18) 2009; 10 Wilke R. N. (ref31/cit31) 2012; 20 Hofer D. (ref37/cit37) 1997; 110 Zheng L. (ref17/cit17) 2000; 102 Claessens M. M. A. E. (ref21/cit21) 2008; 105 Lima E. (ref36/cit36) 2013; 249 Weinhausen B. (ref27/cit27) 2012; 13 Egelman E. H. (ref9/cit9) 1995; 5 Perrin B. J. (ref39/cit39) 2010; 6 Weinhausen B. (ref28/cit28) 2014; 12 Shahin H. (ref16/cit16) 2006; 78 Schropp A. (ref23/cit23) 2010; 96 Rodenburg J. M. (ref33/cit33) 2007; 98 Purdy K. R. (ref19/cit19) 2007; 98 Thibault P. (ref50/cit50) 2012; 14 Henrich B. (ref45/cit45) 2009; 607 Hanson J. (ref7/cit7) 1973; 183 Furness D. N. (ref38/cit38) 2005; 207 Galkin V. E. (ref41/cit41) 2001; 153 Giewekemeyer K. (ref35/cit35) 2010; 107 Howells M. R. (ref34/cit34) 2009; 170 Schroer C. G. (ref24/cit24) 2005; 87 Wong G. L. C. (ref10/cit10) 2000; 288 Alberts B. (ref29/cit29) 2001 Gorelick S. (ref44/cit44) 2010; 21 Holmes C. K. (ref8/cit8) 1990; 347 Edo T. B. (ref47/cit47) 2013; 87 Angelini T. E. (ref11/cit11) 2003; 100 Furness D. N. (ref43/cit43) 2008; 28 Rusch A. (ref30/cit30) 1996; 76 Flock A. (ref15/cit15) 1982; 7 Liberman M. C. (ref42/cit42) 1987; 26 Sanders L. K. (ref12/cit12) 2007; 104 |
References_xml | – volume: 153 start-page: 75 year: 2001 ident: ref41/cit41 publication-title: J. Cell Biol. doi: 10.1083/jcb.153.1.75 – volume: 87 start-page: 053850 year: 2013 ident: ref47/cit47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.053850 – volume: 183 start-page: 39 year: 1973 ident: ref7/cit7 publication-title: Proc. R. Soc. London B. Bio. doi: 10.1098/rspb.1973.0003 – volume: 6 start-page: 1001158 year: 2010 ident: ref39/cit39 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001158 – volume: 14 start-page: 063004 year: 2012 ident: ref50/cit50 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/6/063004 – volume-title: The Molecular Biology of the Cell year: 2001 ident: ref29/cit29 – volume: 12 start-page: 035017 year: 2010 ident: ref46/cit46 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/3/035017 – volume: 107 start-page: 529 year: 2010 ident: ref35/cit35 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0905846107 – volume: 20 start-page: 19232 year: 2012 ident: ref31/cit31 publication-title: Opt. Express doi: 10.1364/OE.20.019232 – volume: 271 start-page: 1403 year: 2004 ident: ref4/cit4 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.2004.04044.x – volume: 104 start-page: 15994 year: 2007 ident: ref12/cit12 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0705898104 – volume: 321 start-page: 379 year: 2008 ident: ref48/cit48 publication-title: Science doi: 10.1126/science.1158573 – volume: 288 start-page: 2035 year: 2000 ident: ref10/cit10 publication-title: Science doi: 10.1126/science.288.5473.2035 – volume: 170 start-page: 4 year: 2009 ident: ref34/cit34 publication-title: J. Electron Spectrosc. doi: 10.1016/j.elspec.2008.10.008 – volume: 141 start-page: 59 year: 1953 ident: ref5/cit5 publication-title: P. R. Soc. London B. Bio. doi: 10.1098/rspb.1953.0017 – volume: 287 start-page: 291 year: 1980 ident: ref3/cit3 publication-title: Nature doi: 10.1038/287291a0 – volume: 607 start-page: 247 year: 2009 ident: ref45/cit45 publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2009.03.200 – volume: 481 start-page: 520 year: 2012 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature10745 – volume: 12 start-page: 088102 year: 2014 ident: ref28/cit28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.088102 – volume: 110 start-page: 765 year: 1997 ident: ref37/cit37 publication-title: J. Cell Sci. doi: 10.1242/jcs.110.6.765 – volume: 61 start-page: 171 year: 2010 ident: ref13/cit13 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104436 – volume: 91 start-page: 148102 year: 2003 ident: ref14/cit14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.148102 – volume: 13 start-page: 212 year: 2012 ident: ref27/cit27 publication-title: Lab Chip doi: 10.1039/C2LC41014A – volume: 98 start-page: 058105 year: 2007 ident: ref19/cit19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.058105 – volume: 102 start-page: 377 year: 2000 ident: ref17/cit17 publication-title: Cell doi: 10.1016/S0092-8674(00)00042-8 – volume: 26 start-page: 65 year: 1987 ident: ref42/cit42 publication-title: Hearing Res. doi: 10.1016/0378-5955(87)90036-0 – volume: 347 start-page: 44 year: 1990 ident: ref8/cit8 publication-title: Nature doi: 10.1038/347044a0 – volume: 76 start-page: 995 year: 1996 ident: ref30/cit30 publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.2.995 – volume: 57 start-page: 1492 year: 2012 ident: ref2/cit2 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2012.03.001 – volume: 207 start-page: 22 year: 2005 ident: ref38/cit38 publication-title: Hearing Res. doi: 10.1016/j.heares.2005.05.006 – volume: 138 start-page: 771 year: 1997 ident: ref40/cit40 publication-title: J. Cell Biol. doi: 10.1083/jcb.138.4.771 – volume: 14 start-page: 085013 year: 2012 ident: ref26/cit26 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/8/085013 – volume: 249 start-page: 1 year: 2013 ident: ref36/cit36 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2012.03682.x – volume: 78 start-page: 144 year: 2006 ident: ref16/cit16 publication-title: Am. J. Hum. Genet. doi: 10.1086/499495 – volume: 96 start-page: 091102 year: 2010 ident: ref23/cit23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3332591 – volume: 28 start-page: 6342 year: 2008 ident: ref43/cit43 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1154-08.2008 – volume: 109 start-page: 338 year: 2009 ident: ref49/cit49 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2008.12.011 – volume: 21 start-page: 295303 year: 2010 ident: ref44/cit44 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/29/295303 – volume: 67 start-page: 2411 year: 1994 ident: ref6/cit6 publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80728-3 – volume: 10 start-page: 281 year: 2009 ident: ref18/cit18 publication-title: ChemPhysChem – volume: 93 start-page: 023903 year: 2004 ident: ref32/cit32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.023903 – volume: 103 start-page: 238102 year: 2009 ident: ref20/cit20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.238102 – volume: 17 start-page: 991 year: 2011 ident: ref25/cit25 publication-title: Microsc. Microanal. doi: 10.1017/S1431927611012165 – volume: 5 start-page: 172 year: 1995 ident: ref9/cit9 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/0959-440X(95)80072-7 – volume: 82 start-page: 1485 year: 2003 ident: ref22/cit22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1556960 – volume: 98 start-page: 034801 year: 2007 ident: ref33/cit33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.034801 – volume: 87 start-page: 124103 year: 2005 ident: ref24/cit24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2053350 – volume: 100 start-page: 8634 year: 2003 ident: ref11/cit11 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1533355100 – volume: 7 start-page: 75 year: 1982 ident: ref15/cit15 publication-title: Hearing Res. doi: 10.1016/0378-5955(82)90082-X – volume: 105 start-page: 8819 year: 2008 ident: ref21/cit21 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711149105 |
SSID | ssj0057876 |
Score | 2.28932 |
Snippet | Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12228 |
SubjectTerms | Actins - chemistry Animals Arrays Beams (radiation) Biological Bundles Diffraction patterns Hair Hair Cells, Vestibular - cytology Mice Molecular Imaging - methods Nanostructure Nanotechnology - methods Stereocilia X-Rays |
Title | Revealing the Structure of Stereociliary Actin by X‑ray Nanoimaging |
URI | http://dx.doi.org/10.1021/nn5041526 https://www.ncbi.nlm.nih.gov/pubmed/25415362 https://www.proquest.com/docview/1640331410 https://www.proquest.com/docview/1762066741 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gXvTg-4EPsj4OXop0uy3tkSCEmOhBJOHW7G63CRFbU8AET_4F_6K_xNmWEoyAtzaZZrc7szPfZGa_BbgORSgplZ6BaRc1mG2GBq-50rA9gc4vVBYXOlF8eHTaXXbfs3sFuFpSwafmbRTZ-hg5ddZgnTquqTOseqOTu1ttcU5WOsbUGPFDTh80_6kOPXL4O_QswZNpXGltw11-OidrJ3mpjEeiIj_-kjWumvIObE1xJalnhrALBRXtweYc2-A-NJ_UO8JCfCaI-kgnZY4dJ4rEIb6oRKGeBn2eTEgdnWBExIT0vj-_Ej4h6IPj_mt6odEBdFvN50bbmN6iYHDMPkdG6AZcasZPRBZcWYzKkFeVJ5jC1DGwFG7CmvKoZJ6whWRMY0ShWQqrLEij-SEUozhSx0A8L5BKeAFiLodVGROWoKHQBXqq3EDyEpRxmf3pLhj6aYGbmv5sPUpwk2vAl1MOcn0VxmCR6OVM9C0j3lgkdJGr0cdtoWsdPFLxGIfGCVqWbmJdIYOBQPf4MrMER5kNzIbCvBljgUNP_vulU9hADJVyP1LrDIqoO3WOOGUkyqmd_gC3N98V |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSD7wc-cDUevBTpdlvokRAIKnAQSLg1u9ttQsRiCpjgyb_gX_SXOLttEQ0-bm0ybbc7szPfZHa_Qegy4IEgRLgGpF3EoLYZGKxYEobtcnB-gbQYV4lis-XUu_S2Z_cSmhx1FgYGMYI3jXQR_5NdwLwOQ1udJifOMlrRDCgKBlXaqddVhufEFWTIkAFGpCxC84-qCCRGXyPQD7BSh5faZtynSA9M7yp5yE_GPC9evnE2_m_kW2gjQZm4HJvFNlqS4Q5an-Me3EXVe_kMIBGuMWBA3NY8spNI4mEANzKSoLVBn0VTXAaXGGI-xb3317eITTF45GH_Ubc32kPdWrVTqRtJTwWDQS46NoKSz4Ti_wScwaRFiQhYQbqcSkgkfUvCkixKlwjqcpsLShVi5IqzsEB9Hdv3USYchvIQYdf1heSuDwjMoQVKucVJwFW5nsiSL1gW5WA6vGRNjDxd7iamN5uPLLpKFeGJhJFcNcYYLBK9mIk-xTQci4TOU216sEhU5YOFcjiBT8MALUttaf1FBsKC2vFLzSw6iE1h9inIoiEyOOTor186Q6v1TrPhNW5ad8doDdCVZoUk1gnKgB7lKSCYMc9p0_0AZ3PngA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSAgO7EtZikEcuKS0jhOaY1Vala0gSqXeItuxpQpIURekcuIX-EW-hLGbVgWV5ZZIk8TxbG809jPAkRZaUioDB8su6jAvpx1-mpeOFwgMflq5XJhC8brqV-rsouE1kkLR7IXBQXTwTR3bxDde_RzphGEgdxLHntlRTv1pmPUM9ZuBQsXaMPIa4_MHXWSskhFKDJmExh81WUh2vmahH6ClTTHlJbgZDc6uLHnI9LoiI1-_8Tb-f_TLsJigTVIYmMcKTKl4FRbGOAjXoHSnXhAs4jVBLEhqlk-211akpfFGtRVq77HJ231SwNAYE9EnjY-39zbvE4zMreaTPeZoHerl0n2x4iRnKzgca9Kuo_MRl4YHFPEGVy6jUvOsCgRTWFBGrkLXPFUBlSwQnpCMGeQoDHdhlkU2x2_ATNyK1RaQIIikEkGESMxnWcaEK6gWpm1PVT6SPAVpnJIw8Y1OaNveNBeO5iMFx0NlhDJhJjcHZDxOEj0ciT4P6DgmCR0MNRqis5gOCI9Vq4efxgG6rlna-osMpgez8pflUrA5MIfRp7Caxgzh0-2_fmkf5m7PyuHVefVyB-YRZFlySOruwgyqUe0hkOmKtLXeTwE96fo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Structure+of+Stereociliary+Actin+by+X%E2%80%91ray+Nanoimaging&rft.jtitle=ACS+nano&rft.au=Piazza%2C+Valeria&rft.au=Weinhausen%2C+Britta&rft.au=Diaz%2C+Ana&rft.au=Dammann%2C+Christian&rft.date=2014-12-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=12&rft.spage=12228&rft.epage=12237&rft_id=info:doi/10.1021%2Fnn5041526&rft.externalDocID=h42010603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |