Revealing the Structure of Stereociliary Actin by X‑ray Nanoimaging

Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 12; pp. 12228 - 12237
Main Authors Piazza, Valeria, Weinhausen, Britta, Diaz, Ana, Dammann, Christian, Maurer, Christian, Reynolds, Michael, Burghammer, Manfred, Köster, Sarah
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.12.2014
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/nn5041526

Cover

Abstract Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present.
AbstractList Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present.
Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present.Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present.
Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers, which transform mechanical deformation into neuronal signals. The length of vestibular stereocilia reaches several micrometers, whereas, for individual microfilaments, the diameter and therefore the characteristic length scale in the lateral direction is on the order of a few nanometers. These orders of magnitude render X-rays an ideal tool for investigating actin packing, and numerous studies on reconstituted in vitro systems have revealed important information. Here we report on the characterization of intact stereocilia using two nanoscale X-ray techniques. We use X-ray ptychography to image stereocilia with quantitative phase contrast and high dose efficiency, showing stereocilia with diameters and lengths in the expected range. We further employ X-ray nanodiffraction using a nanofocused X-ray beam on the same order of magnitude as the width of a stereocilium. Despite the small probe volume we can clearly visualize the stereocilia bundles. From the individual diffraction patterns we determine the local orientation of the actin structures and can clearly correlate them with the corresponding visible-light fluorescence images. Furthermore, azimuthal integration of individual diffraction patterns reveals distinct intensity curves, showing modulations of the signal, which reflect the relevant length scales and pronounced order in the biological system. The applied techniques are not limited to the studies on stereocilia but have the potential of being applied to many biological and soft-matter systems, in particular if a pronounced degree of order is present. Keywords: vestibular sensory hair cells; stereocilia; actin bundles; nanostructure; X-ray diffraction; ptychography; nanofocused beam
Author Diaz, Ana
Maurer, Christian
Burghammer, Manfred
Köster, Sarah
Piazza, Valeria
Reynolds, Michael
Weinhausen, Britta
Dammann, Christian
AuthorAffiliation Ghent University
European Synchrotron Radiation Facility
Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)
Institute for X-ray Physics
Paul Scherrer Institute
Department of Analytical Chemistry
Georg-August-University Göttingen
AuthorAffiliation_xml – name: Ghent University
– name: Institute for X-ray Physics
– name: Department of Analytical Chemistry
– name: Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)
– name: Paul Scherrer Institute
– name: European Synchrotron Radiation Facility
– name: Georg-August-University Göttingen
Author_xml – sequence: 1
  givenname: Valeria
  surname: Piazza
  fullname: Piazza, Valeria
– sequence: 2
  givenname: Britta
  surname: Weinhausen
  fullname: Weinhausen, Britta
– sequence: 3
  givenname: Ana
  surname: Diaz
  fullname: Diaz, Ana
– sequence: 4
  givenname: Christian
  surname: Dammann
  fullname: Dammann, Christian
– sequence: 5
  givenname: Christian
  surname: Maurer
  fullname: Maurer, Christian
– sequence: 6
  givenname: Michael
  surname: Reynolds
  fullname: Reynolds, Michael
– sequence: 7
  givenname: Manfred
  surname: Burghammer
  fullname: Burghammer, Manfred
– sequence: 8
  givenname: Sarah
  surname: Köster
  fullname: Köster, Sarah
  email: sarah.koester@phys.uni-goettingen.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25415362$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctKAzEUBuAgFW2rC19AZiPoojaZXGZmWcQbFAUv0N2QSc9oyjSpSUbozlfwFX0SI61dSMFVEvj-w8k5PdQx1gBCRwSfE5ySoTEcM8JTsYO6pKBigHMx6WzunOyjnvczjHmWZ2IP7ac8cirSLrp8gHeQjTYvSXiF5DG4VoXWQWLr-AAHVulGS7dMRipok1TLZPL18enkMrmTxuq5fInZA7Rby8bD4frso-ery6eLm8H4_vr2YjQeSJrTMKjzqVSxC0E5l0BZqmqJoagYMJxOKXBKMihSxYqKV4oxTAivGM0KzKY5yTnto9NV3YWzby34UM61V9A00oBtfUkykWIhMkb-p4JhSgkjONLjNW2rOUzLhYvfcsvyd0oRnK2ActZ7B_WGEFz-bKDcbCDa4R-rdJBBWxOc1M3WxMkqIZUvZ7Z1Jo5wi_sGTy-Rvw
CitedBy_id crossref_primary_10_1371_journal_pone_0165604
crossref_primary_10_1038_srep26249
crossref_primary_10_1364_BOE_462493
crossref_primary_10_1021_acsnano_7b03447
crossref_primary_10_1039_C7NR06798D
crossref_primary_10_1016_j_bpj_2015_12_017
crossref_primary_10_1107_S1600577520006864
crossref_primary_10_1039_C9NR08075A
crossref_primary_10_1063_5_0013065
crossref_primary_10_1107_S160057751900660X
crossref_primary_10_1137_22M1527155
crossref_primary_10_1021_acsnano_6b05034
crossref_primary_10_1021_acsnano_5b07871
crossref_primary_10_1038_s41566_017_0072_5
crossref_primary_10_1088_1361_6420_abaf3a
crossref_primary_10_1002_adbi_201800327
crossref_primary_10_1186_s43074_023_00084_6
Cites_doi 10.1083/jcb.153.1.75
10.1103/PhysRevA.87.053850
10.1098/rspb.1973.0003
10.1371/journal.pgen.1001158
10.1088/1367-2630/14/6/063004
10.1088/1367-2630/12/3/035017
10.1073/pnas.0905846107
10.1364/OE.20.019232
10.1111/j.1432-1033.2004.04044.x
10.1073/pnas.0705898104
10.1126/science.1158573
10.1126/science.288.5473.2035
10.1016/j.elspec.2008.10.008
10.1098/rspb.1953.0017
10.1038/287291a0
10.1016/j.nima.2009.03.200
10.1038/nature10745
10.1103/PhysRevLett.112.088102
10.1242/jcs.110.6.765
10.1146/annurev.physchem.58.032806.104436
10.1103/PhysRevLett.91.148102
10.1039/C2LC41014A
10.1103/PhysRevLett.98.058105
10.1016/S0092-8674(00)00042-8
10.1016/0378-5955(87)90036-0
10.1038/347044a0
10.1152/jn.1996.76.2.995
10.1016/j.pmatsci.2012.03.001
10.1016/j.heares.2005.05.006
10.1083/jcb.138.4.771
10.1088/1367-2630/14/8/085013
10.1111/j.1365-2818.2012.03682.x
10.1086/499495
10.1063/1.3332591
10.1523/JNEUROSCI.1154-08.2008
10.1016/j.ultramic.2008.12.011
10.1088/0957-4484/21/29/295303
10.1016/S0006-3495(94)80728-3
10.1103/PhysRevLett.93.023903
10.1103/PhysRevLett.103.238102
10.1017/S1431927611012165
10.1016/0959-440X(95)80072-7
10.1063/1.1556960
10.1103/PhysRevLett.98.034801
10.1063/1.2053350
10.1073/pnas.1533355100
10.1016/0378-5955(82)90082-X
10.1073/pnas.0711149105
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nn5041526
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12237
ExternalDocumentID 25415362
10_1021_nn5041526
h42010603
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a383t-f8dac0056355ae342cfa0e9b4e402d3e5317e92c49b5bc440115b437904d81853
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 02:59:31 EDT 2025
Fri Jul 11 00:53:38 EDT 2025
Mon Jul 21 05:49:55 EDT 2025
Sun Jul 06 05:07:30 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Thu Aug 27 13:42:28 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords nanofocused beam
actin bundles
X-ray diffraction
nanostructure
stereocilia
vestibular sensory hair cells
ptychography
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-f8dac0056355ae342cfa0e9b4e402d3e5317e92c49b5bc440115b437904d81853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/3501
PMID 25415362
PQID 1640331410
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1762066741
proquest_miscellaneous_1640331410
pubmed_primary_25415362
crossref_primary_10_1021_nn5041526
crossref_citationtrail_10_1021_nn5041526
acs_journals_10_1021_nn5041526
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-12-23
PublicationDateYYYYMMDD 2014-12-23
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Zhang D.-S. (ref1/cit1) 2012; 481
Dierolf M. (ref46/cit46) 2010; 12
Faulkner H. L. M. (ref32/cit32) 2004; 93
McGough A. (ref40/cit40) 1997; 138
Huxley H. E. (ref6/cit6) 1994; 67
Weinhausen B. (ref26/cit26) 2012; 14
Derosier D. J. (ref3/cit3) 1980; 287
Thibault P. (ref49/cit49) 2009; 109
Sedlmair J. (ref25/cit25) 2011; 17
Chen P. Y. (ref2/cit2) 2012; 57
Pelletier O. (ref14/cit14) 2003; 91
Thibault P. (ref48/cit48) 2008; 321
Schroer C. G. (ref22/cit22) 2003; 82
Huxley H. E. (ref5/cit5) 1953; 141
Shin H. (ref20/cit20) 2009; 103
Huxley H. E. (ref4/cit4) 2004; 271
Wong G. C. L. (ref13/cit13) 2010; 61
Lieleg O. (ref18/cit18) 2009; 10
Wilke R. N. (ref31/cit31) 2012; 20
Hofer D. (ref37/cit37) 1997; 110
Zheng L. (ref17/cit17) 2000; 102
Claessens M. M. A. E. (ref21/cit21) 2008; 105
Lima E. (ref36/cit36) 2013; 249
Weinhausen B. (ref27/cit27) 2012; 13
Egelman E. H. (ref9/cit9) 1995; 5
Perrin B. J. (ref39/cit39) 2010; 6
Weinhausen B. (ref28/cit28) 2014; 12
Shahin H. (ref16/cit16) 2006; 78
Schropp A. (ref23/cit23) 2010; 96
Rodenburg J. M. (ref33/cit33) 2007; 98
Purdy K. R. (ref19/cit19) 2007; 98
Thibault P. (ref50/cit50) 2012; 14
Henrich B. (ref45/cit45) 2009; 607
Hanson J. (ref7/cit7) 1973; 183
Furness D. N. (ref38/cit38) 2005; 207
Galkin V. E. (ref41/cit41) 2001; 153
Giewekemeyer K. (ref35/cit35) 2010; 107
Howells M. R. (ref34/cit34) 2009; 170
Schroer C. G. (ref24/cit24) 2005; 87
Wong G. L. C. (ref10/cit10) 2000; 288
Alberts B. (ref29/cit29) 2001
Gorelick S. (ref44/cit44) 2010; 21
Holmes C. K. (ref8/cit8) 1990; 347
Edo T. B. (ref47/cit47) 2013; 87
Angelini T. E. (ref11/cit11) 2003; 100
Furness D. N. (ref43/cit43) 2008; 28
Rusch A. (ref30/cit30) 1996; 76
Flock A. (ref15/cit15) 1982; 7
Liberman M. C. (ref42/cit42) 1987; 26
Sanders L. K. (ref12/cit12) 2007; 104
References_xml – volume: 153
  start-page: 75
  year: 2001
  ident: ref41/cit41
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.1.75
– volume: 87
  start-page: 053850
  year: 2013
  ident: ref47/cit47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.053850
– volume: 183
  start-page: 39
  year: 1973
  ident: ref7/cit7
  publication-title: Proc. R. Soc. London B. Bio.
  doi: 10.1098/rspb.1973.0003
– volume: 6
  start-page: 1001158
  year: 2010
  ident: ref39/cit39
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001158
– volume: 14
  start-page: 063004
  year: 2012
  ident: ref50/cit50
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/6/063004
– volume-title: The Molecular Biology of the Cell
  year: 2001
  ident: ref29/cit29
– volume: 12
  start-page: 035017
  year: 2010
  ident: ref46/cit46
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/3/035017
– volume: 107
  start-page: 529
  year: 2010
  ident: ref35/cit35
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0905846107
– volume: 20
  start-page: 19232
  year: 2012
  ident: ref31/cit31
  publication-title: Opt. Express
  doi: 10.1364/OE.20.019232
– volume: 271
  start-page: 1403
  year: 2004
  ident: ref4/cit4
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.2004.04044.x
– volume: 104
  start-page: 15994
  year: 2007
  ident: ref12/cit12
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0705898104
– volume: 321
  start-page: 379
  year: 2008
  ident: ref48/cit48
  publication-title: Science
  doi: 10.1126/science.1158573
– volume: 288
  start-page: 2035
  year: 2000
  ident: ref10/cit10
  publication-title: Science
  doi: 10.1126/science.288.5473.2035
– volume: 170
  start-page: 4
  year: 2009
  ident: ref34/cit34
  publication-title: J. Electron Spectrosc.
  doi: 10.1016/j.elspec.2008.10.008
– volume: 141
  start-page: 59
  year: 1953
  ident: ref5/cit5
  publication-title: P. R. Soc. London B. Bio.
  doi: 10.1098/rspb.1953.0017
– volume: 287
  start-page: 291
  year: 1980
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/287291a0
– volume: 607
  start-page: 247
  year: 2009
  ident: ref45/cit45
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2009.03.200
– volume: 481
  start-page: 520
  year: 2012
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/nature10745
– volume: 12
  start-page: 088102
  year: 2014
  ident: ref28/cit28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.088102
– volume: 110
  start-page: 765
  year: 1997
  ident: ref37/cit37
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.110.6.765
– volume: 61
  start-page: 171
  year: 2010
  ident: ref13/cit13
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104436
– volume: 91
  start-page: 148102
  year: 2003
  ident: ref14/cit14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.148102
– volume: 13
  start-page: 212
  year: 2012
  ident: ref27/cit27
  publication-title: Lab Chip
  doi: 10.1039/C2LC41014A
– volume: 98
  start-page: 058105
  year: 2007
  ident: ref19/cit19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.058105
– volume: 102
  start-page: 377
  year: 2000
  ident: ref17/cit17
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00042-8
– volume: 26
  start-page: 65
  year: 1987
  ident: ref42/cit42
  publication-title: Hearing Res.
  doi: 10.1016/0378-5955(87)90036-0
– volume: 347
  start-page: 44
  year: 1990
  ident: ref8/cit8
  publication-title: Nature
  doi: 10.1038/347044a0
– volume: 76
  start-page: 995
  year: 1996
  ident: ref30/cit30
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.2.995
– volume: 57
  start-page: 1492
  year: 2012
  ident: ref2/cit2
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.03.001
– volume: 207
  start-page: 22
  year: 2005
  ident: ref38/cit38
  publication-title: Hearing Res.
  doi: 10.1016/j.heares.2005.05.006
– volume: 138
  start-page: 771
  year: 1997
  ident: ref40/cit40
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.138.4.771
– volume: 14
  start-page: 085013
  year: 2012
  ident: ref26/cit26
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/8/085013
– volume: 249
  start-page: 1
  year: 2013
  ident: ref36/cit36
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2012.03682.x
– volume: 78
  start-page: 144
  year: 2006
  ident: ref16/cit16
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/499495
– volume: 96
  start-page: 091102
  year: 2010
  ident: ref23/cit23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3332591
– volume: 28
  start-page: 6342
  year: 2008
  ident: ref43/cit43
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1154-08.2008
– volume: 109
  start-page: 338
  year: 2009
  ident: ref49/cit49
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2008.12.011
– volume: 21
  start-page: 295303
  year: 2010
  ident: ref44/cit44
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/29/295303
– volume: 67
  start-page: 2411
  year: 1994
  ident: ref6/cit6
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80728-3
– volume: 10
  start-page: 281
  year: 2009
  ident: ref18/cit18
  publication-title: ChemPhysChem
– volume: 93
  start-page: 023903
  year: 2004
  ident: ref32/cit32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.023903
– volume: 103
  start-page: 238102
  year: 2009
  ident: ref20/cit20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.238102
– volume: 17
  start-page: 991
  year: 2011
  ident: ref25/cit25
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927611012165
– volume: 5
  start-page: 172
  year: 1995
  ident: ref9/cit9
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/0959-440X(95)80072-7
– volume: 82
  start-page: 1485
  year: 2003
  ident: ref22/cit22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1556960
– volume: 98
  start-page: 034801
  year: 2007
  ident: ref33/cit33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.034801
– volume: 87
  start-page: 124103
  year: 2005
  ident: ref24/cit24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2053350
– volume: 100
  start-page: 8634
  year: 2003
  ident: ref11/cit11
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1533355100
– volume: 7
  start-page: 75
  year: 1982
  ident: ref15/cit15
  publication-title: Hearing Res.
  doi: 10.1016/0378-5955(82)90082-X
– volume: 105
  start-page: 8819
  year: 2008
  ident: ref21/cit21
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0711149105
SSID ssj0057876
Score 2.28932
Snippet Hair cell stereocilia are crucial for hearing and the sense of balance. They include an array of accurately packed, parallel actin filaments and act as levers,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12228
SubjectTerms Actins - chemistry
Animals
Arrays
Beams (radiation)
Biological
Bundles
Diffraction patterns
Hair
Hair Cells, Vestibular - cytology
Mice
Molecular Imaging - methods
Nanostructure
Nanotechnology - methods
Stereocilia
X-Rays
Title Revealing the Structure of Stereociliary Actin by X‑ray Nanoimaging
URI http://dx.doi.org/10.1021/nn5041526
https://www.ncbi.nlm.nih.gov/pubmed/25415362
https://www.proquest.com/docview/1640331410
https://www.proquest.com/docview/1762066741
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gXvTg-4EPsj4OXop0uy3tkSCEmOhBJOHW7G63CRFbU8AET_4F_6K_xNmWEoyAtzaZZrc7szPfZGa_BbgORSgplZ6BaRc1mG2GBq-50rA9gc4vVBYXOlF8eHTaXXbfs3sFuFpSwafmbRTZ-hg5ddZgnTquqTOseqOTu1ttcU5WOsbUGPFDTh80_6kOPXL4O_QswZNpXGltw11-OidrJ3mpjEeiIj_-kjWumvIObE1xJalnhrALBRXtweYc2-A-NJ_UO8JCfCaI-kgnZY4dJ4rEIb6oRKGeBn2eTEgdnWBExIT0vj-_Ej4h6IPj_mt6odEBdFvN50bbmN6iYHDMPkdG6AZcasZPRBZcWYzKkFeVJ5jC1DGwFG7CmvKoZJ6whWRMY0ShWQqrLEij-SEUozhSx0A8L5BKeAFiLodVGROWoKHQBXqq3EDyEpRxmf3pLhj6aYGbmv5sPUpwk2vAl1MOcn0VxmCR6OVM9C0j3lgkdJGr0cdtoWsdPFLxGIfGCVqWbmJdIYOBQPf4MrMER5kNzIbCvBljgUNP_vulU9hADJVyP1LrDIqoO3WOOGUkyqmd_gC3N98V
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSD7wc-cDUevBTpdlvokRAIKnAQSLg1u9ttQsRiCpjgyb_gX_SXOLttEQ0-bm0ybbc7szPfZHa_Qegy4IEgRLgGpF3EoLYZGKxYEobtcnB-gbQYV4lis-XUu_S2Z_cSmhx1FgYGMYI3jXQR_5NdwLwOQ1udJifOMlrRDCgKBlXaqddVhufEFWTIkAFGpCxC84-qCCRGXyPQD7BSh5faZtynSA9M7yp5yE_GPC9evnE2_m_kW2gjQZm4HJvFNlqS4Q5an-Me3EXVe_kMIBGuMWBA3NY8spNI4mEANzKSoLVBn0VTXAaXGGI-xb3317eITTF45GH_Ubc32kPdWrVTqRtJTwWDQS46NoKSz4Ti_wScwaRFiQhYQbqcSkgkfUvCkixKlwjqcpsLShVi5IqzsEB9Hdv3USYchvIQYdf1heSuDwjMoQVKucVJwFW5nsiSL1gW5WA6vGRNjDxd7iamN5uPLLpKFeGJhJFcNcYYLBK9mIk-xTQci4TOU216sEhU5YOFcjiBT8MALUttaf1FBsKC2vFLzSw6iE1h9inIoiEyOOTor186Q6v1TrPhNW5ad8doDdCVZoUk1gnKgB7lKSCYMc9p0_0AZ3PngA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSAgO7EtZikEcuKS0jhOaY1Vala0gSqXeItuxpQpIURekcuIX-EW-hLGbVgWV5ZZIk8TxbG809jPAkRZaUioDB8su6jAvpx1-mpeOFwgMflq5XJhC8brqV-rsouE1kkLR7IXBQXTwTR3bxDde_RzphGEgdxLHntlRTv1pmPUM9ZuBQsXaMPIa4_MHXWSskhFKDJmExh81WUh2vmahH6ClTTHlJbgZDc6uLHnI9LoiI1-_8Tb-f_TLsJigTVIYmMcKTKl4FRbGOAjXoHSnXhAs4jVBLEhqlk-211akpfFGtRVq77HJ231SwNAYE9EnjY-39zbvE4zMreaTPeZoHerl0n2x4iRnKzgca9Kuo_MRl4YHFPEGVy6jUvOsCgRTWFBGrkLXPFUBlSwQnpCMGeQoDHdhlkU2x2_ATNyK1RaQIIikEkGESMxnWcaEK6gWpm1PVT6SPAVpnJIw8Y1OaNveNBeO5iMFx0NlhDJhJjcHZDxOEj0ciT4P6DgmCR0MNRqis5gOCI9Vq4efxgG6rlna-osMpgez8pflUrA5MIfRp7Caxgzh0-2_fmkf5m7PyuHVefVyB-YRZFlySOruwgyqUe0hkOmKtLXeTwE96fo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Structure+of+Stereociliary+Actin+by+X%E2%80%91ray+Nanoimaging&rft.jtitle=ACS+nano&rft.au=Piazza%2C+Valeria&rft.au=Weinhausen%2C+Britta&rft.au=Diaz%2C+Ana&rft.au=Dammann%2C+Christian&rft.date=2014-12-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=8&rft.issue=12&rft.spage=12228&rft.epage=12237&rft_id=info:doi/10.1021%2Fnn5041526&rft.externalDocID=h42010603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon