Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge

[Display omitted] •Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI algorithms summarized.•Ongoing work and future recommendations provided. The so-called Fourth Paradigm has witnessed a boom during the past two dec...

Full description

Saved in:
Bibliographic Details
Published inGondwana research Vol. 109; pp. 1 - 17
Main Authors Zhang, Wengang, Gu, Xin, Tang, Libin, Yin, Yueping, Liu, Dongsheng, Zhang, Yanmei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text
ISSN1342-937X
1878-0571
DOI10.1016/j.gr.2022.03.015

Cover

Abstract [Display omitted] •Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI algorithms summarized.•Ongoing work and future recommendations provided. The so-called Fourth Paradigm has witnessed a boom during the past two decades, with large volumes of observational data becoming available to scientists and engineers. Big data is characterized by the rule of the five Vs: Volume, Variety, Value, Velocity and Veracity. The concept of big data naturally matches well with the features of geoengineering and geoscience. Large-scale, comprehensive, multidirectional and multifield geotechnical data analysis is becoming a trend. On the other hand, Machine learning (ML), Deep Learning (DL) and Optimization Algorithm (OA) provide the ability to learn from data and deliver in-depth insight into geotechnical problems. Researchers use different ML, DL and OA models to solve various problems associated with geoengineering and geoscience. Consequently, there is a need to extend its research with big data research through integrating the use of ML, DL and OA techniques. This work focuses on a systematic review on the state-of-the-art application of ML, DL and OA algorithms in geoengineering and geoscience. Various ML, DL, and OA approaches are firstly concisely introduced, concerning mainly the supervised learning, unsupervised learning, deep learning and optimization algorithms. Then their representative applications in the geoengineering and geoscience are summarized via VOSviewer demonstration. The authors also provided their own thoughts learnt from these applications as well as work ongoing and future recommendations. This review paper aims to make a comprehensive summary and provide fundamental guidelines for researchers and engineers in the discipline of geoengineering and geoscience or similar research areas on how to integrate and apply ML, DL and OA methods.
AbstractList [Display omitted] •Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI algorithms summarized.•Ongoing work and future recommendations provided. The so-called Fourth Paradigm has witnessed a boom during the past two decades, with large volumes of observational data becoming available to scientists and engineers. Big data is characterized by the rule of the five Vs: Volume, Variety, Value, Velocity and Veracity. The concept of big data naturally matches well with the features of geoengineering and geoscience. Large-scale, comprehensive, multidirectional and multifield geotechnical data analysis is becoming a trend. On the other hand, Machine learning (ML), Deep Learning (DL) and Optimization Algorithm (OA) provide the ability to learn from data and deliver in-depth insight into geotechnical problems. Researchers use different ML, DL and OA models to solve various problems associated with geoengineering and geoscience. Consequently, there is a need to extend its research with big data research through integrating the use of ML, DL and OA techniques. This work focuses on a systematic review on the state-of-the-art application of ML, DL and OA algorithms in geoengineering and geoscience. Various ML, DL, and OA approaches are firstly concisely introduced, concerning mainly the supervised learning, unsupervised learning, deep learning and optimization algorithms. Then their representative applications in the geoengineering and geoscience are summarized via VOSviewer demonstration. The authors also provided their own thoughts learnt from these applications as well as work ongoing and future recommendations. This review paper aims to make a comprehensive summary and provide fundamental guidelines for researchers and engineers in the discipline of geoengineering and geoscience or similar research areas on how to integrate and apply ML, DL and OA methods.
Author Zhang, Wengang
Liu, Dongsheng
Zhang, Yanmei
Tang, Libin
Yin, Yueping
Gu, Xin
Author_xml – sequence: 1
  givenname: Wengang
  surname: Zhang
  fullname: Zhang, Wengang
  email: zhangwg@cqu.edu.cn
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
– sequence: 2
  givenname: Xin
  surname: Gu
  fullname: Gu, Xin
  email: guxin@cqu.edu.cn
  organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 3
  givenname: Libin
  surname: Tang
  fullname: Tang, Libin
  email: tangl31@mcmaster.ca
  organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 4
  givenname: Yueping
  surname: Yin
  fullname: Yin, Yueping
  organization: China Institute of Geological Environment Monitoring, Beijing 100081, China
– sequence: 5
  givenname: Dongsheng
  surname: Liu
  fullname: Liu, Dongsheng
  organization: Chongqing Bureau of Geology Survey and Minerals Exploration, Chongqing 401121, China
– sequence: 6
  givenname: Yanmei
  surname: Zhang
  fullname: Zhang, Yanmei
  email: zhangym@cqu.edu.cn
  organization: College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
BookMark eNp9kEtLw0AUhQdRsK3uXc4PMHEmk2SS7krxBQU3Cu6G28lNOiWZCZO0oj_E32v60IWgq_vgfAfOGZNT6ywScsVZyBlPb9Zh5cOIRVHIRMh4ckJGPJNZwBLJT4ddxFGQC_l6TsZdt2YsFjzNRuRz1ra10dAbZ6kraQN6ZSzSGsFbY6trWiC2PycFW1DX9qYxHwcG6sp506-ajhpLK3Roq8EA_bd6eHXaoNU4pXPXtB5XaDuzRepxa_BtLyo3_cYj1Suo68EAL8hZCXWHl8c5IS93t8_zh2DxdP84ny0CEJnogxyElBAvJWMRFpAVWZIvE4jyZclj1IKVOfAMmJQxS4AXcikBeBnnacHTPAMxIenBV3vXdR5LpU2_D9Z7MLXiTO3aVWtVebVrVzGhhnYHkP0CW28a8O__IdMDgkOgIblXx14K41H3qnDmb_gLlnWX3Q
CitedBy_id crossref_primary_10_1080_17538947_2025_2467983
crossref_primary_10_3390_su141610122
crossref_primary_10_1002_gj_4615
crossref_primary_10_1016_j_enganabound_2023_11_028
crossref_primary_10_1002_gj_4976
crossref_primary_10_1038_s41598_024_53630_y
crossref_primary_10_24054_raaas_v14i2_2783
crossref_primary_10_3390_s23229262
crossref_primary_10_1016_j_dajour_2024_100489
crossref_primary_10_3389_feart_2023_1204067
crossref_primary_10_1080_1064119X_2024_2349801
crossref_primary_10_3390_computers12120248
crossref_primary_10_1016_j_enganabound_2023_03_021
crossref_primary_10_1007_s10462_023_10636_8
crossref_primary_10_1007_s40808_022_01489_1
crossref_primary_10_1007_s42107_025_01287_x
crossref_primary_10_1108_EJIM_05_2024_0520
crossref_primary_10_1007_s10653_023_01669_7
crossref_primary_10_1016_j_soildyn_2024_109006
crossref_primary_10_1007_s10706_023_02687_z
crossref_primary_10_1016_j_geothermics_2023_102711
crossref_primary_10_3390_app14104223
crossref_primary_10_1080_17480930_2025_2468939
crossref_primary_10_3390_app122412567
crossref_primary_10_3390_w15152743
crossref_primary_10_1007_s10518_024_02003_x
crossref_primary_10_1016_j_apmt_2024_102371
crossref_primary_10_1016_j_aei_2025_103180
crossref_primary_10_1002_fld_5363
crossref_primary_10_1016_j_iswa_2024_200451
crossref_primary_10_1002_gj_4905
crossref_primary_10_1007_s10706_023_02516_3
crossref_primary_10_1007_s40098_024_00957_y
crossref_primary_10_1016_j_powtec_2025_120753
crossref_primary_10_1016_j_xinn_2024_100691
crossref_primary_10_1016_j_jrmge_2023_05_017
crossref_primary_10_1016_j_autcon_2024_105678
crossref_primary_10_1007_s40098_024_00933_6
crossref_primary_10_3390_w14132071
crossref_primary_10_1061_JPCFEV_CFENG_4363
crossref_primary_10_1016_j_eiar_2024_107692
crossref_primary_10_3390_rs16162883
crossref_primary_10_1007_s40515_024_00436_0
crossref_primary_10_1080_19648189_2024_2416441
crossref_primary_10_1016_j_soildyn_2023_108423
crossref_primary_10_1016_j_trgeo_2025_101530
crossref_primary_10_1016_j_cageo_2024_105738
crossref_primary_10_2174_2210299X01666230223104508
crossref_primary_10_1007_s43503_024_00020_y
crossref_primary_10_1016_j_ghm_2024_06_001
crossref_primary_10_3390_su152216125
crossref_primary_10_1016_j_autcon_2024_105947
crossref_primary_10_3390_geotechnics2040051
crossref_primary_10_1007_s10669_023_09929_8
crossref_primary_10_1109_TGRS_2023_3263842
crossref_primary_10_3390_su15065470
crossref_primary_10_1016_j_enggeo_2024_107696
crossref_primary_10_1016_j_scitotenv_2024_173720
crossref_primary_10_1007_s11069_024_06610_4
crossref_primary_10_1016_j_ghm_2024_11_001
crossref_primary_10_3390_math11092021
crossref_primary_10_1007_s11440_022_01777_1
crossref_primary_10_1016_j_earscirev_2024_104700
crossref_primary_10_1016_j_undsp_2023_12_005
crossref_primary_10_21595_jve_2023_23656
crossref_primary_10_1016_j_undsp_2024_03_003
crossref_primary_10_1002_gj_4631
crossref_primary_10_1002_gj_4752
crossref_primary_10_1016_j_softx_2023_101553
crossref_primary_10_3390_su15042962
crossref_primary_10_1139_cgj_2022_0372
crossref_primary_10_1007_s12517_022_11173_4
crossref_primary_10_1080_19386362_2023_2212996
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_3390_land13030322
crossref_primary_10_1007_s40515_023_00329_8
crossref_primary_10_1007_s11771_024_5641_4
crossref_primary_10_3390_land13101724
crossref_primary_10_1007_s12145_024_01278_7
crossref_primary_10_1007_s11053_024_10408_3
crossref_primary_10_1007_s11440_023_02050_9
crossref_primary_10_1016_j_gsf_2022_101489
crossref_primary_10_3390_fi15100332
crossref_primary_10_1016_j_trgeo_2022_100878
crossref_primary_10_1016_j_jrmge_2022_07_009
crossref_primary_10_1007_s00477_024_02745_9
crossref_primary_10_1007_s40515_024_00372_z
crossref_primary_10_1016_j_compgeo_2023_105749
crossref_primary_10_1061_JCCEE5_CPENG_5927
crossref_primary_10_1016_j_geogeo_2025_100354
crossref_primary_10_1016_j_apm_2023_08_009
crossref_primary_10_1109_ACCESS_2023_3291411
crossref_primary_10_1007_s11227_023_05757_4
crossref_primary_10_1016_j_rser_2023_113748
crossref_primary_10_1016_j_heliyon_2024_e26142
crossref_primary_10_1016_j_gete_2023_100506
crossref_primary_10_1155_2023_5525793
crossref_primary_10_1016_j_apgeochem_2024_106124
crossref_primary_10_2298_TSCI221126055S
crossref_primary_10_3390_jmse12071099
crossref_primary_10_1007_s00521_024_09893_7
crossref_primary_10_1016_j_ijdrr_2024_104377
crossref_primary_10_1061_AJRUA6_RUENG_1317
crossref_primary_10_1007_s40996_024_01464_z
crossref_primary_10_1016_j_jrmge_2024_02_015
crossref_primary_10_3390_su151310269
crossref_primary_10_3390_min13101332
crossref_primary_10_1109_LCSYS_2024_3413392
crossref_primary_10_1007_s12205_023_0355_y
crossref_primary_10_1016_j_jseaes_2024_106367
crossref_primary_10_1038_s43017_023_00452_7
crossref_primary_10_1080_17499518_2025_2460007
crossref_primary_10_3390_app122412887
crossref_primary_10_1109_ACCESS_2024_3360337
crossref_primary_10_1016_j_trgeo_2022_100815
crossref_primary_10_1002_cpe_7530
crossref_primary_10_1002_gj_4942
crossref_primary_10_1007_s00366_023_01852_5
crossref_primary_10_1016_j_jrmge_2023_04_015
crossref_primary_10_1016_j_trgeo_2024_101229
crossref_primary_10_1016_j_trgeo_2024_101228
crossref_primary_10_3390_earth4030037
crossref_primary_10_1016_j_engfailanal_2022_106647
crossref_primary_10_3390_app122211433
crossref_primary_10_1002_gj_4666
crossref_primary_10_3390_s23104942
crossref_primary_10_1007_s12205_024_1432_6
crossref_primary_10_1007_s41062_022_00966_x
crossref_primary_10_1007_s10064_023_03329_7
crossref_primary_10_1016_j_trgeo_2024_101232
crossref_primary_10_1080_17499518_2024_2443457
crossref_primary_10_1007_s11069_024_06535_y
crossref_primary_10_1016_j_clay_2023_107239
crossref_primary_10_1007_s10706_024_02863_9
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_1007_s41748_024_00530_w
crossref_primary_10_1038_s40494_025_01558_5
crossref_primary_10_1016_j_asr_2024_03_074
crossref_primary_10_1007_s40515_023_00369_0
crossref_primary_10_1155_2023_9465811
crossref_primary_10_1007_s10064_023_03466_z
crossref_primary_10_1007_s00603_022_03046_9
crossref_primary_10_1080_19386362_2023_2258749
crossref_primary_10_1080_17499518_2024_2313485
crossref_primary_10_1007_s11069_024_06673_3
crossref_primary_10_1007_s11368_024_03886_8
crossref_primary_10_1080_19648189_2023_2205914
crossref_primary_10_1002_gj_4951
crossref_primary_10_1007_s10706_022_02351_y
crossref_primary_10_1038_s41598_023_41731_z
crossref_primary_10_1680_jgere_24_00029
crossref_primary_10_1002_gj_5007
crossref_primary_10_1007_s10845_023_02260_8
crossref_primary_10_1016_j_advwatres_2025_104952
crossref_primary_10_1016_j_trgeo_2022_100827
crossref_primary_10_1007_s11440_023_02030_z
crossref_primary_10_1016_j_gsf_2023_101769
crossref_primary_10_1016_j_oregeorev_2024_106170
crossref_primary_10_3390_en16041581
crossref_primary_10_3390_genes14020451
crossref_primary_10_3390_make6020059
crossref_primary_10_1002_nag_3533
crossref_primary_10_1080_17499518_2023_2172186
crossref_primary_10_1016_j_compgeo_2024_106407
crossref_primary_10_1016_j_gsf_2023_101645
crossref_primary_10_1016_j_gsf_2024_101886
crossref_primary_10_21595_vp_2023_23541
crossref_primary_10_3390_electronics13122398
crossref_primary_10_1016_j_autcon_2024_105890
crossref_primary_10_1002_gj_4605
crossref_primary_10_1007_s12517_023_11268_6
crossref_primary_10_1016_j_heliyon_2023_e20902
crossref_primary_10_1016_j_tust_2022_104830
crossref_primary_10_1021_acs_energyfuels_4c05402
crossref_primary_10_1108_MLAG_09_2024_0008
crossref_primary_10_1007_s13369_023_07962_y
crossref_primary_10_1038_s41598_023_29292_7
crossref_primary_10_1007_s11771_023_5254_3
crossref_primary_10_1061_IJGNAI_GMENG_8644
crossref_primary_10_1080_1064119X_2023_2193174
crossref_primary_10_1080_17538947_2024_2409337
crossref_primary_10_1139_cgj_2024_0139
crossref_primary_10_1016_j_engappai_2024_109178
crossref_primary_10_1007_s11709_024_1140_9
crossref_primary_10_1007_s12665_025_12095_6
crossref_primary_10_62486_latia202585
crossref_primary_10_1080_1064119X_2023_2251025
crossref_primary_10_1007_s42773_023_00225_x
crossref_primary_10_1186_s44147_025_00586_z
Cites_doi 10.1061/(ASCE)GM.1943-5622.0002400
10.1007/978-3-642-04944-6_14
10.1016/j.comcom.2020.02.008
10.1080/0305215X.2013.836640
10.1155/2013/462706
10.1016/j.tust.2019.04.013
10.1007/s10845-013-0753-y
10.1109/TVCG.2020.3030418
10.3934/jimo.2014.10.777
10.7551/mitpress/1090.001.0001
10.1007/s10064-014-0660-2
10.1007/s13369-018-3173-7
10.1162/neco.1997.9.8.1735
10.3390/rs11232801
10.1016/j.tust.2012.04.012
10.1016/j.gr.2020.08.007
10.1016/j.inffus.2020.12.006
10.1162/neco.1989.1.1.143
10.32604/cmes.2019.07653
10.1023/A:1008202821328
10.1016/j.advengsoft.2016.01.008
10.1016/j.undsp.2020.03.003
10.1061/(ASCE)0733-9496(2003)129:3(210)
10.1007/978-3-642-04441-0_8
10.1016/j.advengsoft.2013.12.007
10.1016/j.tust.2005.07.001
10.1016/j.earscirev.2019.102898
10.1007/s00500-016-2442-1
10.1016/j.aei.2005.01.004
10.1007/s11192-009-0146-3
10.1016/j.asoc.2011.09.017
10.1007/s10346-021-01640-6
10.3850/978-981-11-2725-0-SL-cd
10.1016/j.compstruc.2011.08.002
10.1061/(ASCE)1084-0699(2004)9:6(491)
10.1038/nature14539
10.1007/s10994-013-5386-z
10.1007/s11440-020-01083-8
10.1007/s10346-019-01239-y
10.1007/s11709-020-0655-y
10.1038/s41586-019-0912-1
10.1109/4235.585892
10.1007/s41062-019-0234-z
10.1016/j.geomorph.2012.05.008
ContentType Journal Article
Copyright 2022 International Association for Gondwana Research
Copyright_xml – notice: 2022 International Association for Gondwana Research
DBID AAYXX
CITATION
DOI 10.1016/j.gr.2022.03.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1878-0571
EndPage 17
ExternalDocumentID 10_1016_j_gr_2022_03_015
S1342937X2200123X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSZ
T5K
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-a383t-9a377a4b7002eda8d859b5a29bf14ec30f9a18a077405a1d7b7aa1f496d1698a3
IEDL.DBID .~1
ISSN 1342-937X
IngestDate Wed Oct 29 21:43:46 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Geoengineering and geoscience
Optimization algorithms
VOSviewer
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-9a377a4b7002eda8d859b5a29bf14ec30f9a18a077405a1d7b7aa1f496d1698a3
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_gr_2022_03_015
crossref_primary_10_1016_j_gr_2022_03_015
elsevier_sciencedirect_doi_10_1016_j_gr_2022_03_015
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Gondwana research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shi, Zhao, Li, Xie, Li, Zhou, Liu (b0390) 2019; 90
Kanagaraj, Ponnambalam, Jawahar, Nilakantan (b0185) 2014; 46
Huang, Y., Li, J., Fu, J., 2019. Review on application of artificial intelligence in civil engineering. C. - Comput. Model. Eng. Sci. https://doi.org/10.32604/cmes.2019.07653.
Luo, Shen, Zhang (b0275) 2019; 16
Yang, X.S., 2009. Firefly algorithms for multimodal optimization, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, Heidelberg, pp. 169-178. https://doi.org/10.1007/978-3-642-04944-6_14.
Yusup, Sarkheyli, Zain, Hashim, Ithnin (b0510) 2014; 25
Zhang, Tang, Li, Wang, Cheng, Zhou, Chen (b0530) 2020; 14
Hochreiter, Schmidhuber (b0140) 1997; 9
Karaboga, Akay (b0190) 2009; 214
Aljarah, Faris, Mirjalili (b0010) 2018; 22
Solomatine, Xue (b0410) 2004; 9
Dikshit, Pradhan, Alamri (b0070) 2020; 100
Gupta, Tanwar, Tyagi, Kumar (b0125) 2020; 153
Li, Zhang, Wang, Chen, Taib, Whiffin, Wang (b0230) 2014; 95
Storn, Price (b0415) 1997; 11
Elbeltagi, Hegazy, Grierson (b0085) 2005; 19
Garg (b0115) 2014; 10
Ou, Zhang, Ding, Wang (b0340) 2022; 22
Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Adapt. Nat. Artif. Syst. https://doi.org/10.7551/MITPRESS/1090.001.0001.
Batista, Davies, Silva, Quinton (b0030) 2019; 197
Zhan, Guo, Sun, Chen, Chen (b0515) 2021; 16
Mirjalili, Lewis (b0290) 2016; 95
Eberhart, Kennedy (b0080) 1995
Gandomi, Yang, Alavi (b0110) 2011; 89
Liang, Zhuang, Jiang, Pan, Ren (b0240) 2012; 171-172
Wang, Turko, Shaikh, Park, Das, Hohman, Kahng, Polo Chau (b0455) 2021; 27
Zhang, Han, Gu, Wang, Chen, Liu (b0520) 2022; 7
Łukasik, S., Zak, S., 2009. Firefly algorithm for continuous constrained optimization tasks. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-04441-0_8.
Meng, Li, Zhou (b0285) 2021; 70
Hinton (b0130) 1989; 1
Van Eck, Waltman (b0440) 2010; 84
Liu, Yu, Zhao (b0260) 2021; 18
Sheil, Suryasentana, Mooney, Zhu (b0385) 2020; 173
Zhang, Phoon (b0525) 2022
Eusuff, Lansey (b0090) 2003; 129
Yang, Deb (b0485) 2009
Yi, Cao, Pu (b0505) 2010
Moscato, P., 1989. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms.
Snoek, Larochelle, Adams (b0405) 2012
Neaupane, Adhikari (b0330) 2006; 21
Yang, Hosseini, Gandomi (b0490) 2012; 12
Shreyas, Dey (b0400) 2019; 4
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7746), 195–204. https://doi.org/10.1038/s41586-019-0912-1.
Zhang, Zhang, Fu, Goh, Zhang (b0535) 2018; 15
Darabi, Ahangari, Noorzad, Arab (b0060) 2012; 31
LeCun, Y., Galland, C.C., Hinton, G.E., 1989. GEMINI: Gradient Estimation by Matrix Inversion after Noise Injection. Touretzky, D.S. (Ed.). Neural Information Processing Systems 1, Morgan Kaufmann: San Mateo, CA.
Mirjalili, Mirjalili, Lewis (b0295) 2014; 69
Dorigo, Gambardella (b0075) 1997; 1
Mohammadi, Naseri, Alipoor (b0305) 2015; 74
Phoon, K.K., Ching, J., Wang, Y., 2019. Managing risk in geotechnical engineering: From data to digitalization, In: Proc., 7th Int. Symp. On Geotechnical Safety and Risk (ISGSR 2019), Singapore, pp. 13–34. https://doi.org/10.3850/978-981-11-2725-0-SL-cd.
Hinton, G.E., Zemel, R.S., 1994. Autoencoders, minimum description length, and Helmholtz free energy. In: Cowan, J.D., Tesauro, G., Alspector, J. (Eds.), Advances in Neural Information Processing Systems 6. Morgan Kaufmann: San Mateo, CA.
Nait Amar, Zeraibi, Redouane (b0325) 2018; 43
Huang, Chen (b0155) 2013; 2013
LeCun, Bengio, Hinton (b0205) 2015; 521
Zhang, Ge, Tian, Liou (b0540) 2019; 11
Mohammadi (10.1016/j.gr.2022.03.015_b0305) 2015; 74
Liang (10.1016/j.gr.2022.03.015_b0240) 2012; 171-172
Wang (10.1016/j.gr.2022.03.015_b0455) 2021; 27
10.1016/j.gr.2022.03.015_b0145
Sheil (10.1016/j.gr.2022.03.015_b0385) 2020; 173
Zhan (10.1016/j.gr.2022.03.015_b0515) 2021; 16
Zhang (10.1016/j.gr.2022.03.015_b0520) 2022; 7
Hochreiter (10.1016/j.gr.2022.03.015_b0140) 1997; 9
Neaupane (10.1016/j.gr.2022.03.015_b0330) 2006; 21
Dikshit (10.1016/j.gr.2022.03.015_b0070) 2020; 100
Li (10.1016/j.gr.2022.03.015_b0230) 2014; 95
Yusup (10.1016/j.gr.2022.03.015_b0510) 2014; 25
Yang (10.1016/j.gr.2022.03.015_b0490) 2012; 12
10.1016/j.gr.2022.03.015_b0150
10.1016/j.gr.2022.03.015_b0270
Eusuff (10.1016/j.gr.2022.03.015_b0090) 2003; 129
Gandomi (10.1016/j.gr.2022.03.015_b0110) 2011; 89
Garg (10.1016/j.gr.2022.03.015_b0115) 2014; 10
Storn (10.1016/j.gr.2022.03.015_b0415) 1997; 11
Yang (10.1016/j.gr.2022.03.015_b0485) 2009
Yi (10.1016/j.gr.2022.03.015_b0505) 2010
Zhang (10.1016/j.gr.2022.03.015_b0530) 2020; 14
Zhang (10.1016/j.gr.2022.03.015_b0525) 2022
Gupta (10.1016/j.gr.2022.03.015_b0125) 2020; 153
Dorigo (10.1016/j.gr.2022.03.015_b0075) 1997; 1
Eberhart (10.1016/j.gr.2022.03.015_b0080) 1995
Elbeltagi (10.1016/j.gr.2022.03.015_b0085) 2005; 19
Shi (10.1016/j.gr.2022.03.015_b0390) 2019; 90
Solomatine (10.1016/j.gr.2022.03.015_b0410) 2004; 9
Batista (10.1016/j.gr.2022.03.015_b0030) 2019; 197
Luo (10.1016/j.gr.2022.03.015_b0275) 2019; 16
10.1016/j.gr.2022.03.015_b0480
Mirjalili (10.1016/j.gr.2022.03.015_b0290) 2016; 95
Zhang (10.1016/j.gr.2022.03.015_b0535) 2018; 15
Van Eck (10.1016/j.gr.2022.03.015_b0440) 2010; 84
10.1016/j.gr.2022.03.015_b0200
Ou (10.1016/j.gr.2022.03.015_b0340) 2022; 22
10.1016/j.gr.2022.03.015_b0365
Liu (10.1016/j.gr.2022.03.015_b0260) 2021; 18
10.1016/j.gr.2022.03.015_b0315
Snoek (10.1016/j.gr.2022.03.015_b0405) 2012
Nait Amar (10.1016/j.gr.2022.03.015_b0325) 2018; 43
Kanagaraj (10.1016/j.gr.2022.03.015_b0185) 2014; 46
Aljarah (10.1016/j.gr.2022.03.015_b0010) 2018; 22
Huang (10.1016/j.gr.2022.03.015_b0155) 2013; 2013
Darabi (10.1016/j.gr.2022.03.015_b0060) 2012; 31
Zhang (10.1016/j.gr.2022.03.015_b0540) 2019; 11
10.1016/j.gr.2022.03.015_b0135
LeCun (10.1016/j.gr.2022.03.015_b0205) 2015; 521
Meng (10.1016/j.gr.2022.03.015_b0285) 2021; 70
10.1016/j.gr.2022.03.015_b0375
Shreyas (10.1016/j.gr.2022.03.015_b0400) 2019; 4
Karaboga (10.1016/j.gr.2022.03.015_b0190) 2009; 214
Mirjalili (10.1016/j.gr.2022.03.015_b0295) 2014; 69
Hinton (10.1016/j.gr.2022.03.015_b0130) 1989; 1
References_xml – volume: 74
  start-page: 827
  year: 2015
  end-page: 843
  ident: b0305
  article-title: Development of artificial neural networks and multiple regression models for the NATM tunnelling-induced settlement in Niayesh subway tunnel, Tehran
  publication-title: Bull. Eng. Geol. Environ.
– reference: Yang, X.S., 2009. Firefly algorithms for multimodal optimization, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, Heidelberg, pp. 169-178. https://doi.org/10.1007/978-3-642-04944-6_14.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0010
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
– volume: 1
  start-page: 53
  year: 1997
  end-page: 66
  ident: b0075
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evol. Comput.
– volume: 84
  start-page: 523
  year: 2010
  end-page: 538
  ident: b0440
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
– volume: 197
  start-page: 102898
  year: 2019
  ident: b0030
  article-title: On the evaluation of soil erosion models: Are we doing enough?
  publication-title: Earth-Sci. Rev.
– volume: 95
  start-page: 11
  year: 2014
  end-page: 26
  ident: b0230
  article-title: Water pipe condition assessment: A hierarchical beta process approach for sparse incident data
  publication-title: Mach. Learn.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0140
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
– volume: 90
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0390
  article-title: Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 43
  start-page: 6399
  year: 2018
  end-page: 6412
  ident: b0325
  article-title: Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization
  publication-title: Arab. J. Sci. Eng.
– reference: Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7746), 195–204. https://doi.org/10.1038/s41586-019-0912-1.
– start-page: 210
  year: 2009
  end-page: 214
  ident: b0485
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World Congress on Nature and Biologically Inspired Computing
– volume: 4
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0400
  article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects
  publication-title: Innov. Infrastruct. Solut.
– volume: 100
  start-page: 290
  year: 2020
  end-page: 301
  ident: b0070
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondwana Res.
– volume: 153
  start-page: 406
  year: 2020
  end-page: 440
  ident: b0125
  article-title: Machine Learning Models for Secure Data Analytics: A taxonomy and threat model
  publication-title: Comput. Commun.
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: b0405
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 1
  start-page: 143
  year: 1989
  end-page: 150
  ident: b0130
  article-title: Deterministic Boltzmann learning performs steepest descent in weight-space
  publication-title: Neural Comput.
– volume: 171-172
  start-page: 94
  year: 2012
  end-page: 100
  ident: b0240
  article-title: Assessment of debris flow hazards using a Bayesian Network
  publication-title: Geomorphology
– reference: Łukasik, S., Zak, S., 2009. Firefly algorithm for continuous constrained optimization tasks. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-04441-0_8.
– reference: Phoon, K.K., Ching, J., Wang, Y., 2019. Managing risk in geotechnical engineering: From data to digitalization, In: Proc., 7th Int. Symp. On Geotechnical Safety and Risk (ISGSR 2019), Singapore, pp. 13–34. https://doi.org/10.3850/978-981-11-2725-0-SL-cd.
– volume: 12
  start-page: 1180
  year: 2012
  end-page: 1186
  ident: b0490
  article-title: Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect
  publication-title: Appl. Soft Comput. J.
– reference: LeCun, Y., Galland, C.C., Hinton, G.E., 1989. GEMINI: Gradient Estimation by Matrix Inversion after Noise Injection. Touretzky, D.S. (Ed.). Neural Information Processing Systems 1, Morgan Kaufmann: San Mateo, CA.
– volume: 25
  start-page: 1463
  year: 2014
  end-page: 1472
  ident: b0510
  article-title: Estimation of optimal machining control parameters using artificial bee colony
  publication-title: J. Intell. Manuf.
– volume: 16
  start-page: 1247
  year: 2021
  end-page: 1263
  ident: b0515
  article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump: analyses of undrained strength and slope stability
  publication-title: Acta Geotech.
– volume: 70
  start-page: 60
  year: 2021
  end-page: 71
  ident: b0285
  article-title: Enhancing the security of blockchain-based software defined networking through trust-based traffic fusion and filtration
  publication-title: Inf. Fusion
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0295
  article-title: Advances in Engineering Software Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 15
  start-page: 965
  year: 2018
  end-page: 972
  ident: b0535
  article-title: 2D and 3D numerical analysis on strut responses due to one-strut failure
  publication-title: Geomech. Eng.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0205
  article-title: Deep learning
  publication-title: Nature
– start-page: 39
  year: 1995
  end-page: 43
  ident: b0080
  article-title: New optimizer using particle swarm theory
  publication-title: Proceedings of the International Symposium on Micro Machine and Human Science. IEEE
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0290
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
– volume: 173
  start-page: 74
  year: 2020
  end-page: 95
  ident: b0385
  article-title: Machine Learning to Inform Tunnelling Operations: Recent Advances and Future Trends
  publication-title: Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr.
– volume: 129
  start-page: 210
  year: 2003
  end-page: 225
  ident: b0090
  article-title: Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm
  publication-title: J. Water Resour. Plan. Manag.
– reference: Huang, Y., Li, J., Fu, J., 2019. Review on application of artificial intelligence in civil engineering. C. - Comput. Model. Eng. Sci. https://doi.org/10.32604/cmes.2019.07653.
– volume: 19
  start-page: 43
  year: 2005
  end-page: 53
  ident: b0085
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv. Eng. Informatics
– reference: Hinton, G.E., Zemel, R.S., 1994. Autoencoders, minimum description length, and Helmholtz free energy. In: Cowan, J.D., Tesauro, G., Alspector, J. (Eds.), Advances in Neural Information Processing Systems 6. Morgan Kaufmann: San Mateo, CA.
– volume: 16
  start-page: 2421
  year: 2019
  end-page: 2431
  ident: b0275
  article-title: How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide
  publication-title: Landslides
– volume: 18
  start-page: 2403
  year: 2021
  end-page: 2425
  ident: b0260
  article-title: A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation
  publication-title: Landslides
– year: 2010
  ident: b0505
  article-title: Multi-factorial comprehensive estimation for jinchans deep typical rockburst tendency
  publication-title: Sci. Technol. Rev.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0155
  article-title: An improved differential evolution algorithm based on adaptive parameter
  publication-title: J. Control Sci. Eng.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0415
  article-title: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
  publication-title: J. Glob. Optim.
– volume: 27
  start-page: 1396
  year: 2021
  end-page: 1406
  ident: b0455
  article-title: CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization
  publication-title: IEEE Trans. Vis. Comput. Graph.
– year: 2022
  ident: b0525
  article-title: Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 14
  start-page: 1247
  year: 2020
  end-page: 1261
  ident: b0530
  article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China
  publication-title: Front. Struct. Civ. Eng.
– reference: Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Adapt. Nat. Artif. Syst. https://doi.org/10.7551/MITPRESS/1090.001.0001.
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: b0190
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 31
  start-page: 117
  year: 2012
  end-page: 127
  ident: b0060
  article-title: Subsidence estimation utilizing various approaches - A case study: Tehran No. 3 subway line
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 21
  start-page: 151
  year: 2006
  end-page: 159
  ident: b0330
  article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 9
  start-page: 491
  year: 2004
  end-page: 501
  ident: b0410
  article-title: M5 Model Trees and Neural Networks: Application to Flood Forecasting in the Upper Reach of the Huai River in China
  publication-title: J. Hydrol. Eng.
– volume: 7
  start-page: 380
  year: 2022
  end-page: 407
  ident: b0520
  article-title: Tunneling and deep excavations in spatially variable soil and rock masses: A short review
  publication-title: Underground Space
– reference: Moscato, P., 1989. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms.
– volume: 89
  start-page: 2325
  year: 2011
  end-page: 2336
  ident: b0110
  article-title: Mixed variable structural optimization using Firefly Algorithm
  publication-title: Comput. Struct.
– volume: 46
  start-page: 1331
  year: 2014
  end-page: 1351
  ident: b0185
  article-title: An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization
  publication-title: Eng. Optim.
– volume: 11
  start-page: 2801
  year: 2019
  ident: b0540
  article-title: Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China
  publication-title: Remote Sens.
– volume: 22
  year: 2022
  ident: b0340
  article-title: Response of inclined loaded pile in layered foundation based on principle of minimum potential energy
  publication-title: Int. J. Geomech.
– volume: 10
  start-page: 777
  year: 2014
  end-page: 794
  ident: b0115
  article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm
  publication-title: J. Ind. Manag. Optim.
– volume: 22
  issue: 7
  year: 2022
  ident: 10.1016/j.gr.2022.03.015_b0340
  article-title: Response of inclined loaded pile in layered foundation based on principle of minimum potential energy
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0002400
– ident: 10.1016/j.gr.2022.03.015_b0480
  doi: 10.1007/978-3-642-04944-6_14
– volume: 153
  start-page: 406
  year: 2020
  ident: 10.1016/j.gr.2022.03.015_b0125
  article-title: Machine Learning Models for Secure Data Analytics: A taxonomy and threat model
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.02.008
– volume: 46
  start-page: 1331
  issue: 10
  year: 2014
  ident: 10.1016/j.gr.2022.03.015_b0185
  article-title: An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.836640
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.gr.2022.03.015_b0155
  article-title: An improved differential evolution algorithm based on adaptive parameter
  publication-title: J. Control Sci. Eng.
  doi: 10.1155/2013/462706
– volume: 90
  start-page: 1
  year: 2019
  ident: 10.1016/j.gr.2022.03.015_b0390
  article-title: Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2019.04.013
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.gr.2022.03.015_b0190
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Appl. Math. Comput.
– ident: 10.1016/j.gr.2022.03.015_b0315
– start-page: 210
  year: 2009
  ident: 10.1016/j.gr.2022.03.015_b0485
  article-title: Cuckoo search via Lévy flights
– start-page: 2951
  year: 2012
  ident: 10.1016/j.gr.2022.03.015_b0405
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 25
  start-page: 1463
  issue: 6
  year: 2014
  ident: 10.1016/j.gr.2022.03.015_b0510
  article-title: Estimation of optimal machining control parameters using artificial bee colony
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0753-y
– volume: 27
  start-page: 1396
  issue: 2
  year: 2021
  ident: 10.1016/j.gr.2022.03.015_b0455
  article-title: CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2020.3030418
– volume: 10
  start-page: 777
  issue: 3
  year: 2014
  ident: 10.1016/j.gr.2022.03.015_b0115
  article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2014.10.777
– ident: 10.1016/j.gr.2022.03.015_b0145
  doi: 10.7551/mitpress/1090.001.0001
– volume: 74
  start-page: 827
  issue: 3
  year: 2015
  ident: 10.1016/j.gr.2022.03.015_b0305
  article-title: Development of artificial neural networks and multiple regression models for the NATM tunnelling-induced settlement in Niayesh subway tunnel, Tehran
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-014-0660-2
– volume: 43
  start-page: 6399
  issue: 11
  year: 2018
  ident: 10.1016/j.gr.2022.03.015_b0325
  article-title: Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-3173-7
– ident: 10.1016/j.gr.2022.03.015_b0135
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.gr.2022.03.015_b0140
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 11
  start-page: 2801
  issue: 23
  year: 2019
  ident: 10.1016/j.gr.2022.03.015_b0540
  article-title: Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China
  publication-title: Remote Sens.
  doi: 10.3390/rs11232801
– volume: 31
  start-page: 117
  year: 2012
  ident: 10.1016/j.gr.2022.03.015_b0060
  article-title: Subsidence estimation utilizing various approaches - A case study: Tehran No. 3 subway line
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2012.04.012
– volume: 100
  start-page: 290
  year: 2020
  ident: 10.1016/j.gr.2022.03.015_b0070
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2020.08.007
– volume: 70
  start-page: 60
  year: 2021
  ident: 10.1016/j.gr.2022.03.015_b0285
  article-title: Enhancing the security of blockchain-based software defined networking through trust-based traffic fusion and filtration
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.12.006
– year: 2022
  ident: 10.1016/j.gr.2022.03.015_b0525
  article-title: Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 1
  start-page: 143
  issue: 1
  year: 1989
  ident: 10.1016/j.gr.2022.03.015_b0130
  article-title: Deterministic Boltzmann learning performs steepest descent in weight-space
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.1.143
– ident: 10.1016/j.gr.2022.03.015_b0150
  doi: 10.32604/cmes.2019.07653
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.gr.2022.03.015_b0415
  article-title: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.gr.2022.03.015_b0290
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 7
  start-page: 380
  issue: 3
  year: 2022
  ident: 10.1016/j.gr.2022.03.015_b0520
  article-title: Tunneling and deep excavations in spatially variable soil and rock masses: A short review
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.03.003
– volume: 129
  start-page: 210
  issue: 3
  year: 2003
  ident: 10.1016/j.gr.2022.03.015_b0090
  article-title: Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
– ident: 10.1016/j.gr.2022.03.015_b0270
  doi: 10.1007/978-3-642-04441-0_8
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.gr.2022.03.015_b0295
  article-title: Advances in Engineering Software Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 21
  start-page: 151
  issue: 2
  year: 2006
  ident: 10.1016/j.gr.2022.03.015_b0330
  article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2005.07.001
– volume: 197
  start-page: 102898
  year: 2019
  ident: 10.1016/j.gr.2022.03.015_b0030
  article-title: On the evaluation of soil erosion models: Are we doing enough?
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102898
– ident: 10.1016/j.gr.2022.03.015_b0200
– volume: 22
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.gr.2022.03.015_b0010
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2442-1
– volume: 19
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.gr.2022.03.015_b0085
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv. Eng. Informatics
  doi: 10.1016/j.aei.2005.01.004
– volume: 84
  start-page: 523
  issue: 2
  year: 2010
  ident: 10.1016/j.gr.2022.03.015_b0440
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
  doi: 10.1007/s11192-009-0146-3
– volume: 12
  start-page: 1180
  issue: 3
  year: 2012
  ident: 10.1016/j.gr.2022.03.015_b0490
  article-title: Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2011.09.017
– volume: 18
  start-page: 2403
  issue: 7
  year: 2021
  ident: 10.1016/j.gr.2022.03.015_b0260
  article-title: A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation
  publication-title: Landslides
  doi: 10.1007/s10346-021-01640-6
– ident: 10.1016/j.gr.2022.03.015_b0365
  doi: 10.3850/978-981-11-2725-0-SL-cd
– year: 2010
  ident: 10.1016/j.gr.2022.03.015_b0505
  article-title: Multi-factorial comprehensive estimation for jinchans deep typical rockburst tendency
  publication-title: Sci. Technol. Rev.
– volume: 89
  start-page: 2325
  issue: 23
  year: 2011
  ident: 10.1016/j.gr.2022.03.015_b0110
  article-title: Mixed variable structural optimization using Firefly Algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2011.08.002
– volume: 9
  start-page: 491
  issue: 6
  year: 2004
  ident: 10.1016/j.gr.2022.03.015_b0410
  article-title: M5 Model Trees and Neural Networks: Application to Flood Forecasting in the Upper Reach of the Huai River in China
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2004)9:6(491)
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.gr.2022.03.015_b0205
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 173
  start-page: 74
  issue: 4
  year: 2020
  ident: 10.1016/j.gr.2022.03.015_b0385
  article-title: Machine Learning to Inform Tunnelling Operations: Recent Advances and Future Trends
  publication-title: Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr.
– volume: 95
  start-page: 11
  issue: 1
  year: 2014
  ident: 10.1016/j.gr.2022.03.015_b0230
  article-title: Water pipe condition assessment: A hierarchical beta process approach for sparse incident data
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5386-z
– volume: 16
  start-page: 1247
  issue: 4
  year: 2021
  ident: 10.1016/j.gr.2022.03.015_b0515
  article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump: analyses of undrained strength and slope stability
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-020-01083-8
– start-page: 39
  year: 1995
  ident: 10.1016/j.gr.2022.03.015_b0080
  article-title: New optimizer using particle swarm theory
– volume: 16
  start-page: 2421
  issue: 12
  year: 2019
  ident: 10.1016/j.gr.2022.03.015_b0275
  article-title: How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide
  publication-title: Landslides
  doi: 10.1007/s10346-019-01239-y
– volume: 15
  start-page: 965
  issue: 4
  year: 2018
  ident: 10.1016/j.gr.2022.03.015_b0535
  article-title: 2D and 3D numerical analysis on strut responses due to one-strut failure
  publication-title: Geomech. Eng.
– volume: 14
  start-page: 1247
  issue: 4
  year: 2020
  ident: 10.1016/j.gr.2022.03.015_b0530
  article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-020-0655-y
– ident: 10.1016/j.gr.2022.03.015_b0375
  doi: 10.1038/s41586-019-0912-1
– volume: 1
  start-page: 53
  year: 1997
  ident: 10.1016/j.gr.2022.03.015_b0075
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585892
– volume: 4
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.gr.2022.03.015_b0400
  article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects
  publication-title: Innov. Infrastruct. Solut.
  doi: 10.1007/s41062-019-0234-z
– volume: 171-172
  start-page: 94
  year: 2012
  ident: 10.1016/j.gr.2022.03.015_b0240
  article-title: Assessment of debris flow hazards using a Bayesian Network
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.05.008
SSID ssj0043168
Score 2.6878903
SecondaryResourceType review_article
Snippet [Display omitted] •Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Deep learning
Geoengineering and geoscience
Machine learning
Optimization algorithms
VOSviewer
Title Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge
URI https://dx.doi.org/10.1016/j.gr.2022.03.015
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-0571
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043168
  issn: 1342-937X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-0571
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043168
  issn: 1342-937X
  databaseCode: .~1
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1878-0571
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043168
  issn: 1342-937X
  databaseCode: ACRLP
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-0571
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043168
  issn: 1342-937X
  databaseCode: AIKHN
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0571
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043168
  issn: 1342-937X
  databaseCode: AKRWK
  dateStart: 19971001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIvgiXnFeRh58Eay9pG1a38ZwztsQdbC3kiZpN9naUeuDL_4Mf69Jmm4K6oNPJeEklJxwckK-73wAHFsoxhZlvmF7PDHkDcEg4uJssACzJPExsV3Jd74b-P2hez3yRg3QrbkwElapY38V01W01j2mXk1zPpmYjzYSsRThkeOoxGAkGewulioGZ-8LmIdkeis6nDA2pLV-qqwwXqmsCOo4qsypFMb96Wj6ctz0NsC6zhNhp_qVTdDg2RZYvVQ6vG_b4KOzfHiGeQJnChPJoRaBSE8h43y-aEKSMZiL6DDTtEtIpmleTMrx7AVOMpjynC8LEypr0aXX4xzKoFHwcYV1hxXbRRlVFUkgrRVZdsCwd_HU7RtaYsEg4mpaGiFBGBNX-MtyOCMBC7ww9ogTxontcoqsJCR2QCyRJFoesRmOMSF24oY-s_0wIGgXNLM843sAUjdEgUMZQT5zsU8lblUK_lE1Fw1bwKxXN6K6_riUwZhGNdDsOUqLSPojslAk_NECJ4sR86r2xh-2qHZY9G3_ROJo-HXU_r9GHYA12aqQZoegWRav_EikJmXcVnuvDVY63Yfbe_m9uukPPgFUI-cc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagCMGCeIry9MCCRGgSJ3HCVlWUAm0XWqmb5dhOWtQmVSkDCz-D34vtOC1IwMAY5y6K7qzznfzdfQBc2CjGNuOB5fgisVSFYFFZOFs8xDxJAkwdT_U7d7pBq-89DPzBCmiUvTAKVmlifxHTdbQ2KzVjzdp0NKo9OUjGUoQHrqsTg8EqWPN8F6sK7Pp9gfNQrd66H05KW0rc3FUWIK9UjQR1XT3nVDHj_nQ2fTlvmttgyySKsF78yw5YEdkuWL_TRLxve-Cjvrx5hnkCJxoUKaBhgUivIBdiuniENOMwl-FhYvouIR2n-Ww0H05e4CiDqcjFcjKhlpZLxiA3UEWNmRgWYHdYtLtooWIkCWQlJcs-6Ddve42WZTgWLCpr07kVUYQx9aTDbFdwGvLQj2KfulGcOJ5gyE4i6oTUllmi7VOH4xhT6iReFHAniEKKDkAlyzNxCCDzIhS6jFMUcA8HTAFXFeMf099iURXUSusSZgaQKx6MMSmRZs8knRHlD2IjIv1RBZcLjWkxfOMPWVQ6jHzbQESeDb9qHf1L6xxstHqdNmnfdx-PwaZ6U8DOTkBlPnsVpzJPmcdneh9-AoPQ5xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning%2C+deep+learning+and+optimization+algorithms+in+geoengineering+and+geoscience%3A+Comprehensive+review+and+future+challenge&rft.jtitle=Gondwana+research&rft.au=Zhang%2C+Wengang&rft.au=Gu%2C+Xin&rft.au=Tang%2C+Libin&rft.au=Yin%2C+Yueping&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1342-937X&rft.eissn=1878-0571&rft.volume=109&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1016%2Fj.gr.2022.03.015&rft.externalDocID=S1342937X2200123X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-937X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-937X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-937X&client=summon