Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge
[Display omitted] •Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI algorithms summarized.•Ongoing work and future recommendations provided. The so-called Fourth Paradigm has witnessed a boom during the past two dec...
Saved in:
| Published in | Gondwana research Vol. 109; pp. 1 - 17 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1342-937X 1878-0571 |
| DOI | 10.1016/j.gr.2022.03.015 |
Cover
| Abstract | [Display omitted]
•Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI algorithms summarized.•Ongoing work and future recommendations provided.
The so-called Fourth Paradigm has witnessed a boom during the past two decades, with large volumes of observational data becoming available to scientists and engineers. Big data is characterized by the rule of the five Vs: Volume, Variety, Value, Velocity and Veracity. The concept of big data naturally matches well with the features of geoengineering and geoscience. Large-scale, comprehensive, multidirectional and multifield geotechnical data analysis is becoming a trend. On the other hand, Machine learning (ML), Deep Learning (DL) and Optimization Algorithm (OA) provide the ability to learn from data and deliver in-depth insight into geotechnical problems. Researchers use different ML, DL and OA models to solve various problems associated with geoengineering and geoscience. Consequently, there is a need to extend its research with big data research through integrating the use of ML, DL and OA techniques.
This work focuses on a systematic review on the state-of-the-art application of ML, DL and OA algorithms in geoengineering and geoscience. Various ML, DL, and OA approaches are firstly concisely introduced, concerning mainly the supervised learning, unsupervised learning, deep learning and optimization algorithms. Then their representative applications in the geoengineering and geoscience are summarized via VOSviewer demonstration. The authors also provided their own thoughts learnt from these applications as well as work ongoing and future recommendations. This review paper aims to make a comprehensive summary and provide fundamental guidelines for researchers and engineers in the discipline of geoengineering and geoscience or similar research areas on how to integrate and apply ML, DL and OA methods. |
|---|---|
| AbstractList | [Display omitted]
•Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI algorithms summarized.•Ongoing work and future recommendations provided.
The so-called Fourth Paradigm has witnessed a boom during the past two decades, with large volumes of observational data becoming available to scientists and engineers. Big data is characterized by the rule of the five Vs: Volume, Variety, Value, Velocity and Veracity. The concept of big data naturally matches well with the features of geoengineering and geoscience. Large-scale, comprehensive, multidirectional and multifield geotechnical data analysis is becoming a trend. On the other hand, Machine learning (ML), Deep Learning (DL) and Optimization Algorithm (OA) provide the ability to learn from data and deliver in-depth insight into geotechnical problems. Researchers use different ML, DL and OA models to solve various problems associated with geoengineering and geoscience. Consequently, there is a need to extend its research with big data research through integrating the use of ML, DL and OA techniques.
This work focuses on a systematic review on the state-of-the-art application of ML, DL and OA algorithms in geoengineering and geoscience. Various ML, DL, and OA approaches are firstly concisely introduced, concerning mainly the supervised learning, unsupervised learning, deep learning and optimization algorithms. Then their representative applications in the geoengineering and geoscience are summarized via VOSviewer demonstration. The authors also provided their own thoughts learnt from these applications as well as work ongoing and future recommendations. This review paper aims to make a comprehensive summary and provide fundamental guidelines for researchers and engineers in the discipline of geoengineering and geoscience or similar research areas on how to integrate and apply ML, DL and OA methods. |
| Author | Zhang, Wengang Liu, Dongsheng Zhang, Yanmei Tang, Libin Yin, Yueping Gu, Xin |
| Author_xml | – sequence: 1 givenname: Wengang surname: Zhang fullname: Zhang, Wengang email: zhangwg@cqu.edu.cn organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China – sequence: 2 givenname: Xin surname: Gu fullname: Gu, Xin email: guxin@cqu.edu.cn organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 3 givenname: Libin surname: Tang fullname: Tang, Libin email: tangl31@mcmaster.ca organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 4 givenname: Yueping surname: Yin fullname: Yin, Yueping organization: China Institute of Geological Environment Monitoring, Beijing 100081, China – sequence: 5 givenname: Dongsheng surname: Liu fullname: Liu, Dongsheng organization: Chongqing Bureau of Geology Survey and Minerals Exploration, Chongqing 401121, China – sequence: 6 givenname: Yanmei surname: Zhang fullname: Zhang, Yanmei email: zhangym@cqu.edu.cn organization: College of Aerospace Engineering, Chongqing University, Chongqing 400044, China |
| BookMark | eNp9kEtLw0AUhQdRsK3uXc4PMHEmk2SS7krxBQU3Cu6G28lNOiWZCZO0oj_E32v60IWgq_vgfAfOGZNT6ywScsVZyBlPb9Zh5cOIRVHIRMh4ckJGPJNZwBLJT4ddxFGQC_l6TsZdt2YsFjzNRuRz1ra10dAbZ6kraQN6ZSzSGsFbY6trWiC2PycFW1DX9qYxHwcG6sp506-ajhpLK3Roq8EA_bd6eHXaoNU4pXPXtB5XaDuzRepxa_BtLyo3_cYj1Suo68EAL8hZCXWHl8c5IS93t8_zh2DxdP84ny0CEJnogxyElBAvJWMRFpAVWZIvE4jyZclj1IKVOfAMmJQxS4AXcikBeBnnacHTPAMxIenBV3vXdR5LpU2_D9Z7MLXiTO3aVWtVebVrVzGhhnYHkP0CW28a8O__IdMDgkOgIblXx14K41H3qnDmb_gLlnWX3Q |
| CitedBy_id | crossref_primary_10_1080_17538947_2025_2467983 crossref_primary_10_3390_su141610122 crossref_primary_10_1002_gj_4615 crossref_primary_10_1016_j_enganabound_2023_11_028 crossref_primary_10_1002_gj_4976 crossref_primary_10_1038_s41598_024_53630_y crossref_primary_10_24054_raaas_v14i2_2783 crossref_primary_10_3390_s23229262 crossref_primary_10_1016_j_dajour_2024_100489 crossref_primary_10_3389_feart_2023_1204067 crossref_primary_10_1080_1064119X_2024_2349801 crossref_primary_10_3390_computers12120248 crossref_primary_10_1016_j_enganabound_2023_03_021 crossref_primary_10_1007_s10462_023_10636_8 crossref_primary_10_1007_s40808_022_01489_1 crossref_primary_10_1007_s42107_025_01287_x crossref_primary_10_1108_EJIM_05_2024_0520 crossref_primary_10_1007_s10653_023_01669_7 crossref_primary_10_1016_j_soildyn_2024_109006 crossref_primary_10_1007_s10706_023_02687_z crossref_primary_10_1016_j_geothermics_2023_102711 crossref_primary_10_3390_app14104223 crossref_primary_10_1080_17480930_2025_2468939 crossref_primary_10_3390_app122412567 crossref_primary_10_3390_w15152743 crossref_primary_10_1007_s10518_024_02003_x crossref_primary_10_1016_j_apmt_2024_102371 crossref_primary_10_1016_j_aei_2025_103180 crossref_primary_10_1002_fld_5363 crossref_primary_10_1016_j_iswa_2024_200451 crossref_primary_10_1002_gj_4905 crossref_primary_10_1007_s10706_023_02516_3 crossref_primary_10_1007_s40098_024_00957_y crossref_primary_10_1016_j_powtec_2025_120753 crossref_primary_10_1016_j_xinn_2024_100691 crossref_primary_10_1016_j_jrmge_2023_05_017 crossref_primary_10_1016_j_autcon_2024_105678 crossref_primary_10_1007_s40098_024_00933_6 crossref_primary_10_3390_w14132071 crossref_primary_10_1061_JPCFEV_CFENG_4363 crossref_primary_10_1016_j_eiar_2024_107692 crossref_primary_10_3390_rs16162883 crossref_primary_10_1007_s40515_024_00436_0 crossref_primary_10_1080_19648189_2024_2416441 crossref_primary_10_1016_j_soildyn_2023_108423 crossref_primary_10_1016_j_trgeo_2025_101530 crossref_primary_10_1016_j_cageo_2024_105738 crossref_primary_10_2174_2210299X01666230223104508 crossref_primary_10_1007_s43503_024_00020_y crossref_primary_10_1016_j_ghm_2024_06_001 crossref_primary_10_3390_su152216125 crossref_primary_10_1016_j_autcon_2024_105947 crossref_primary_10_3390_geotechnics2040051 crossref_primary_10_1007_s10669_023_09929_8 crossref_primary_10_1109_TGRS_2023_3263842 crossref_primary_10_3390_su15065470 crossref_primary_10_1016_j_enggeo_2024_107696 crossref_primary_10_1016_j_scitotenv_2024_173720 crossref_primary_10_1007_s11069_024_06610_4 crossref_primary_10_1016_j_ghm_2024_11_001 crossref_primary_10_3390_math11092021 crossref_primary_10_1007_s11440_022_01777_1 crossref_primary_10_1016_j_earscirev_2024_104700 crossref_primary_10_1016_j_undsp_2023_12_005 crossref_primary_10_21595_jve_2023_23656 crossref_primary_10_1016_j_undsp_2024_03_003 crossref_primary_10_1002_gj_4631 crossref_primary_10_1002_gj_4752 crossref_primary_10_1016_j_softx_2023_101553 crossref_primary_10_3390_su15042962 crossref_primary_10_1139_cgj_2022_0372 crossref_primary_10_1007_s12517_022_11173_4 crossref_primary_10_1080_19386362_2023_2212996 crossref_primary_10_1016_j_jhydrol_2025_132883 crossref_primary_10_3390_land13030322 crossref_primary_10_1007_s40515_023_00329_8 crossref_primary_10_1007_s11771_024_5641_4 crossref_primary_10_3390_land13101724 crossref_primary_10_1007_s12145_024_01278_7 crossref_primary_10_1007_s11053_024_10408_3 crossref_primary_10_1007_s11440_023_02050_9 crossref_primary_10_1016_j_gsf_2022_101489 crossref_primary_10_3390_fi15100332 crossref_primary_10_1016_j_trgeo_2022_100878 crossref_primary_10_1016_j_jrmge_2022_07_009 crossref_primary_10_1007_s00477_024_02745_9 crossref_primary_10_1007_s40515_024_00372_z crossref_primary_10_1016_j_compgeo_2023_105749 crossref_primary_10_1061_JCCEE5_CPENG_5927 crossref_primary_10_1016_j_geogeo_2025_100354 crossref_primary_10_1016_j_apm_2023_08_009 crossref_primary_10_1109_ACCESS_2023_3291411 crossref_primary_10_1007_s11227_023_05757_4 crossref_primary_10_1016_j_rser_2023_113748 crossref_primary_10_1016_j_heliyon_2024_e26142 crossref_primary_10_1016_j_gete_2023_100506 crossref_primary_10_1155_2023_5525793 crossref_primary_10_1016_j_apgeochem_2024_106124 crossref_primary_10_2298_TSCI221126055S crossref_primary_10_3390_jmse12071099 crossref_primary_10_1007_s00521_024_09893_7 crossref_primary_10_1016_j_ijdrr_2024_104377 crossref_primary_10_1061_AJRUA6_RUENG_1317 crossref_primary_10_1007_s40996_024_01464_z crossref_primary_10_1016_j_jrmge_2024_02_015 crossref_primary_10_3390_su151310269 crossref_primary_10_3390_min13101332 crossref_primary_10_1109_LCSYS_2024_3413392 crossref_primary_10_1007_s12205_023_0355_y crossref_primary_10_1016_j_jseaes_2024_106367 crossref_primary_10_1038_s43017_023_00452_7 crossref_primary_10_1080_17499518_2025_2460007 crossref_primary_10_3390_app122412887 crossref_primary_10_1109_ACCESS_2024_3360337 crossref_primary_10_1016_j_trgeo_2022_100815 crossref_primary_10_1002_cpe_7530 crossref_primary_10_1002_gj_4942 crossref_primary_10_1007_s00366_023_01852_5 crossref_primary_10_1016_j_jrmge_2023_04_015 crossref_primary_10_1016_j_trgeo_2024_101229 crossref_primary_10_1016_j_trgeo_2024_101228 crossref_primary_10_3390_earth4030037 crossref_primary_10_1016_j_engfailanal_2022_106647 crossref_primary_10_3390_app122211433 crossref_primary_10_1002_gj_4666 crossref_primary_10_3390_s23104942 crossref_primary_10_1007_s12205_024_1432_6 crossref_primary_10_1007_s41062_022_00966_x crossref_primary_10_1007_s10064_023_03329_7 crossref_primary_10_1016_j_trgeo_2024_101232 crossref_primary_10_1080_17499518_2024_2443457 crossref_primary_10_1007_s11069_024_06535_y crossref_primary_10_1016_j_clay_2023_107239 crossref_primary_10_1007_s10706_024_02863_9 crossref_primary_10_32604_cmc_2025_060765 crossref_primary_10_1007_s41748_024_00530_w crossref_primary_10_1038_s40494_025_01558_5 crossref_primary_10_1016_j_asr_2024_03_074 crossref_primary_10_1007_s40515_023_00369_0 crossref_primary_10_1155_2023_9465811 crossref_primary_10_1007_s10064_023_03466_z crossref_primary_10_1007_s00603_022_03046_9 crossref_primary_10_1080_19386362_2023_2258749 crossref_primary_10_1080_17499518_2024_2313485 crossref_primary_10_1007_s11069_024_06673_3 crossref_primary_10_1007_s11368_024_03886_8 crossref_primary_10_1080_19648189_2023_2205914 crossref_primary_10_1002_gj_4951 crossref_primary_10_1007_s10706_022_02351_y crossref_primary_10_1038_s41598_023_41731_z crossref_primary_10_1680_jgere_24_00029 crossref_primary_10_1002_gj_5007 crossref_primary_10_1007_s10845_023_02260_8 crossref_primary_10_1016_j_advwatres_2025_104952 crossref_primary_10_1016_j_trgeo_2022_100827 crossref_primary_10_1007_s11440_023_02030_z crossref_primary_10_1016_j_gsf_2023_101769 crossref_primary_10_1016_j_oregeorev_2024_106170 crossref_primary_10_3390_en16041581 crossref_primary_10_3390_genes14020451 crossref_primary_10_3390_make6020059 crossref_primary_10_1002_nag_3533 crossref_primary_10_1080_17499518_2023_2172186 crossref_primary_10_1016_j_compgeo_2024_106407 crossref_primary_10_1016_j_gsf_2023_101645 crossref_primary_10_1016_j_gsf_2024_101886 crossref_primary_10_21595_vp_2023_23541 crossref_primary_10_3390_electronics13122398 crossref_primary_10_1016_j_autcon_2024_105890 crossref_primary_10_1002_gj_4605 crossref_primary_10_1007_s12517_023_11268_6 crossref_primary_10_1016_j_heliyon_2023_e20902 crossref_primary_10_1016_j_tust_2022_104830 crossref_primary_10_1021_acs_energyfuels_4c05402 crossref_primary_10_1108_MLAG_09_2024_0008 crossref_primary_10_1007_s13369_023_07962_y crossref_primary_10_1038_s41598_023_29292_7 crossref_primary_10_1007_s11771_023_5254_3 crossref_primary_10_1061_IJGNAI_GMENG_8644 crossref_primary_10_1080_1064119X_2023_2193174 crossref_primary_10_1080_17538947_2024_2409337 crossref_primary_10_1139_cgj_2024_0139 crossref_primary_10_1016_j_engappai_2024_109178 crossref_primary_10_1007_s11709_024_1140_9 crossref_primary_10_1007_s12665_025_12095_6 crossref_primary_10_62486_latia202585 crossref_primary_10_1080_1064119X_2023_2251025 crossref_primary_10_1007_s42773_023_00225_x crossref_primary_10_1186_s44147_025_00586_z |
| Cites_doi | 10.1061/(ASCE)GM.1943-5622.0002400 10.1007/978-3-642-04944-6_14 10.1016/j.comcom.2020.02.008 10.1080/0305215X.2013.836640 10.1155/2013/462706 10.1016/j.tust.2019.04.013 10.1007/s10845-013-0753-y 10.1109/TVCG.2020.3030418 10.3934/jimo.2014.10.777 10.7551/mitpress/1090.001.0001 10.1007/s10064-014-0660-2 10.1007/s13369-018-3173-7 10.1162/neco.1997.9.8.1735 10.3390/rs11232801 10.1016/j.tust.2012.04.012 10.1016/j.gr.2020.08.007 10.1016/j.inffus.2020.12.006 10.1162/neco.1989.1.1.143 10.32604/cmes.2019.07653 10.1023/A:1008202821328 10.1016/j.advengsoft.2016.01.008 10.1016/j.undsp.2020.03.003 10.1061/(ASCE)0733-9496(2003)129:3(210) 10.1007/978-3-642-04441-0_8 10.1016/j.advengsoft.2013.12.007 10.1016/j.tust.2005.07.001 10.1016/j.earscirev.2019.102898 10.1007/s00500-016-2442-1 10.1016/j.aei.2005.01.004 10.1007/s11192-009-0146-3 10.1016/j.asoc.2011.09.017 10.1007/s10346-021-01640-6 10.3850/978-981-11-2725-0-SL-cd 10.1016/j.compstruc.2011.08.002 10.1061/(ASCE)1084-0699(2004)9:6(491) 10.1038/nature14539 10.1007/s10994-013-5386-z 10.1007/s11440-020-01083-8 10.1007/s10346-019-01239-y 10.1007/s11709-020-0655-y 10.1038/s41586-019-0912-1 10.1109/4235.585892 10.1007/s41062-019-0234-z 10.1016/j.geomorph.2012.05.008 |
| ContentType | Journal Article |
| Copyright | 2022 International Association for Gondwana Research |
| Copyright_xml | – notice: 2022 International Association for Gondwana Research |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.gr.2022.03.015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1878-0571 |
| EndPage | 17 |
| ExternalDocumentID | 10_1016_j_gr_2022_03_015 S1342937X2200123X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SPC SPCBC SSE SSZ T5K ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-a383t-9a377a4b7002eda8d859b5a29bf14ec30f9a18a077405a1d7b7aa1f496d1698a3 |
| IEDL.DBID | .~1 |
| ISSN | 1342-937X |
| IngestDate | Wed Oct 29 21:43:46 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Geoengineering and geoscience Optimization algorithms VOSviewer Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a383t-9a377a4b7002eda8d859b5a29bf14ec30f9a18a077405a1d7b7aa1f496d1698a3 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_gr_2022_03_015 crossref_primary_10_1016_j_gr_2022_03_015 elsevier_sciencedirect_doi_10_1016_j_gr_2022_03_015 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Gondwana research |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Shi, Zhao, Li, Xie, Li, Zhou, Liu (b0390) 2019; 90 Kanagaraj, Ponnambalam, Jawahar, Nilakantan (b0185) 2014; 46 Huang, Y., Li, J., Fu, J., 2019. Review on application of artificial intelligence in civil engineering. C. - Comput. Model. Eng. Sci. https://doi.org/10.32604/cmes.2019.07653. Luo, Shen, Zhang (b0275) 2019; 16 Yang, X.S., 2009. Firefly algorithms for multimodal optimization, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, Heidelberg, pp. 169-178. https://doi.org/10.1007/978-3-642-04944-6_14. Yusup, Sarkheyli, Zain, Hashim, Ithnin (b0510) 2014; 25 Zhang, Tang, Li, Wang, Cheng, Zhou, Chen (b0530) 2020; 14 Hochreiter, Schmidhuber (b0140) 1997; 9 Karaboga, Akay (b0190) 2009; 214 Aljarah, Faris, Mirjalili (b0010) 2018; 22 Solomatine, Xue (b0410) 2004; 9 Dikshit, Pradhan, Alamri (b0070) 2020; 100 Gupta, Tanwar, Tyagi, Kumar (b0125) 2020; 153 Li, Zhang, Wang, Chen, Taib, Whiffin, Wang (b0230) 2014; 95 Storn, Price (b0415) 1997; 11 Elbeltagi, Hegazy, Grierson (b0085) 2005; 19 Garg (b0115) 2014; 10 Ou, Zhang, Ding, Wang (b0340) 2022; 22 Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Adapt. Nat. Artif. Syst. https://doi.org/10.7551/MITPRESS/1090.001.0001. Batista, Davies, Silva, Quinton (b0030) 2019; 197 Zhan, Guo, Sun, Chen, Chen (b0515) 2021; 16 Mirjalili, Lewis (b0290) 2016; 95 Eberhart, Kennedy (b0080) 1995 Gandomi, Yang, Alavi (b0110) 2011; 89 Liang, Zhuang, Jiang, Pan, Ren (b0240) 2012; 171-172 Wang, Turko, Shaikh, Park, Das, Hohman, Kahng, Polo Chau (b0455) 2021; 27 Zhang, Han, Gu, Wang, Chen, Liu (b0520) 2022; 7 Łukasik, S., Zak, S., 2009. Firefly algorithm for continuous constrained optimization tasks. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-04441-0_8. Meng, Li, Zhou (b0285) 2021; 70 Hinton (b0130) 1989; 1 Van Eck, Waltman (b0440) 2010; 84 Liu, Yu, Zhao (b0260) 2021; 18 Sheil, Suryasentana, Mooney, Zhu (b0385) 2020; 173 Zhang, Phoon (b0525) 2022 Eusuff, Lansey (b0090) 2003; 129 Yang, Deb (b0485) 2009 Yi, Cao, Pu (b0505) 2010 Moscato, P., 1989. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Snoek, Larochelle, Adams (b0405) 2012 Neaupane, Adhikari (b0330) 2006; 21 Yang, Hosseini, Gandomi (b0490) 2012; 12 Shreyas, Dey (b0400) 2019; 4 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7746), 195–204. https://doi.org/10.1038/s41586-019-0912-1. Zhang, Zhang, Fu, Goh, Zhang (b0535) 2018; 15 Darabi, Ahangari, Noorzad, Arab (b0060) 2012; 31 LeCun, Y., Galland, C.C., Hinton, G.E., 1989. GEMINI: Gradient Estimation by Matrix Inversion after Noise Injection. Touretzky, D.S. (Ed.). Neural Information Processing Systems 1, Morgan Kaufmann: San Mateo, CA. Mirjalili, Mirjalili, Lewis (b0295) 2014; 69 Dorigo, Gambardella (b0075) 1997; 1 Mohammadi, Naseri, Alipoor (b0305) 2015; 74 Phoon, K.K., Ching, J., Wang, Y., 2019. Managing risk in geotechnical engineering: From data to digitalization, In: Proc., 7th Int. Symp. On Geotechnical Safety and Risk (ISGSR 2019), Singapore, pp. 13–34. https://doi.org/10.3850/978-981-11-2725-0-SL-cd. Hinton, G.E., Zemel, R.S., 1994. Autoencoders, minimum description length, and Helmholtz free energy. In: Cowan, J.D., Tesauro, G., Alspector, J. (Eds.), Advances in Neural Information Processing Systems 6. Morgan Kaufmann: San Mateo, CA. Nait Amar, Zeraibi, Redouane (b0325) 2018; 43 Huang, Chen (b0155) 2013; 2013 LeCun, Bengio, Hinton (b0205) 2015; 521 Zhang, Ge, Tian, Liou (b0540) 2019; 11 Mohammadi (10.1016/j.gr.2022.03.015_b0305) 2015; 74 Liang (10.1016/j.gr.2022.03.015_b0240) 2012; 171-172 Wang (10.1016/j.gr.2022.03.015_b0455) 2021; 27 10.1016/j.gr.2022.03.015_b0145 Sheil (10.1016/j.gr.2022.03.015_b0385) 2020; 173 Zhan (10.1016/j.gr.2022.03.015_b0515) 2021; 16 Zhang (10.1016/j.gr.2022.03.015_b0520) 2022; 7 Hochreiter (10.1016/j.gr.2022.03.015_b0140) 1997; 9 Neaupane (10.1016/j.gr.2022.03.015_b0330) 2006; 21 Dikshit (10.1016/j.gr.2022.03.015_b0070) 2020; 100 Li (10.1016/j.gr.2022.03.015_b0230) 2014; 95 Yusup (10.1016/j.gr.2022.03.015_b0510) 2014; 25 Yang (10.1016/j.gr.2022.03.015_b0490) 2012; 12 10.1016/j.gr.2022.03.015_b0150 10.1016/j.gr.2022.03.015_b0270 Eusuff (10.1016/j.gr.2022.03.015_b0090) 2003; 129 Gandomi (10.1016/j.gr.2022.03.015_b0110) 2011; 89 Garg (10.1016/j.gr.2022.03.015_b0115) 2014; 10 Storn (10.1016/j.gr.2022.03.015_b0415) 1997; 11 Yang (10.1016/j.gr.2022.03.015_b0485) 2009 Yi (10.1016/j.gr.2022.03.015_b0505) 2010 Zhang (10.1016/j.gr.2022.03.015_b0530) 2020; 14 Zhang (10.1016/j.gr.2022.03.015_b0525) 2022 Gupta (10.1016/j.gr.2022.03.015_b0125) 2020; 153 Dorigo (10.1016/j.gr.2022.03.015_b0075) 1997; 1 Eberhart (10.1016/j.gr.2022.03.015_b0080) 1995 Elbeltagi (10.1016/j.gr.2022.03.015_b0085) 2005; 19 Shi (10.1016/j.gr.2022.03.015_b0390) 2019; 90 Solomatine (10.1016/j.gr.2022.03.015_b0410) 2004; 9 Batista (10.1016/j.gr.2022.03.015_b0030) 2019; 197 Luo (10.1016/j.gr.2022.03.015_b0275) 2019; 16 10.1016/j.gr.2022.03.015_b0480 Mirjalili (10.1016/j.gr.2022.03.015_b0290) 2016; 95 Zhang (10.1016/j.gr.2022.03.015_b0535) 2018; 15 Van Eck (10.1016/j.gr.2022.03.015_b0440) 2010; 84 10.1016/j.gr.2022.03.015_b0200 Ou (10.1016/j.gr.2022.03.015_b0340) 2022; 22 10.1016/j.gr.2022.03.015_b0365 Liu (10.1016/j.gr.2022.03.015_b0260) 2021; 18 10.1016/j.gr.2022.03.015_b0315 Snoek (10.1016/j.gr.2022.03.015_b0405) 2012 Nait Amar (10.1016/j.gr.2022.03.015_b0325) 2018; 43 Kanagaraj (10.1016/j.gr.2022.03.015_b0185) 2014; 46 Aljarah (10.1016/j.gr.2022.03.015_b0010) 2018; 22 Huang (10.1016/j.gr.2022.03.015_b0155) 2013; 2013 Darabi (10.1016/j.gr.2022.03.015_b0060) 2012; 31 Zhang (10.1016/j.gr.2022.03.015_b0540) 2019; 11 10.1016/j.gr.2022.03.015_b0135 LeCun (10.1016/j.gr.2022.03.015_b0205) 2015; 521 Meng (10.1016/j.gr.2022.03.015_b0285) 2021; 70 10.1016/j.gr.2022.03.015_b0375 Shreyas (10.1016/j.gr.2022.03.015_b0400) 2019; 4 Karaboga (10.1016/j.gr.2022.03.015_b0190) 2009; 214 Mirjalili (10.1016/j.gr.2022.03.015_b0295) 2014; 69 Hinton (10.1016/j.gr.2022.03.015_b0130) 1989; 1 |
| References_xml | – volume: 74 start-page: 827 year: 2015 end-page: 843 ident: b0305 article-title: Development of artificial neural networks and multiple regression models for the NATM tunnelling-induced settlement in Niayesh subway tunnel, Tehran publication-title: Bull. Eng. Geol. Environ. – reference: Yang, X.S., 2009. Firefly algorithms for multimodal optimization, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, Heidelberg, pp. 169-178. https://doi.org/10.1007/978-3-642-04944-6_14. – volume: 22 start-page: 1 year: 2018 end-page: 15 ident: b0010 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. – volume: 1 start-page: 53 year: 1997 end-page: 66 ident: b0075 article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. – volume: 84 start-page: 523 year: 2010 end-page: 538 ident: b0440 article-title: Software survey: VOSviewer, a computer program for bibliometric mapping publication-title: Scientometrics – volume: 197 start-page: 102898 year: 2019 ident: b0030 article-title: On the evaluation of soil erosion models: Are we doing enough? publication-title: Earth-Sci. Rev. – volume: 95 start-page: 11 year: 2014 end-page: 26 ident: b0230 article-title: Water pipe condition assessment: A hierarchical beta process approach for sparse incident data publication-title: Mach. Learn. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0140 article-title: Long Short-Term Memory publication-title: Neural Comput. – volume: 90 start-page: 1 year: 2019 end-page: 11 ident: b0390 article-title: Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application publication-title: Tunn. Undergr. Sp. Technol. – volume: 43 start-page: 6399 year: 2018 end-page: 6412 ident: b0325 article-title: Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization publication-title: Arab. J. Sci. Eng. – reference: Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7746), 195–204. https://doi.org/10.1038/s41586-019-0912-1. – start-page: 210 year: 2009 end-page: 214 ident: b0485 article-title: Cuckoo search via Lévy flights publication-title: 2009 World Congress on Nature and Biologically Inspired Computing – volume: 4 start-page: 1 year: 2019 end-page: 15 ident: b0400 article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects publication-title: Innov. Infrastruct. Solut. – volume: 100 start-page: 290 year: 2020 end-page: 301 ident: b0070 article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling publication-title: Gondwana Res. – volume: 153 start-page: 406 year: 2020 end-page: 440 ident: b0125 article-title: Machine Learning Models for Secure Data Analytics: A taxonomy and threat model publication-title: Comput. Commun. – start-page: 2951 year: 2012 end-page: 2959 ident: b0405 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inform. Process. Syst. – volume: 1 start-page: 143 year: 1989 end-page: 150 ident: b0130 article-title: Deterministic Boltzmann learning performs steepest descent in weight-space publication-title: Neural Comput. – volume: 171-172 start-page: 94 year: 2012 end-page: 100 ident: b0240 article-title: Assessment of debris flow hazards using a Bayesian Network publication-title: Geomorphology – reference: Łukasik, S., Zak, S., 2009. Firefly algorithm for continuous constrained optimization tasks. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-04441-0_8. – reference: Phoon, K.K., Ching, J., Wang, Y., 2019. Managing risk in geotechnical engineering: From data to digitalization, In: Proc., 7th Int. Symp. On Geotechnical Safety and Risk (ISGSR 2019), Singapore, pp. 13–34. https://doi.org/10.3850/978-981-11-2725-0-SL-cd. – volume: 12 start-page: 1180 year: 2012 end-page: 1186 ident: b0490 article-title: Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect publication-title: Appl. Soft Comput. J. – reference: LeCun, Y., Galland, C.C., Hinton, G.E., 1989. GEMINI: Gradient Estimation by Matrix Inversion after Noise Injection. Touretzky, D.S. (Ed.). Neural Information Processing Systems 1, Morgan Kaufmann: San Mateo, CA. – volume: 25 start-page: 1463 year: 2014 end-page: 1472 ident: b0510 article-title: Estimation of optimal machining control parameters using artificial bee colony publication-title: J. Intell. Manuf. – volume: 16 start-page: 1247 year: 2021 end-page: 1263 ident: b0515 article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump: analyses of undrained strength and slope stability publication-title: Acta Geotech. – volume: 70 start-page: 60 year: 2021 end-page: 71 ident: b0285 article-title: Enhancing the security of blockchain-based software defined networking through trust-based traffic fusion and filtration publication-title: Inf. Fusion – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0295 article-title: Advances in Engineering Software Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 15 start-page: 965 year: 2018 end-page: 972 ident: b0535 article-title: 2D and 3D numerical analysis on strut responses due to one-strut failure publication-title: Geomech. Eng. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0205 article-title: Deep learning publication-title: Nature – start-page: 39 year: 1995 end-page: 43 ident: b0080 article-title: New optimizer using particle swarm theory publication-title: Proceedings of the International Symposium on Micro Machine and Human Science. IEEE – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0290 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. – volume: 173 start-page: 74 year: 2020 end-page: 95 ident: b0385 article-title: Machine Learning to Inform Tunnelling Operations: Recent Advances and Future Trends publication-title: Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr. – volume: 129 start-page: 210 year: 2003 end-page: 225 ident: b0090 article-title: Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm publication-title: J. Water Resour. Plan. Manag. – reference: Huang, Y., Li, J., Fu, J., 2019. Review on application of artificial intelligence in civil engineering. C. - Comput. Model. Eng. Sci. https://doi.org/10.32604/cmes.2019.07653. – volume: 19 start-page: 43 year: 2005 end-page: 53 ident: b0085 article-title: Comparison among five evolutionary-based optimization algorithms publication-title: Adv. Eng. Informatics – reference: Hinton, G.E., Zemel, R.S., 1994. Autoencoders, minimum description length, and Helmholtz free energy. In: Cowan, J.D., Tesauro, G., Alspector, J. (Eds.), Advances in Neural Information Processing Systems 6. Morgan Kaufmann: San Mateo, CA. – volume: 16 start-page: 2421 year: 2019 end-page: 2431 ident: b0275 article-title: How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide publication-title: Landslides – volume: 18 start-page: 2403 year: 2021 end-page: 2425 ident: b0260 article-title: A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation publication-title: Landslides – year: 2010 ident: b0505 article-title: Multi-factorial comprehensive estimation for jinchans deep typical rockburst tendency publication-title: Sci. Technol. Rev. – volume: 2013 start-page: 1 year: 2013 end-page: 5 ident: b0155 article-title: An improved differential evolution algorithm based on adaptive parameter publication-title: J. Control Sci. Eng. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0415 article-title: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces publication-title: J. Glob. Optim. – volume: 27 start-page: 1396 year: 2021 end-page: 1406 ident: b0455 article-title: CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization publication-title: IEEE Trans. Vis. Comput. Graph. – year: 2022 ident: b0525 article-title: Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering publication-title: J. Rock Mech. Geotech. Eng. – volume: 14 start-page: 1247 year: 2020 end-page: 1261 ident: b0530 article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China publication-title: Front. Struct. Civ. Eng. – reference: Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Adapt. Nat. Artif. Syst. https://doi.org/10.7551/MITPRESS/1090.001.0001. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: b0190 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. – volume: 31 start-page: 117 year: 2012 end-page: 127 ident: b0060 article-title: Subsidence estimation utilizing various approaches - A case study: Tehran No. 3 subway line publication-title: Tunn. Undergr. Sp. Technol. – volume: 21 start-page: 151 year: 2006 end-page: 159 ident: b0330 article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron publication-title: Tunn. Undergr. Sp. Technol. – volume: 9 start-page: 491 year: 2004 end-page: 501 ident: b0410 article-title: M5 Model Trees and Neural Networks: Application to Flood Forecasting in the Upper Reach of the Huai River in China publication-title: J. Hydrol. Eng. – volume: 7 start-page: 380 year: 2022 end-page: 407 ident: b0520 article-title: Tunneling and deep excavations in spatially variable soil and rock masses: A short review publication-title: Underground Space – reference: Moscato, P., 1989. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. – volume: 89 start-page: 2325 year: 2011 end-page: 2336 ident: b0110 article-title: Mixed variable structural optimization using Firefly Algorithm publication-title: Comput. Struct. – volume: 46 start-page: 1331 year: 2014 end-page: 1351 ident: b0185 article-title: An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization publication-title: Eng. Optim. – volume: 11 start-page: 2801 year: 2019 ident: b0540 article-title: Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China publication-title: Remote Sens. – volume: 22 year: 2022 ident: b0340 article-title: Response of inclined loaded pile in layered foundation based on principle of minimum potential energy publication-title: Int. J. Geomech. – volume: 10 start-page: 777 year: 2014 end-page: 794 ident: b0115 article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm publication-title: J. Ind. Manag. Optim. – volume: 22 issue: 7 year: 2022 ident: 10.1016/j.gr.2022.03.015_b0340 article-title: Response of inclined loaded pile in layered foundation based on principle of minimum potential energy publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0002400 – ident: 10.1016/j.gr.2022.03.015_b0480 doi: 10.1007/978-3-642-04944-6_14 – volume: 153 start-page: 406 year: 2020 ident: 10.1016/j.gr.2022.03.015_b0125 article-title: Machine Learning Models for Secure Data Analytics: A taxonomy and threat model publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.02.008 – volume: 46 start-page: 1331 issue: 10 year: 2014 ident: 10.1016/j.gr.2022.03.015_b0185 article-title: An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.836640 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.gr.2022.03.015_b0155 article-title: An improved differential evolution algorithm based on adaptive parameter publication-title: J. Control Sci. Eng. doi: 10.1155/2013/462706 – volume: 90 start-page: 1 year: 2019 ident: 10.1016/j.gr.2022.03.015_b0390 article-title: Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application publication-title: Tunn. Undergr. Sp. Technol. doi: 10.1016/j.tust.2019.04.013 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.gr.2022.03.015_b0190 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Appl. Math. Comput. – ident: 10.1016/j.gr.2022.03.015_b0315 – start-page: 210 year: 2009 ident: 10.1016/j.gr.2022.03.015_b0485 article-title: Cuckoo search via Lévy flights – start-page: 2951 year: 2012 ident: 10.1016/j.gr.2022.03.015_b0405 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inform. Process. Syst. – volume: 25 start-page: 1463 issue: 6 year: 2014 ident: 10.1016/j.gr.2022.03.015_b0510 article-title: Estimation of optimal machining control parameters using artificial bee colony publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0753-y – volume: 27 start-page: 1396 issue: 2 year: 2021 ident: 10.1016/j.gr.2022.03.015_b0455 article-title: CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2020.3030418 – volume: 10 start-page: 777 issue: 3 year: 2014 ident: 10.1016/j.gr.2022.03.015_b0115 article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2014.10.777 – ident: 10.1016/j.gr.2022.03.015_b0145 doi: 10.7551/mitpress/1090.001.0001 – volume: 74 start-page: 827 issue: 3 year: 2015 ident: 10.1016/j.gr.2022.03.015_b0305 article-title: Development of artificial neural networks and multiple regression models for the NATM tunnelling-induced settlement in Niayesh subway tunnel, Tehran publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-014-0660-2 – volume: 43 start-page: 6399 issue: 11 year: 2018 ident: 10.1016/j.gr.2022.03.015_b0325 article-title: Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-018-3173-7 – ident: 10.1016/j.gr.2022.03.015_b0135 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.gr.2022.03.015_b0140 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 11 start-page: 2801 issue: 23 year: 2019 ident: 10.1016/j.gr.2022.03.015_b0540 article-title: Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China publication-title: Remote Sens. doi: 10.3390/rs11232801 – volume: 31 start-page: 117 year: 2012 ident: 10.1016/j.gr.2022.03.015_b0060 article-title: Subsidence estimation utilizing various approaches - A case study: Tehran No. 3 subway line publication-title: Tunn. Undergr. Sp. Technol. doi: 10.1016/j.tust.2012.04.012 – volume: 100 start-page: 290 year: 2020 ident: 10.1016/j.gr.2022.03.015_b0070 article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling publication-title: Gondwana Res. doi: 10.1016/j.gr.2020.08.007 – volume: 70 start-page: 60 year: 2021 ident: 10.1016/j.gr.2022.03.015_b0285 article-title: Enhancing the security of blockchain-based software defined networking through trust-based traffic fusion and filtration publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.12.006 – year: 2022 ident: 10.1016/j.gr.2022.03.015_b0525 article-title: Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering publication-title: J. Rock Mech. Geotech. Eng. – volume: 1 start-page: 143 issue: 1 year: 1989 ident: 10.1016/j.gr.2022.03.015_b0130 article-title: Deterministic Boltzmann learning performs steepest descent in weight-space publication-title: Neural Comput. doi: 10.1162/neco.1989.1.1.143 – ident: 10.1016/j.gr.2022.03.015_b0150 doi: 10.32604/cmes.2019.07653 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.gr.2022.03.015_b0415 article-title: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.gr.2022.03.015_b0290 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 7 start-page: 380 issue: 3 year: 2022 ident: 10.1016/j.gr.2022.03.015_b0520 article-title: Tunneling and deep excavations in spatially variable soil and rock masses: A short review publication-title: Underground Space doi: 10.1016/j.undsp.2020.03.003 – volume: 129 start-page: 210 issue: 3 year: 2003 ident: 10.1016/j.gr.2022.03.015_b0090 article-title: Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) – ident: 10.1016/j.gr.2022.03.015_b0270 doi: 10.1007/978-3-642-04441-0_8 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.gr.2022.03.015_b0295 article-title: Advances in Engineering Software Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 21 start-page: 151 issue: 2 year: 2006 ident: 10.1016/j.gr.2022.03.015_b0330 article-title: Prediction of tunneling-induced ground movement with the multi-layer perceptron publication-title: Tunn. Undergr. Sp. Technol. doi: 10.1016/j.tust.2005.07.001 – volume: 197 start-page: 102898 year: 2019 ident: 10.1016/j.gr.2022.03.015_b0030 article-title: On the evaluation of soil erosion models: Are we doing enough? publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2019.102898 – ident: 10.1016/j.gr.2022.03.015_b0200 – volume: 22 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.gr.2022.03.015_b0010 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-016-2442-1 – volume: 19 start-page: 43 issue: 1 year: 2005 ident: 10.1016/j.gr.2022.03.015_b0085 article-title: Comparison among five evolutionary-based optimization algorithms publication-title: Adv. Eng. Informatics doi: 10.1016/j.aei.2005.01.004 – volume: 84 start-page: 523 issue: 2 year: 2010 ident: 10.1016/j.gr.2022.03.015_b0440 article-title: Software survey: VOSviewer, a computer program for bibliometric mapping publication-title: Scientometrics doi: 10.1007/s11192-009-0146-3 – volume: 12 start-page: 1180 issue: 3 year: 2012 ident: 10.1016/j.gr.2022.03.015_b0490 article-title: Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2011.09.017 – volume: 18 start-page: 2403 issue: 7 year: 2021 ident: 10.1016/j.gr.2022.03.015_b0260 article-title: A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation publication-title: Landslides doi: 10.1007/s10346-021-01640-6 – ident: 10.1016/j.gr.2022.03.015_b0365 doi: 10.3850/978-981-11-2725-0-SL-cd – year: 2010 ident: 10.1016/j.gr.2022.03.015_b0505 article-title: Multi-factorial comprehensive estimation for jinchans deep typical rockburst tendency publication-title: Sci. Technol. Rev. – volume: 89 start-page: 2325 issue: 23 year: 2011 ident: 10.1016/j.gr.2022.03.015_b0110 article-title: Mixed variable structural optimization using Firefly Algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2011.08.002 – volume: 9 start-page: 491 issue: 6 year: 2004 ident: 10.1016/j.gr.2022.03.015_b0410 article-title: M5 Model Trees and Neural Networks: Application to Flood Forecasting in the Upper Reach of the Huai River in China publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2004)9:6(491) – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.gr.2022.03.015_b0205 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 173 start-page: 74 issue: 4 year: 2020 ident: 10.1016/j.gr.2022.03.015_b0385 article-title: Machine Learning to Inform Tunnelling Operations: Recent Advances and Future Trends publication-title: Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr. – volume: 95 start-page: 11 issue: 1 year: 2014 ident: 10.1016/j.gr.2022.03.015_b0230 article-title: Water pipe condition assessment: A hierarchical beta process approach for sparse incident data publication-title: Mach. Learn. doi: 10.1007/s10994-013-5386-z – volume: 16 start-page: 1247 issue: 4 year: 2021 ident: 10.1016/j.gr.2022.03.015_b0515 article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump: analyses of undrained strength and slope stability publication-title: Acta Geotech. doi: 10.1007/s11440-020-01083-8 – start-page: 39 year: 1995 ident: 10.1016/j.gr.2022.03.015_b0080 article-title: New optimizer using particle swarm theory – volume: 16 start-page: 2421 issue: 12 year: 2019 ident: 10.1016/j.gr.2022.03.015_b0275 article-title: How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide publication-title: Landslides doi: 10.1007/s10346-019-01239-y – volume: 15 start-page: 965 issue: 4 year: 2018 ident: 10.1016/j.gr.2022.03.015_b0535 article-title: 2D and 3D numerical analysis on strut responses due to one-strut failure publication-title: Geomech. Eng. – volume: 14 start-page: 1247 issue: 4 year: 2020 ident: 10.1016/j.gr.2022.03.015_b0530 article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-020-0655-y – ident: 10.1016/j.gr.2022.03.015_b0375 doi: 10.1038/s41586-019-0912-1 – volume: 1 start-page: 53 year: 1997 ident: 10.1016/j.gr.2022.03.015_b0075 article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585892 – volume: 4 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.gr.2022.03.015_b0400 article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-019-0234-z – volume: 171-172 start-page: 94 year: 2012 ident: 10.1016/j.gr.2022.03.015_b0240 article-title: Assessment of debris flow hazards using a Bayesian Network publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.05.008 |
| SSID | ssj0043168 |
| Score | 2.6878903 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•Common artificial intelligence (AI) algorithms in geoscience and geoengineering introduced.•What can be learnt from application of AI... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Deep learning Geoengineering and geoscience Machine learning Optimization algorithms VOSviewer |
| Title | Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge |
| URI | https://dx.doi.org/10.1016/j.gr.2022.03.015 |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-0571 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043168 issn: 1342-937X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-0571 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043168 issn: 1342-937X databaseCode: .~1 dateStart: 19971001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1878-0571 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043168 issn: 1342-937X databaseCode: ACRLP dateStart: 19971001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-0571 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043168 issn: 1342-937X databaseCode: AIKHN dateStart: 19971001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-0571 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043168 issn: 1342-937X databaseCode: AKRWK dateStart: 19971001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIvgiXnFeRh58Eay9pG1a38ZwztsQdbC3kiZpN9naUeuDL_4Mf69Jmm4K6oNPJeEklJxwckK-73wAHFsoxhZlvmF7PDHkDcEg4uJssACzJPExsV3Jd74b-P2hez3yRg3QrbkwElapY38V01W01j2mXk1zPpmYjzYSsRThkeOoxGAkGewulioGZ-8LmIdkeis6nDA2pLV-qqwwXqmsCOo4qsypFMb96Wj6ctz0NsC6zhNhp_qVTdDg2RZYvVQ6vG_b4KOzfHiGeQJnChPJoRaBSE8h43y-aEKSMZiL6DDTtEtIpmleTMrx7AVOMpjynC8LEypr0aXX4xzKoFHwcYV1hxXbRRlVFUkgrRVZdsCwd_HU7RtaYsEg4mpaGiFBGBNX-MtyOCMBC7ww9ogTxontcoqsJCR2QCyRJFoesRmOMSF24oY-s_0wIGgXNLM843sAUjdEgUMZQT5zsU8lblUK_lE1Fw1bwKxXN6K6_riUwZhGNdDsOUqLSPojslAk_NECJ4sR86r2xh-2qHZY9G3_ROJo-HXU_r9GHYA12aqQZoegWRav_EikJmXcVnuvDVY63Yfbe_m9uukPPgFUI-cc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagCMGCeIry9MCCRGgSJ3HCVlWUAm0XWqmb5dhOWtQmVSkDCz-D34vtOC1IwMAY5y6K7qzznfzdfQBc2CjGNuOB5fgisVSFYFFZOFs8xDxJAkwdT_U7d7pBq-89DPzBCmiUvTAKVmlifxHTdbQ2KzVjzdp0NKo9OUjGUoQHrqsTg8EqWPN8F6sK7Pp9gfNQrd66H05KW0rc3FUWIK9UjQR1XT3nVDHj_nQ2fTlvmttgyySKsF78yw5YEdkuWL_TRLxve-Cjvrx5hnkCJxoUKaBhgUivIBdiuniENOMwl-FhYvouIR2n-Ww0H05e4CiDqcjFcjKhlpZLxiA3UEWNmRgWYHdYtLtooWIkCWQlJcs-6Ddve42WZTgWLCpr07kVUYQx9aTDbFdwGvLQj2KfulGcOJ5gyE4i6oTUllmi7VOH4xhT6iReFHAniEKKDkAlyzNxCCDzIhS6jFMUcA8HTAFXFeMf099iURXUSusSZgaQKx6MMSmRZs8knRHlD2IjIv1RBZcLjWkxfOMPWVQ6jHzbQESeDb9qHf1L6xxstHqdNmnfdx-PwaZ6U8DOTkBlPnsVpzJPmcdneh9-AoPQ5xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning%2C+deep+learning+and+optimization+algorithms+in+geoengineering+and+geoscience%3A+Comprehensive+review+and+future+challenge&rft.jtitle=Gondwana+research&rft.au=Zhang%2C+Wengang&rft.au=Gu%2C+Xin&rft.au=Tang%2C+Libin&rft.au=Yin%2C+Yueping&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1342-937X&rft.eissn=1878-0571&rft.volume=109&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1016%2Fj.gr.2022.03.015&rft.externalDocID=S1342937X2200123X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-937X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-937X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-937X&client=summon |