New research for detecting complex associations between variables with randomness
Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that...
Saved in:
| Published in | Mathematical biosciences and engineering : MBE Vol. 21; no. 1; pp. 1356 - 1393 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
AIMS Press
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1551-0018 1547-1063 1551-0018 |
| DOI | 10.3934/mbe.2024059 |
Cover
| Abstract | Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R . In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis. |
|---|---|
| AbstractList | Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R . In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis. Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R. In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis.Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R. In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis. |
| Author | Zheng, Xuepeng Du, Jianqiang Jin, Haike Zhang, Yuchao Nie, Bin Du, Yuwen |
| Author_xml | – sequence: 1 givenname: Yuwen surname: Du fullname: Du, Yuwen – sequence: 2 givenname: Bin surname: Nie fullname: Nie, Bin – sequence: 3 givenname: Jianqiang surname: Du fullname: Du, Jianqiang – sequence: 4 givenname: Xuepeng surname: Zheng fullname: Zheng, Xuepeng – sequence: 5 givenname: Haike surname: Jin fullname: Jin, Haike – sequence: 6 givenname: Yuchao surname: Zhang fullname: Zhang, Yuchao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38303469$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9rVDEQx4NU7A89eZccBd2a3_tylKK1UBRBz2FeMmlT3kvW5K1r_3tTdy2ePGUIHz4z851TcpRLRkJecnYurVTv5hHPBROKafuEnHCt-YoxPhz9Ux-T09buGJNKSvWMHMtB9trYE_L1M-5oxYZQ_S2NpdKAC_ol5Rvqy7yZ8BeF1opPsKSSGx1x2SFm-hNqgnHCRndpuaUVcihzxtaek6cRpoYvDu8Z-f7xw7eLT6vrL5dXF--vV9C7LyvujYhaewmCeR2D4Ch0n8ngMDClokJvwVtjYvACRRh9ZHLgI_YtNNq1PCNXe28ocOc2Nc1Q712B5P58lHrjoC7JT-iYgjUG42PgRsW1st6uPUoxDtpEJmx3vd27tnkD9zuYpkchZ-4hZddTdoeUO_56j29q-bHFtrg5NY_TBBnLtjlhheWSaWE6-uqAbscZw6P27wU68GYP-Fpaqxj_2_k3Y9CWpQ |
| Cites_doi | 10.1016/j.cageo.2011.06.021 10.1016/B978-0-12-416727-8.00003-5 10.1109/tsg.2015.2508506 10.1016/b978-0-08-032599-6.50008-8 10.1002/asjc.2460 10.1016/j.jcp.2019.05.027 10.1016/j.cma.2017.08.027 10.1007/s12603-020-1457-6 10.1186/s40537-019-0206-3 10.1016/J.CHEMOLAB.2023.104827 10.1109/access.2019.2946256 10.1147/rd.175.0420 10.1515/cclm-2020-1205 10.3390/risks7010023 10.1126/science.1205438 10.1016/j.cnsns.2015.06.029 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.physa.2014.12.031 10.1214/009053607000000505 10.1080/01621459.1993.10476372 10.1126/science.30.757.23 10.1090/qam/16705 10.3892/etm.2018.6500 10.1016/j.ins.2018.08.017 10.1098/rsbl.2006.0553 10.5539/mas.v14n6p75 10.1007/978-3-319-33861-3_2 10.2307/2669895 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 ADTOC UNPAY DOA |
| DOI | 10.3934/mbe.2024059 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1551-0018 |
| EndPage | 1393 |
| ExternalDocumentID | oai_doaj_org_article_04a7ed6cfd164f749c97ce32b856f029 10.3934/mbe.2024059 38303469 10_3934_mbe_2024059 |
| Genre | Journal Article |
| GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-a383t-1c62f55c3a20c5fd21e253466e88044f4ec9ac966fdc2e2dbcf0381be0035e973 |
| IEDL.DBID | UNPAY |
| ISSN | 1551-0018 1547-1063 |
| IngestDate | Fri Oct 03 12:44:10 EDT 2025 Mon Sep 15 10:15:38 EDT 2025 Fri Jul 11 07:30:30 EDT 2025 Thu Jan 02 22:32:34 EST 2025 Tue Jul 01 02:58:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | analytic hierarchy process correlation analysis cubic B-spline information entropy copula function |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a383t-1c62f55c3a20c5fd21e253466e88044f4ec9ac966fdc2e2dbcf0381be0035e973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/mbe.2024059 |
| PMID | 38303469 |
| PQID | 2929130526 |
| PQPubID | 23479 |
| PageCount | 38 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04a7ed6cfd164f749c97ce32b856f029 unpaywall_primary_10_3934_mbe_2024059 proquest_miscellaneous_2929130526 pubmed_primary_38303469 crossref_primary_10_3934_mbe_2024059 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Mathematical biosciences and engineering : MBE |
| PublicationTitleAlternate | Math Biosci Eng |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/mbe.2024059-5 key-10.3934/mbe.2024059-24 key-10.3934/mbe.2024059-4 key-10.3934/mbe.2024059-25 key-10.3934/mbe.2024059-3 key-10.3934/mbe.2024059-26 key-10.3934/mbe.2024059-2 key-10.3934/mbe.2024059-27 key-10.3934/mbe.2024059-1 key-10.3934/mbe.2024059-28 key-10.3934/mbe.2024059-29 key-10.3934/mbe.2024059-9 key-10.3934/mbe.2024059-8 key-10.3934/mbe.2024059-7 key-10.3934/mbe.2024059-6 key-10.3934/mbe.2024059-30 key-10.3934/mbe.2024059-31 key-10.3934/mbe.2024059-10 key-10.3934/mbe.2024059-32 key-10.3934/mbe.2024059-11 key-10.3934/mbe.2024059-33 key-10.3934/mbe.2024059-12 key-10.3934/mbe.2024059-34 key-10.3934/mbe.2024059-13 key-10.3934/mbe.2024059-35 key-10.3934/mbe.2024059-14 key-10.3934/mbe.2024059-36 key-10.3934/mbe.2024059-15 key-10.3934/mbe.2024059-37 key-10.3934/mbe.2024059-16 key-10.3934/mbe.2024059-38 key-10.3934/mbe.2024059-17 key-10.3934/mbe.2024059-18 key-10.3934/mbe.2024059-19 key-10.3934/mbe.2024059-20 key-10.3934/mbe.2024059-21 key-10.3934/mbe.2024059-22 key-10.3934/mbe.2024059-23 |
| References_xml | – ident: key-10.3934/mbe.2024059-23 – ident: key-10.3934/mbe.2024059-19 doi: 10.1016/j.cageo.2011.06.021 – ident: key-10.3934/mbe.2024059-27 – ident: key-10.3934/mbe.2024059-25 – ident: key-10.3934/mbe.2024059-31 doi: 10.1016/B978-0-12-416727-8.00003-5 – ident: key-10.3934/mbe.2024059-3 doi: 10.1109/tsg.2015.2508506 – ident: key-10.3934/mbe.2024059-30 doi: 10.1016/b978-0-08-032599-6.50008-8 – ident: key-10.3934/mbe.2024059-15 doi: 10.1002/asjc.2460 – ident: key-10.3934/mbe.2024059-16 doi: 10.1016/j.jcp.2019.05.027 – ident: key-10.3934/mbe.2024059-17 doi: 10.1016/j.cma.2017.08.027 – ident: key-10.3934/mbe.2024059-18 – ident: key-10.3934/mbe.2024059-2 doi: 10.1007/s12603-020-1457-6 – ident: key-10.3934/mbe.2024059-33 – ident: key-10.3934/mbe.2024059-12 doi: 10.1186/s40537-019-0206-3 – ident: key-10.3934/mbe.2024059-21 – ident: key-10.3934/mbe.2024059-35 doi: 10.1016/J.CHEMOLAB.2023.104827 – ident: key-10.3934/mbe.2024059-14 doi: 10.1109/access.2019.2946256 – ident: key-10.3934/mbe.2024059-29 doi: 10.1147/rd.175.0420 – ident: key-10.3934/mbe.2024059-26 doi: 10.1515/cclm-2020-1205 – ident: key-10.3934/mbe.2024059-28 doi: 10.3390/risks7010023 – ident: key-10.3934/mbe.2024059-8 doi: 10.1126/science.1205438 – ident: key-10.3934/mbe.2024059-1 – ident: key-10.3934/mbe.2024059-9 doi: 10.1016/j.cnsns.2015.06.029 – ident: key-10.3934/mbe.2024059-5 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: key-10.3934/mbe.2024059-7 doi: 10.1016/j.physa.2014.12.031 – ident: key-10.3934/mbe.2024059-10 doi: 10.1214/009053607000000505 – ident: key-10.3934/mbe.2024059-37 doi: 10.1080/01621459.1993.10476372 – ident: key-10.3934/mbe.2024059-6 doi: 10.1126/science.30.757.23 – ident: key-10.3934/mbe.2024059-24 doi: 10.1090/qam/16705 – ident: key-10.3934/mbe.2024059-32 – ident: key-10.3934/mbe.2024059-4 doi: 10.3892/etm.2018.6500 – ident: key-10.3934/mbe.2024059-13 doi: 10.1016/j.ins.2018.08.017 – ident: key-10.3934/mbe.2024059-11 doi: 10.1098/rsbl.2006.0553 – ident: key-10.3934/mbe.2024059-34 doi: 10.5539/mas.v14n6p75 – ident: key-10.3934/mbe.2024059-36 – ident: key-10.3934/mbe.2024059-20 – ident: key-10.3934/mbe.2024059-38 doi: 10.1007/978-3-319-33861-3_2 – ident: key-10.3934/mbe.2024059-22 doi: 10.2307/2669895 |
| SSID | ssj0034334 |
| Score | 2.3108134 |
| Snippet | Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in... |
| SourceID | doaj unpaywall proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1356 |
| SubjectTerms | analytic hierarchy process copula function correlation analysis cubic b-spline information entropy |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG5ECJqDGB9xowkd0OPibD-3j4lElkACQha8Df2oxoPOirvr499bNT277kH0kuswj-arnqr6urq_YuwYNFgMkxZJTrZIUKCiRu6x74P2Tg8Hg5BovePPXzMaq9-X-nKl1RftCSvywAW400p5C8nEnDCxz1a56GwEKcJQm1yJ9uheNXQLMlV8sFRSqnIaTzqpTm8CKWJi8CJJ0pX408r0v5ZbfmQb8-bWPz346-uVeHO-zba6RJH_KAP8xNag2WEfSuvIp112gd6Jd0o9VxwzT56A6gEYiXi7TRweuX-Bfsq7DVn8HskxHZeaclqC5Riq0uSG_N0eG5__-nc26nftEfoeaeWsP4hGZK2j9KKKOicxAKGlMgbwn1QqK4jOR6QzOUUBIoWYqSwYgKqH4KzcZ-vNpIEDxo1DLxeDicqSGg3S4uAwrxomL603FnrseAFafVtUMGpkD4RtjdjWHbY99pMAXd5C0tXtBTRo3Rm0fs-gPfZ9YY4apzrVL3wDk_m0FpjKYcjVwvTY52Kn5acQEbS6wadPloZ7a6hf_sdQD9kmva6syByx9dndHL5ijjIL39rp-AyPVeR8 priority: 102 providerName: Directory of Open Access Journals |
| Title | New research for detecting complex associations between variables with randomness |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38303469 https://www.proquest.com/docview/2929130526 https://doi.org/10.3934/mbe.2024059 https://doaj.org/article/04a7ed6cfd164f749c97ce32b856f029 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1551-0018 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0034334 issn: 1547-1063 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1551-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034334 issn: 1547-1063 databaseCode: AMVHM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VrRDwwA1djsqI8piSdXysH8tRVUhUILFSeYp8jFWJNluxu5T213cmyS6lQsBbFNmJPWP7m89jzwBsoUZLMGmJ5GRLBAVLTuQeCx-0d3o8GoXE-x0f983eRH040Adr8HJ5F-aS_75ylXp9HDiWJcGOdtdg3WgyuAewPtn_tPO1jYSqLC0kbb40xv6Cc8x1t_Cu1v4Nd9rw_H-yKW_BjUVz4s9O_dHRJZzZvQPvli3sjpd8217Mw3Y8vxK88R9duAu3eztT7HQD4x6sYXMfrneZJ88ewGda3EQf6OdQkOEqErI7gYBMtKfM8afwvzQ3E_15LvGDuDXftpoJ3sEVhHRpeszL5UOY7L7_8nav6LMrFJ5Y6bwYRSOz1rHysow6JzlCqStlDNKUViorjM5HYkM5RYkyhZjZqxiQnY_obPUIBs20wQ0QxtEiGYOJynIwG2LVwZFZNk6-st5YHMLWUvb1SRdEoybywdKpSTp1L50hvGG9rIpw5Ov2BUmz7idSXSpvMZmYExG9bJWLzkasZBhrk0tJH3mx1GpNM4XdH77B6WJWS7IECbG1NEN43Kl79SuSSEl9p9qvVvr_W1Of_Ge5p3CTn7o9m2cwmH9f4HOyYuZhs2X_m_1YvgDtsuxX |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlUF4tLC8ZUY4pWceP9bEFqgqJCiRWKqfIj7GQ2mYrdhcov56ZJLuUCgG3KLITe8b2N5_HngHYQY2WYNISycmWCAqWnMg9Fj5o7_R4NAqJ9zveHZnDiXp7rI_X4PnyLswl_33lKvXyLHAsS4Id7a7ButFkcA9gfXL0fu9TGwlVWVpI2nxpjP0F55jrbuFdrf0b7rTh-f9kU96EG4vm3F9886enl3Dm4Ba8XrawO15ysruYh93440rwxn904TZs9nam2OsGxh1Yw-YuXO8yT17cgw-0uIk-0M9nQYarSMjuBAIy0Z4yx-_C_9LcTPTnucRX4tZ822omeAdXENKl6Rkvl1swOXjz8dVh0WdXKDyx0nkxikZmrWPlZRl1TnKEUlfKGKQprVRWGJ2PxIZyihJlCjGzVzEgOx_R2WobBs20wQcgjKNFMgYTleVgNsSqgyOzbJx8Zb2xOISdpezr8y6IRk3kg6VTk3TqXjpD2Ge9rIpw5Ov2BUmz7idSXSpvMZmYExG9bJWLzkasZBhrk0tJH3m21GpNM4XdH77B6WJWS7IECbG1NEO436l79SuSSEl9p9ovVvr_W1Mf_me5R7DBT92ezWMYzL8s8AlZMfPwtB_FPwFpKOti |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+research+for+detecting+complex+associations+between+variables+with+randomness&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Du%2C+Yuwen&rft.au=Nie%2C+Bin&rft.au=Du%2C+Jianqiang&rft.au=Zheng%2C+Xuepeng&rft.date=2024-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=21&rft.issue=1&rft.spage=1356&rft_id=info:doi/10.3934%2Fmbe.2024059&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |