New research for detecting complex associations between variables with randomness

Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 21; no. 1; pp. 1356 - 1393
Main Authors Du, Yuwen, Nie, Bin, Du, Jianqiang, Zheng, Xuepeng, Jin, Haike, Zhang, Yuchao
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN1551-0018
1547-1063
1551-0018
DOI10.3934/mbe.2024059

Cover

Abstract Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R . In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis.
AbstractList Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R . In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis.
Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R. In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis.Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in data is not considered, which leads to the neglect of the regularity information between variables, so that the correlation of variables that contain functional relationship but subject to specific distributions cannot be well identified. Therefore, a novel correlation analysis framework for detecting associations between variables with randomness (RVCR-CA) is proposed. The new method calculates the normalized RMSE to evaluate the degree of functional relationship between variables, calculates entropy difference to measure the degree of uncertainty in variables and constructs the copula function to evaluate the degree of dependence on random variables with distributions. Then, the weighted sum method is performed to the above three indicators to obtain the final correlation coefficient R. In the study, which considers the degree of functional relationship between variables, the uncertainty in variables and the degree of dependence on the variables containing distributions, cannot only measure the correlation of functional relationship variables with specific distributions, but also can better evaluate the correlation of variables without clear functional relationships. In experiments on the data with functional relationship between variables that contain specific distributions, UCI data and synthetic data, the results show that the proposed method has more comprehensive evaluation ability and better evaluation effect than the traditional method of correlation analysis.
Author Zheng, Xuepeng
Du, Jianqiang
Jin, Haike
Zhang, Yuchao
Nie, Bin
Du, Yuwen
Author_xml – sequence: 1
  givenname: Yuwen
  surname: Du
  fullname: Du, Yuwen
– sequence: 2
  givenname: Bin
  surname: Nie
  fullname: Nie, Bin
– sequence: 3
  givenname: Jianqiang
  surname: Du
  fullname: Du, Jianqiang
– sequence: 4
  givenname: Xuepeng
  surname: Zheng
  fullname: Zheng, Xuepeng
– sequence: 5
  givenname: Haike
  surname: Jin
  fullname: Jin, Haike
– sequence: 6
  givenname: Yuchao
  surname: Zhang
  fullname: Zhang, Yuchao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38303469$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rVDEQx4NU7A89eZccBd2a3_tylKK1UBRBz2FeMmlT3kvW5K1r_3tTdy2ePGUIHz4z851TcpRLRkJecnYurVTv5hHPBROKafuEnHCt-YoxPhz9Ux-T09buGJNKSvWMHMtB9trYE_L1M-5oxYZQ_S2NpdKAC_ol5Rvqy7yZ8BeF1opPsKSSGx1x2SFm-hNqgnHCRndpuaUVcihzxtaek6cRpoYvDu8Z-f7xw7eLT6vrL5dXF--vV9C7LyvujYhaewmCeR2D4Ch0n8ngMDClokJvwVtjYvACRRh9ZHLgI_YtNNq1PCNXe28ocOc2Nc1Q712B5P58lHrjoC7JT-iYgjUG42PgRsW1st6uPUoxDtpEJmx3vd27tnkD9zuYpkchZ-4hZddTdoeUO_56j29q-bHFtrg5NY_TBBnLtjlhheWSaWE6-uqAbscZw6P27wU68GYP-Fpaqxj_2_k3Y9CWpQ
Cites_doi 10.1016/j.cageo.2011.06.021
10.1016/B978-0-12-416727-8.00003-5
10.1109/tsg.2015.2508506
10.1016/b978-0-08-032599-6.50008-8
10.1002/asjc.2460
10.1016/j.jcp.2019.05.027
10.1016/j.cma.2017.08.027
10.1007/s12603-020-1457-6
10.1186/s40537-019-0206-3
10.1016/J.CHEMOLAB.2023.104827
10.1109/access.2019.2946256
10.1147/rd.175.0420
10.1515/cclm-2020-1205
10.3390/risks7010023
10.1126/science.1205438
10.1016/j.cnsns.2015.06.029
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.physa.2014.12.031
10.1214/009053607000000505
10.1080/01621459.1993.10476372
10.1126/science.30.757.23
10.1090/qam/16705
10.3892/etm.2018.6500
10.1016/j.ins.2018.08.017
10.1098/rsbl.2006.0553
10.5539/mas.v14n6p75
10.1007/978-3-319-33861-3_2
10.2307/2669895
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.3934/mbe.2024059
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 1393
ExternalDocumentID oai_doaj_org_article_04a7ed6cfd164f749c97ce32b856f029
10.3934/mbe.2024059
38303469
10_3934_mbe_2024059
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-a383t-1c62f55c3a20c5fd21e253466e88044f4ec9ac966fdc2e2dbcf0381be0035e973
IEDL.DBID UNPAY
ISSN 1551-0018
1547-1063
IngestDate Fri Oct 03 12:44:10 EDT 2025
Mon Sep 15 10:15:38 EDT 2025
Fri Jul 11 07:30:30 EDT 2025
Thu Jan 02 22:32:34 EST 2025
Tue Jul 01 02:58:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords analytic hierarchy process
correlation analysis
cubic B-spline
information entropy
copula function
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-1c62f55c3a20c5fd21e253466e88044f4ec9ac966fdc2e2dbcf0381be0035e973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/mbe.2024059
PMID 38303469
PQID 2929130526
PQPubID 23479
PageCount 38
ParticipantIDs doaj_primary_oai_doaj_org_article_04a7ed6cfd164f749c97ce32b856f029
unpaywall_primary_10_3934_mbe_2024059
proquest_miscellaneous_2929130526
pubmed_primary_38303469
crossref_primary_10_3934_mbe_2024059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2024059-5
key-10.3934/mbe.2024059-24
key-10.3934/mbe.2024059-4
key-10.3934/mbe.2024059-25
key-10.3934/mbe.2024059-3
key-10.3934/mbe.2024059-26
key-10.3934/mbe.2024059-2
key-10.3934/mbe.2024059-27
key-10.3934/mbe.2024059-1
key-10.3934/mbe.2024059-28
key-10.3934/mbe.2024059-29
key-10.3934/mbe.2024059-9
key-10.3934/mbe.2024059-8
key-10.3934/mbe.2024059-7
key-10.3934/mbe.2024059-6
key-10.3934/mbe.2024059-30
key-10.3934/mbe.2024059-31
key-10.3934/mbe.2024059-10
key-10.3934/mbe.2024059-32
key-10.3934/mbe.2024059-11
key-10.3934/mbe.2024059-33
key-10.3934/mbe.2024059-12
key-10.3934/mbe.2024059-34
key-10.3934/mbe.2024059-13
key-10.3934/mbe.2024059-35
key-10.3934/mbe.2024059-14
key-10.3934/mbe.2024059-36
key-10.3934/mbe.2024059-15
key-10.3934/mbe.2024059-37
key-10.3934/mbe.2024059-16
key-10.3934/mbe.2024059-38
key-10.3934/mbe.2024059-17
key-10.3934/mbe.2024059-18
key-10.3934/mbe.2024059-19
key-10.3934/mbe.2024059-20
key-10.3934/mbe.2024059-21
key-10.3934/mbe.2024059-22
key-10.3934/mbe.2024059-23
References_xml – ident: key-10.3934/mbe.2024059-23
– ident: key-10.3934/mbe.2024059-19
  doi: 10.1016/j.cageo.2011.06.021
– ident: key-10.3934/mbe.2024059-27
– ident: key-10.3934/mbe.2024059-25
– ident: key-10.3934/mbe.2024059-31
  doi: 10.1016/B978-0-12-416727-8.00003-5
– ident: key-10.3934/mbe.2024059-3
  doi: 10.1109/tsg.2015.2508506
– ident: key-10.3934/mbe.2024059-30
  doi: 10.1016/b978-0-08-032599-6.50008-8
– ident: key-10.3934/mbe.2024059-15
  doi: 10.1002/asjc.2460
– ident: key-10.3934/mbe.2024059-16
  doi: 10.1016/j.jcp.2019.05.027
– ident: key-10.3934/mbe.2024059-17
  doi: 10.1016/j.cma.2017.08.027
– ident: key-10.3934/mbe.2024059-18
– ident: key-10.3934/mbe.2024059-2
  doi: 10.1007/s12603-020-1457-6
– ident: key-10.3934/mbe.2024059-33
– ident: key-10.3934/mbe.2024059-12
  doi: 10.1186/s40537-019-0206-3
– ident: key-10.3934/mbe.2024059-21
– ident: key-10.3934/mbe.2024059-35
  doi: 10.1016/J.CHEMOLAB.2023.104827
– ident: key-10.3934/mbe.2024059-14
  doi: 10.1109/access.2019.2946256
– ident: key-10.3934/mbe.2024059-29
  doi: 10.1147/rd.175.0420
– ident: key-10.3934/mbe.2024059-26
  doi: 10.1515/cclm-2020-1205
– ident: key-10.3934/mbe.2024059-28
  doi: 10.3390/risks7010023
– ident: key-10.3934/mbe.2024059-8
  doi: 10.1126/science.1205438
– ident: key-10.3934/mbe.2024059-1
– ident: key-10.3934/mbe.2024059-9
  doi: 10.1016/j.cnsns.2015.06.029
– ident: key-10.3934/mbe.2024059-5
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: key-10.3934/mbe.2024059-7
  doi: 10.1016/j.physa.2014.12.031
– ident: key-10.3934/mbe.2024059-10
  doi: 10.1214/009053607000000505
– ident: key-10.3934/mbe.2024059-37
  doi: 10.1080/01621459.1993.10476372
– ident: key-10.3934/mbe.2024059-6
  doi: 10.1126/science.30.757.23
– ident: key-10.3934/mbe.2024059-24
  doi: 10.1090/qam/16705
– ident: key-10.3934/mbe.2024059-32
– ident: key-10.3934/mbe.2024059-4
  doi: 10.3892/etm.2018.6500
– ident: key-10.3934/mbe.2024059-13
  doi: 10.1016/j.ins.2018.08.017
– ident: key-10.3934/mbe.2024059-11
  doi: 10.1098/rsbl.2006.0553
– ident: key-10.3934/mbe.2024059-34
  doi: 10.5539/mas.v14n6p75
– ident: key-10.3934/mbe.2024059-36
– ident: key-10.3934/mbe.2024059-20
– ident: key-10.3934/mbe.2024059-38
  doi: 10.1007/978-3-319-33861-3_2
– ident: key-10.3934/mbe.2024059-22
  doi: 10.2307/2669895
SSID ssj0034334
Score 2.3108134
Snippet Many correlation analysis methods can capture a wide range of functional types of variables. However, the influence of uncertainty and distribution status in...
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1356
SubjectTerms analytic hierarchy process
copula function
correlation analysis
cubic b-spline
information entropy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG5ECJqDGB9xowkd0OPibD-3j4lElkACQha8Df2oxoPOirvr499bNT277kH0kuswj-arnqr6urq_YuwYNFgMkxZJTrZIUKCiRu6x74P2Tg8Hg5BovePPXzMaq9-X-nKl1RftCSvywAW400p5C8nEnDCxz1a56GwEKcJQm1yJ9uheNXQLMlV8sFRSqnIaTzqpTm8CKWJi8CJJ0pX408r0v5ZbfmQb8-bWPz346-uVeHO-zba6RJH_KAP8xNag2WEfSuvIp112gd6Jd0o9VxwzT56A6gEYiXi7TRweuX-Bfsq7DVn8HskxHZeaclqC5Riq0uSG_N0eG5__-nc26nftEfoeaeWsP4hGZK2j9KKKOicxAKGlMgbwn1QqK4jOR6QzOUUBIoWYqSwYgKqH4KzcZ-vNpIEDxo1DLxeDicqSGg3S4uAwrxomL603FnrseAFafVtUMGpkD4RtjdjWHbY99pMAXd5C0tXtBTRo3Rm0fs-gPfZ9YY4apzrVL3wDk_m0FpjKYcjVwvTY52Kn5acQEbS6wadPloZ7a6hf_sdQD9kmva6syByx9dndHL5ijjIL39rp-AyPVeR8
  priority: 102
  providerName: Directory of Open Access Journals
Title New research for detecting complex associations between variables with randomness
URI https://www.ncbi.nlm.nih.gov/pubmed/38303469
https://www.proquest.com/docview/2929130526
https://doi.org/10.3934/mbe.2024059
https://doaj.org/article/04a7ed6cfd164f749c97ce32b856f029
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034334
  issn: 1547-1063
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034334
  issn: 1547-1063
  databaseCode: AMVHM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VrRDwwA1djsqI8piSdXysH8tRVUhUILFSeYp8jFWJNluxu5T213cmyS6lQsBbFNmJPWP7m89jzwBsoUZLMGmJ5GRLBAVLTuQeCx-0d3o8GoXE-x0f983eRH040Adr8HJ5F-aS_75ylXp9HDiWJcGOdtdg3WgyuAewPtn_tPO1jYSqLC0kbb40xv6Cc8x1t_Cu1v4Nd9rw_H-yKW_BjUVz4s9O_dHRJZzZvQPvli3sjpd8217Mw3Y8vxK88R9duAu3eztT7HQD4x6sYXMfrneZJ88ewGda3EQf6OdQkOEqErI7gYBMtKfM8afwvzQ3E_15LvGDuDXftpoJ3sEVhHRpeszL5UOY7L7_8nav6LMrFJ5Y6bwYRSOz1rHysow6JzlCqStlDNKUViorjM5HYkM5RYkyhZjZqxiQnY_obPUIBs20wQ0QxtEiGYOJynIwG2LVwZFZNk6-st5YHMLWUvb1SRdEoybywdKpSTp1L50hvGG9rIpw5Ov2BUmz7idSXSpvMZmYExG9bJWLzkasZBhrk0tJH3mx1GpNM4XdH77B6WJWS7IECbG1NEN43Kl79SuSSEl9p9qvVvr_W1Of_Ge5p3CTn7o9m2cwmH9f4HOyYuZhs2X_m_1YvgDtsuxX
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlUF4tLC8ZUY4pWceP9bEFqgqJCiRWKqfIj7GQ2mYrdhcov56ZJLuUCgG3KLITe8b2N5_HngHYQY2WYNISycmWCAqWnMg9Fj5o7_R4NAqJ9zveHZnDiXp7rI_X4PnyLswl_33lKvXyLHAsS4Id7a7ButFkcA9gfXL0fu9TGwlVWVpI2nxpjP0F55jrbuFdrf0b7rTh-f9kU96EG4vm3F9886enl3Dm4Ba8XrawO15ysruYh93440rwxn904TZs9nam2OsGxh1Yw-YuXO8yT17cgw-0uIk-0M9nQYarSMjuBAIy0Z4yx-_C_9LcTPTnucRX4tZ822omeAdXENKl6Rkvl1swOXjz8dVh0WdXKDyx0nkxikZmrWPlZRl1TnKEUlfKGKQprVRWGJ2PxIZyihJlCjGzVzEgOx_R2WobBs20wQcgjKNFMgYTleVgNsSqgyOzbJx8Zb2xOISdpezr8y6IRk3kg6VTk3TqXjpD2Ge9rIpw5Ov2BUmz7idSXSpvMZmYExG9bJWLzkasZBhrk0tJH3m21GpNM4XdH77B6WJWS7IECbG1NEO436l79SuSSEl9p9ovVvr_W1Mf_me5R7DBT92ezWMYzL8s8AlZMfPwtB_FPwFpKOti
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+research+for+detecting+complex+associations+between+variables+with+randomness&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Du%2C+Yuwen&rft.au=Nie%2C+Bin&rft.au=Du%2C+Jianqiang&rft.au=Zheng%2C+Xuepeng&rft.date=2024-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=21&rft.issue=1&rft.spage=1356&rft_id=info:doi/10.3934%2Fmbe.2024059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon