Use of near-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soils: usefulness of a genetic algorithm
Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infr...
        Saved in:
      
    
          | Published in | Journal of plant nutrition and soil science Vol. 174; no. 5; pp. 695 - 701 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Weinheim
          WILEY-VCH Verlag
    
        01.10.2011
     WILEY‐VCH Verlag  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1436-8730 1522-2624  | 
| DOI | 10.1002/jpln.201000226 | 
Cover
| Abstract | Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS. | 
    
|---|---|
| AbstractList | Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS. | 
    
| Author | Ludwig, Bernard Michel, Kerstin Vohland, Michael  | 
    
| Author_xml | – sequence: 1 givenname: Michael surname: Vohland fullname: Vohland, Michael organization: Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany – sequence: 2 givenname: Kerstin surname: Michel fullname: Michel, Kerstin organization: Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131 Wien, Austria – sequence: 3 givenname: Bernard surname: Ludwig fullname: Ludwig, Bernard email: bludwig@uni-kassel.de organization: Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany  | 
    
| BookMark | eNqFkU9vEzEQxS3USrSlV84-ctmw_rO7WW60kLQoantIxdGaeMeJi9de7F1Bvg0fFYegCiEhDpZH1vu9Gc87Jyc-eCTkNStnrCz526fB-Rkvc11yXr8gZ6zivOA1lye5lqIu5o0oX5LzlJ6yRrKWn5EfjwlpMNQjxMJ6EyFiR9OAeowh6TDs6RhoZ9No_XayaUc1xE3wFHxHvc2iLXoaot1aDwcNNTH0VO8g_pKYEDGNhXEhRNrDiNGCo9bTFKxL7-iU0EzOY0qHKYBmNxytpuC22XTc9a_IqQGX8PL3fUEeFx_X1zfF6n55e_1-VYCY56-Jet5yYJ1p5EYLpo1uxUbmk18lx1ZKYQxrEHHT1aysWg1zKbUQja4FlCguyJuj7xDD1ynPrHqbNDoHHsOUFJOybStRMZals6NU5xWliEYN0fYQ94qV6hCFOkShnqPIgPwL0HbM2wp-jGDdv7H2iH2zDvf_aaI-Pazu_mSLI5uTw-_PLMQvqm5EU6nPd0v1YX3VLpZXC7UWPwGhBbP5 | 
    
| CitedBy_id | crossref_primary_10_1002_jpln_202400364 crossref_primary_10_1016_j_compag_2016_03_016 crossref_primary_10_1134_S1064229322090071 crossref_primary_10_1007_s11119_021_09792_0 crossref_primary_10_1007_s11119_012_9302_5 crossref_primary_10_3390_s21072386  | 
    
| Cites_doi | 10.1016/j.soilbio.2007.05.032 10.1002/jpln.200521712 10.1016/S0016-7061(97)00087-6 10.2136/sssaj1995.03615995005900020014x 10.1002/jpln.200700246 10.1016/S0731-7085(97)00229-X 10.1071/SR03013 10.1111/j.1365-2389.2005.00776.x 10.1016/S0016-7061(98)00036-6 10.1002/jpln.200700022 10.2136/sssaj1981.03615995004500060031x 10.2136/sssaj2002.6400a 10.1016/S0146-6380(01)00029-8 10.1016/j.soilbio.2007.12.011 10.1097/00010694-200202000-00003 10.1016/j.soilbio.2003.08.003 10.1016/j.geoderma.2005.03.007 10.1111/j.1365-2389.2009.01178.x 10.1007/s11104-010-0285-6 10.1016/j.biosystemseng.2005.05.001 10.2527/jas1976.434889x 10.2134/agronj2009.0002 10.1071/SR9960251 10.2136/sssaj2001.652480x 10.1016/S0016-7061(02)00357-9 10.2136/sssaj2002.1249 10.1029/1999GB001208 10.1097/00010694-196508000-00009 10.2136/sssaj2005.0116 10.1016/0377-8401(90)90074-I 10.1016/S0378-1127(02)00467-X 10.1255/jnirs.642  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | 
    
| Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | 
    
| DBID | BSCLL AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1002/jpln.201000226 | 
    
| DatabaseName | Istex CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture Biology Botany  | 
    
| EISSN | 1522-2624 | 
    
| EndPage | 701 | 
    
| ExternalDocumentID | 10_1002_jpln_201000226 JPLN201000226 ark_67375_WNG_DTB9FGBF_T  | 
    
| Genre | article | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWD AAYXX CITATION 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-a3836-36892a1df74bc31cfc93b493b92a42e9443ff17eeebd61059ca844c337c63a0e3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1436-8730 | 
    
| IngestDate | Fri Jul 11 18:25:46 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Oct 01 01:27:49 EDT 2025 Wed Jan 22 16:52:16 EST 2025 Sun Sep 21 06:16:07 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a3836-36892a1df74bc31cfc93b493b92a42e9443ff17eeebd61059ca844c337c63a0e3 | 
    
| Notes | istex:A57092B3D2E142EFAF62E095A8AC0B259D7DCA44 ArticleID:JPLN201000226 ark:/67375/WNG-DTB9FGBF-T ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1449953511 | 
    
| PQPubID | 24069 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_miscellaneous_1449953511 crossref_primary_10_1002_jpln_201000226 crossref_citationtrail_10_1002_jpln_201000226 wiley_primary_10_1002_jpln_201000226_JPLN201000226 istex_primary_ark_67375_WNG_DTB9FGBF_T  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-10 October, 2011 2011-10-00 20111001  | 
    
| PublicationDateYYYYMMDD | 2011-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Weinheim | 
    
| PublicationPlace_xml | – name: Weinheim | 
    
| PublicationTitle | Journal of plant nutrition and soil science | 
    
| PublicationTitleAlternate | Z. Pflanzenernähr. Bodenk | 
    
| PublicationYear | 2011 | 
    
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag  | 
    
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag  | 
    
| References | Couteaux, M. , Berg, B. , Rovira, P. (2003): Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem. 35, 1587-1600. Gregorich, E. G. , Beare, M. H. , McKim, U. F. , Skjemstad, J. O. (2006): Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 70, 975-985. Rossel, R. A. V. , Walvoort, D. J. J. , McBratney, A. B. , Janik, L. J. , Skjemstad, J. O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59-75. Yoshido, H. , Leardi, R. , Funatsu, K. , Varmuza, K. (2001): Feature selection by genetic algorithms for mass spectral classifiers. Analytica Chimica Acta 446, 485-494. Rumpel, C. , Knicker, H. , Kögel-Knabner, I. , Skjemstad, J. O. , Hüttl, R. F. (1998): Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86, 123-142. Rumpel, C. , Janik, L. J. , Skjemstad, J. O. , Kögel-Knabner, I. (2001): Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Org. Geochem. 32, 831-839. Schmidt, M. W. I. , Noack, A. G. (2000): Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycl. 14, 777-793. Skjemstad, J. O. , Clarke, P. , Taylor, J. A. , Oades, J. M. , McClure, S. G. (1996): The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34, 251-271. McCarty, G. W. , Reeves, J. B. , Reeves, V. B. , Follett, R. F. , Kimble, J. M. (2002): Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66, 640-646. Skjemstad, J. O. , Reicosky, D. C. , Wilts, A. R. , McGowan, J. A. (2002): Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 66, 1249-1255. Smith, P. , Smith, J. U. , Powlson, D. S. , McGill, W. B. , Arah, J. R. M. , Chertov, O. G. , Coleman, K. , Franko, U. , Frolking, S. , Jenkinson, D. S. , Jensen, L. S. , Kelly, R. H. , Klein-Gunnewiek, H. , Komarov, A. S. , Li, C. , Molina, J. A. E. , Mueller, T. , Parton, W. J. , Thornley, J. H. M. , Whitmore, A. P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153-225. Terhoeven-Urselmans, T. , Michel, K. , Helfrich, M. , Flessa, H. , Ludwig, B. (2006): Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168-174. Ludwig, B. , Nitschke, R. , Terhoeven-Urselmans, T. , Michel, K. , Flessa, H. (2008): Use of mid-infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 171, 384-391. Michel, K. , Terhoeven-Urselmans, T. , Nitschke, R. , Steffan, P. , Ludwig, B. (2009): Near- and mid-infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils. J. Plant Nutr. Soil Sci. 162, 63-70. Bowers, S. A. , Hanks, R. J. (1965): Reflection of radiant energy from soils. Soil Sci. 100, 130-138. Chang, C. W. , Laird, D. A. (2002): Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 167, 110-116. Skjemstad, J. O. , Spouncer, L. R. , Cowie, B. , Swift, R. S. (2004): Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools. Aust. J. Soil Res. 42, 79-88. Leifeld, J. , Reiser, R. , Oberholzer, H. R. (2009): Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agron. J. 101, 1204-1218. Stoner, E. R. , Baumgardner, M. F. (1981): Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 45, 1161-1165. Terhoeven-Urselmans, T. , Schmidt, H. , Jörgensen, R. G. , Ludwig, B. (2008): Usefulness of near-infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment. Soil Biol. Biochem. 40, 1178-1188. Ludwig, B. , Khanna, P. K. , Bauhus, J. , Hopmans, P. (2002): Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manage. 171, 121-132. Leifeld, J. (2006): Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur. J. Soil Sci. 57, 846-857. Michel, K. , Bruns, C. , Terhoeven-Urselmans, T. , Kleikamp, B. , Ludwig, B. (2006): Determination of chemical and biological properties of composts using near infrared spectroscopy. J. Near Infrared Spec. 14, 251-259. Borer, M. W. , Zhou, X. J. , Hays, D. M. , Hofer, J. D. , White, K. C. (1998): Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy. J. Pharma. Biomed. Anal. 17, 641-650. Elliott, G. N. , Worgan, H. , Broadhurst, D. , Draper, J. , Scullion, J. (2007): Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biol. Biochem. 39, 2888-2896. Kiem, R. , Knicker, H. , Ligouis, B. , Kögel-Knabner, I. (2003): Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas. Geoderma 114, 109-137. Chang, C. W. , Laird, D. A. , Mausbach, M. J. , Hurburgh Jr., C. R. (2001): Near-infrared reflectance spectroscopy - principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65, 480-490. Fang, L. M. , Feng, A. M. , Lin, M. (2010): Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy. Spectrosc. Spect. Anal. 30, 327-330. Cécillon, L. , Barthès, B. G. , Gomez, C. , Ertlen, D. , Genot, V. , Hedde, M. , Stevens, A. , Brun, J. J. (2009): Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci. 60, 770-784. Barber, G. , Givens, D. , Kridis, M. , Offer, N. , Murray, I. (1990): Prediction of the organic matter digestibility of grass silage. Anim. Feed Sci. Tech. 28, 115-128. Ludwig, B. , Hu, K. , Niu, L. , Liu, X. (2010): Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model. Plant Soil 332, 193-206. Saeys, W. , Mouazen, A. M. , Ramon, H. (2005): Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. Biosyst. Eng. 91, 393-402. Ben-Dor, E. , Banin, A. (1995): Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 364-372. Norris, K. H. , Barnes, R. F. , Moore, J. E. , Shenk, J. S. (1976): Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 43, 889-897. 2007; 39 2006; 70 1976; 43 2004; 42 2002; 171 1997; 81 1965; 100 2006; 57 1995; 59 2009; 60 2006; 14 2003; 35 2006; 131 2003; 114 1998; 86 1996; 34 1981; 45 2001; 65 2001; 446 1998; 17 2000; 14 1990; 28 2010; 332 2002; 167 2002; 66 2009; 101 2005; 91 2009; 162 2008; 40 2010; 30 2006; 169 2008; 171 2001; 32 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 Yoshido H. (e_1_2_1_37_1) 2001; 446 e_1_2_1_29_1 e_1_2_1_7_1 Fang L. M. (e_1_2_1_11_1) 2010; 30 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_1_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1  | 
    
| References_xml | – reference: Michel, K. , Bruns, C. , Terhoeven-Urselmans, T. , Kleikamp, B. , Ludwig, B. (2006): Determination of chemical and biological properties of composts using near infrared spectroscopy. J. Near Infrared Spec. 14, 251-259. – reference: Bowers, S. A. , Hanks, R. J. (1965): Reflection of radiant energy from soils. Soil Sci. 100, 130-138. – reference: Leifeld, J. (2006): Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur. J. Soil Sci. 57, 846-857. – reference: Ludwig, B. , Nitschke, R. , Terhoeven-Urselmans, T. , Michel, K. , Flessa, H. (2008): Use of mid-infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 171, 384-391. – reference: Terhoeven-Urselmans, T. , Michel, K. , Helfrich, M. , Flessa, H. , Ludwig, B. (2006): Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168-174. – reference: Michel, K. , Terhoeven-Urselmans, T. , Nitschke, R. , Steffan, P. , Ludwig, B. (2009): Near- and mid-infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils. J. Plant Nutr. Soil Sci. 162, 63-70. – reference: Fang, L. M. , Feng, A. M. , Lin, M. (2010): Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy. Spectrosc. Spect. Anal. 30, 327-330. – reference: Borer, M. W. , Zhou, X. J. , Hays, D. M. , Hofer, J. D. , White, K. C. (1998): Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy. J. Pharma. Biomed. Anal. 17, 641-650. – reference: Kiem, R. , Knicker, H. , Ligouis, B. , Kögel-Knabner, I. (2003): Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas. Geoderma 114, 109-137. – reference: Saeys, W. , Mouazen, A. M. , Ramon, H. (2005): Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. Biosyst. Eng. 91, 393-402. – reference: Terhoeven-Urselmans, T. , Schmidt, H. , Jörgensen, R. G. , Ludwig, B. (2008): Usefulness of near-infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment. Soil Biol. Biochem. 40, 1178-1188. – reference: Leifeld, J. , Reiser, R. , Oberholzer, H. R. (2009): Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agron. J. 101, 1204-1218. – reference: Schmidt, M. W. I. , Noack, A. G. (2000): Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycl. 14, 777-793. – reference: Gregorich, E. G. , Beare, M. H. , McKim, U. F. , Skjemstad, J. O. (2006): Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 70, 975-985. – reference: Skjemstad, J. O. , Spouncer, L. R. , Cowie, B. , Swift, R. S. (2004): Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools. Aust. J. Soil Res. 42, 79-88. – reference: Rumpel, C. , Knicker, H. , Kögel-Knabner, I. , Skjemstad, J. O. , Hüttl, R. F. (1998): Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86, 123-142. – reference: Smith, P. , Smith, J. U. , Powlson, D. S. , McGill, W. B. , Arah, J. R. M. , Chertov, O. G. , Coleman, K. , Franko, U. , Frolking, S. , Jenkinson, D. S. , Jensen, L. S. , Kelly, R. H. , Klein-Gunnewiek, H. , Komarov, A. S. , Li, C. , Molina, J. A. E. , Mueller, T. , Parton, W. J. , Thornley, J. H. M. , Whitmore, A. P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153-225. – reference: Barber, G. , Givens, D. , Kridis, M. , Offer, N. , Murray, I. (1990): Prediction of the organic matter digestibility of grass silage. Anim. Feed Sci. Tech. 28, 115-128. – reference: Rossel, R. A. V. , Walvoort, D. J. J. , McBratney, A. B. , Janik, L. J. , Skjemstad, J. O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59-75. – reference: Chang, C. W. , Laird, D. A. , Mausbach, M. J. , Hurburgh Jr., C. R. (2001): Near-infrared reflectance spectroscopy - principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65, 480-490. – reference: Ludwig, B. , Hu, K. , Niu, L. , Liu, X. (2010): Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model. Plant Soil 332, 193-206. – reference: Skjemstad, J. O. , Clarke, P. , Taylor, J. A. , Oades, J. M. , McClure, S. G. (1996): The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34, 251-271. – reference: Rumpel, C. , Janik, L. J. , Skjemstad, J. O. , Kögel-Knabner, I. (2001): Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Org. Geochem. 32, 831-839. – reference: McCarty, G. W. , Reeves, J. B. , Reeves, V. B. , Follett, R. F. , Kimble, J. M. (2002): Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66, 640-646. – reference: Cécillon, L. , Barthès, B. G. , Gomez, C. , Ertlen, D. , Genot, V. , Hedde, M. , Stevens, A. , Brun, J. J. (2009): Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci. 60, 770-784. – reference: Skjemstad, J. O. , Reicosky, D. C. , Wilts, A. R. , McGowan, J. A. (2002): Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 66, 1249-1255. – reference: Ben-Dor, E. , Banin, A. (1995): Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 364-372. – reference: Yoshido, H. , Leardi, R. , Funatsu, K. , Varmuza, K. (2001): Feature selection by genetic algorithms for mass spectral classifiers. Analytica Chimica Acta 446, 485-494. – reference: Norris, K. H. , Barnes, R. F. , Moore, J. E. , Shenk, J. S. (1976): Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 43, 889-897. – reference: Stoner, E. R. , Baumgardner, M. F. (1981): Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 45, 1161-1165. – reference: Chang, C. W. , Laird, D. A. (2002): Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 167, 110-116. – reference: Couteaux, M. , Berg, B. , Rovira, P. (2003): Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem. 35, 1587-1600. – reference: Elliott, G. N. , Worgan, H. , Broadhurst, D. , Draper, J. , Scullion, J. (2007): Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biol. Biochem. 39, 2888-2896. – reference: Ludwig, B. , Khanna, P. K. , Bauhus, J. , Hopmans, P. (2002): Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manage. 171, 121-132. – volume: 60 start-page: 770 year: 2009 end-page: 784 article-title: Assessment and monitoring of soil quality using near‐infrared reflectance spectroscopy (NIRS). publication-title: Eur. J. Soil Sci. – volume: 169 start-page: 168 year: 2006 end-page: 174 article-title: Near‐infrared spectroscopy can predict the composition of organic matter in soil and litter. publication-title: J. Plant Nutr. Soil Sci. – volume: 43 start-page: 889 year: 1976 end-page: 897 article-title: Predicting forage quality by infrared reflectance spectroscopy. publication-title: J. Anim. Sci. – volume: 131 start-page: 59 year: 2006 end-page: 75 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. publication-title: Geoderma – volume: 39 start-page: 2888 year: 2007 end-page: 2896 article-title: Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm‐based feature selection. publication-title: Soil Biol. Biochem. – volume: 171 start-page: 121 year: 2002 end-page: 132 article-title: Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. publication-title: For. Ecol. Manage. – volume: 66 start-page: 640 year: 2002 end-page: 646 article-title: Mid‐infrared and near‐infrared diffuse reflectance spectroscopy for soil carbon measurement. publication-title: Soil Sci. Soc. Am. J. – volume: 66 start-page: 1249 year: 2002 end-page: 1255 article-title: Charcoal carbon in US agricultural soils. publication-title: Soil Sci. Soc. Am. J. – volume: 81 start-page: 153 year: 1997 end-page: 225 article-title: A comparison of the performance of nine soil organic matter models using datasets from seven long‐term experiments. publication-title: Geoderma – volume: 162 start-page: 63 year: 2009 end-page: 70 article-title: Near‐ and mid‐infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils. publication-title: J. Plant Nutr. Soil Sci. – volume: 32 start-page: 831 year: 2001 end-page: 839 article-title: Quantification of carbon derived from lignite in soils using mid‐infrared spectroscopy and partial least squares. publication-title: Org. Geochem. – volume: 167 start-page: 110 year: 2002 end-page: 116 article-title: Near‐infrared reflectance spectroscopic analysis of soil C and N. publication-title: Soil Sci. – volume: 59 start-page: 364 year: 1995 end-page: 372 article-title: Near‐infrared analysis as a rapid method to simultaneously evaluate several soil properties. publication-title: Soil Sci. Soc. Am. J. – volume: 114 start-page: 109 year: 2003 end-page: 137 article-title: Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas. publication-title: Geoderma – volume: 332 start-page: 193 year: 2010 end-page: 206 article-title: Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model. publication-title: Plant Soil – volume: 28 start-page: 115 year: 1990 end-page: 128 article-title: Prediction of the organic matter digestibility of grass silage. publication-title: Anim. Feed Sci. Tech. – volume: 100 start-page: 130 year: 1965 end-page: 138 article-title: Reflection of radiant energy from soils. publication-title: Soil Sci. – volume: 17 start-page: 641 year: 1998 end-page: 650 article-title: Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy. publication-title: J. Pharma. Biomed. Anal. – volume: 65 start-page: 480 year: 2001 end-page: 490 article-title: Near‐infrared reflectance spectroscopy – principal components regression analyses of soil properties. publication-title: Soil Sci. Soc. Am. J. – volume: 70 start-page: 975 year: 2006 end-page: 985 article-title: Chemical and biological characteristics of physically uncomplexed organic matter. publication-title: Soil Sci. Soc. Am. J. – volume: 34 start-page: 251 year: 1996 end-page: 271 article-title: The chemistry and nature of protected carbon in soil. publication-title: Aust. J. Soil Res. – volume: 91 start-page: 393 year: 2005 end-page: 402 article-title: Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. publication-title: Biosyst. Eng. – volume: 57 start-page: 846 year: 2006 end-page: 857 article-title: Application of diffuse reflectance FT‐IR spectroscopy and partial least‐squares regression to predict NMR properties of soil organic matter. publication-title: Eur. J. Soil Sci. – volume: 171 start-page: 384 year: 2008 end-page: 391 article-title: Use of mid‐infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter. publication-title: J. Plant Nutr. Soil Sci. – volume: 86 start-page: 123 year: 1998 end-page: 142 article-title: Types and chemical composition of organic matter in reforested lignite‐rich mine soils. publication-title: Geoderma – volume: 42 start-page: 79 year: 2004 end-page: 88 article-title: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools. publication-title: Aust. J. Soil Res. – volume: 35 start-page: 1587 year: 2003 end-page: 1600 article-title: Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. publication-title: Soil Biol. Biochem. – volume: 101 start-page: 1204 year: 2009 end-page: 1218 article-title: Consequences of conventional versus organic farming on soil carbon: results from a 27‐year field experiment. publication-title: Agron. J. – volume: 45 start-page: 1161 year: 1981 end-page: 1165 article-title: Characteristic variations in reflectance of surface soils. publication-title: Soil Sci. Soc. Am. J. – volume: 30 start-page: 327 year: 2010 end-page: 330 article-title: Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy. publication-title: Spectrosc. Spect. Anal. – volume: 14 start-page: 251 year: 2006 end-page: 259 article-title: Determination of chemical and biological properties of composts using near infrared spectroscopy. publication-title: J. Near Infrared Spec. – volume: 40 start-page: 1178 year: 2008 end-page: 1188 article-title: Usefulness of near‐infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment. publication-title: Soil Biol. Biochem. – volume: 446 start-page: 485 year: 2001 end-page: 494 article-title: Feature selection by genetic algorithms for mass spectral classifiers. publication-title: Analytica Chimica Acta – volume: 14 start-page: 777 year: 2000 end-page: 793 article-title: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. publication-title: Global Biogeochem. Cycl. – ident: e_1_2_1_10_1 doi: 10.1016/j.soilbio.2007.05.032 – ident: e_1_2_1_34_1 doi: 10.1002/jpln.200521712 – ident: e_1_2_1_32_1 doi: 10.1016/S0016-7061(97)00087-6 – ident: e_1_2_1_2_1 doi: 10.2136/sssaj1995.03615995005900020014x – ident: e_1_2_1_21_1 doi: 10.1002/jpln.200700246 – ident: e_1_2_1_4_1 doi: 10.1016/S0731-7085(97)00229-X – ident: e_1_2_1_23_1 – ident: e_1_2_1_31_1 doi: 10.1071/SR03013 – ident: e_1_2_1_14_1 doi: 10.1111/j.1365-2389.2005.00776.x – ident: e_1_2_1_25_1 doi: 10.1016/S0016-7061(98)00036-6 – volume: 30 start-page: 327 year: 2010 ident: e_1_2_1_11_1 article-title: Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy. publication-title: Spectrosc. Spect. Anal. – ident: e_1_2_1_17_1 doi: 10.1002/jpln.200700022 – ident: e_1_2_1_33_1 doi: 10.2136/sssaj1981.03615995004500060031x – ident: e_1_2_1_19_1 doi: 10.2136/sssaj2002.6400a – ident: e_1_2_1_26_1 doi: 10.1016/S0146-6380(01)00029-8 – ident: e_1_2_1_35_1 doi: 10.1016/j.soilbio.2007.12.011 – ident: e_1_2_1_7_1 doi: 10.1097/00010694-200202000-00003 – ident: e_1_2_1_9_1 doi: 10.1016/j.soilbio.2003.08.003 – ident: e_1_2_1_24_1 doi: 10.1016/j.geoderma.2005.03.007 – ident: e_1_2_1_6_1 doi: 10.1111/j.1365-2389.2009.01178.x – ident: e_1_2_1_18_1 doi: 10.1007/s11104-010-0285-6 – ident: e_1_2_1_3_1 – volume: 446 start-page: 485 year: 2001 ident: e_1_2_1_37_1 article-title: Feature selection by genetic algorithms for mass spectral classifiers. publication-title: Analytica Chimica Acta – ident: e_1_2_1_27_1 doi: 10.1016/j.biosystemseng.2005.05.001 – ident: e_1_2_1_22_1 doi: 10.2527/jas1976.434889x – ident: e_1_2_1_15_1 doi: 10.2134/agronj2009.0002 – ident: e_1_2_1_29_1 doi: 10.1071/SR9960251 – ident: e_1_2_1_8_1 doi: 10.2136/sssaj2001.652480x – ident: e_1_2_1_13_1 doi: 10.1016/S0016-7061(02)00357-9 – ident: e_1_2_1_30_1 doi: 10.2136/sssaj2002.1249 – ident: e_1_2_1_28_1 doi: 10.1029/1999GB001208 – ident: e_1_2_1_5_1 doi: 10.1097/00010694-196508000-00009 – ident: e_1_2_1_12_1 doi: 10.2136/sssaj2005.0116 – ident: e_1_2_1_1_1 doi: 10.1016/0377-8401(90)90074-I – ident: e_1_2_1_36_1 – ident: e_1_2_1_16_1 doi: 10.1016/S0378-1127(02)00467-X – ident: e_1_2_1_20_1 doi: 10.1255/jnirs.642  | 
    
| SSID | ssj0004192 | 
    
| Score | 1.9918337 | 
    
| Snippet | Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for... Several algorithms exist for the calibration procedures of near-infrared spectra in soil-scientific studies, but the potential of a genetic algorithm (GA) for...  | 
    
| SourceID | proquest crossref wiley istex  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 695 | 
    
| SubjectTerms | algorithms carbon char genetic algorithm lignite NIR spectroscopy nitrogen partial least squares regression soil soil organic carbon spectroscopy  | 
    
| Title | Use of near-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soils: usefulness of a genetic algorithm | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-DTB9FGBF-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.201000226 https://www.proquest.com/docview/1449953511  | 
    
| Volume | 174 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1436-8730 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2624 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004192 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQAAkeuBQQHRcZCcFTtiZ2k5S3FeimCSqEWrG3yHbsriyLq1wkyhM_gR_BL-OXcI6TdCsSQoKHPCQ6cZz4XD7H53wm5DkXELTjQeq5FCoehcaLY-Z7UWzCGCKSEQZ_DbyfhkdzfnwyPLlUxd_wQ2x-uKFlOH-NBi5kuX9BGvp5leUuNQvDEHJuw9PcnOrjBX8ULnG68iJk3QVd7lgbB8H-9u1bUekqfuAvW5DzMnB1kWdym4iuz03CydleXck99fU3Osf_eak75FYLS-lBo0d3yRWd98jNg0XRUnPoHrnebFu57pFrYwuQcn2P_JiXmlpDczCXn9--g7IWmM9OXfkm0mTa1ZpWlqboSPJFvSxPqRKFtDkVeUrBmxQWFJi2u3OhDMV6F4q1YE4EIDV8GWjbZNYWFOC1sxi6zGlpl1n5italNnWGDht7Iii0h3WZVGQLaLY6Pb9P5pO3s9dHXrvtgydguhx6LIxHgfBTE3GpmK-MGjHJ4YCrPNAjzpkxfqS1lmmI8FCJmHPFWKRCJgaaPSA7uc31Q0LjKAIvyhT3fca1HkguAwOQTEsZaBmyPvG6YU9Uy4mOW3NkScPmHCQ4IMlmQPrk5UZ-1bCB_FHyhdOijZgozjCHLhomn6aHyZvZeDQ5HE-SWZ8869QsAcvG5RqRa1uXMCmD2egQF3r7JHBK85dnJscf3k03Z7v_ctMjciPokhz9x2SnKmr9BFBXJZ86y_oFALAnvA | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgBgQseBQQ5WkkBKvMNLGbpOymQKcMnQqhVrCL7MTulClxlYdEWfEJfARfxpdwr_MYioSQYJFFohvn4fs4tu89JuQJFxC0w17i2BQqHvjaCUPmOkGo_RAikhYapwaOp_54zo8-9JtsQqyFqfgh2gk3tAzrr9HAcUJ6_4w19ON6ldrcLIxD_nmyy30YrCAuenfGIIWLnLbACHl3QZsb3saet799_1Zc2sVf_HkLdP4KXW3sGV0jsnnrKuXkdK8s5F785TdCx__6rOvkao1M6UGlSjfIOZV2yJWDRVazc6gOuVjtXLnpkAtDA6hyc5N8n-eKGk1TsJgfX7-BvmaY0k5tBScyZZr1hhaGJuhL0kW5zE9oLDJpUirShIJDyQzoMK036EIZiiUvFMvBrAigavg10LZeGZNRQNjWaOgypblZrvLntMwVfB36bHwTQaE9LM2kYrWAZouTT7fIfPRq9mLs1Ds_OAJGzL7D_HDgCTfRAZcxc2MdD5jkcMBV7qkB50xrN1BKycRHhBiLkPOYsSD2megpdpvspCZVdwgNgwAcKYu56zKuVE9y6WlAZUpKT0mfdYnT9HsU17TouDvHKqoInb0IOyRqO6RLnrXy64oQ5I-ST60atWIiO8U0uqAfvZ8eRi9nw8HocDiKZl3yuNGzCIwbV2xEqkyZw7gMBqR9XOvtEs9qzV-eGR29nUzbs7v_ctMjcmk8O55Ek9fTN_fIZa_JeXTvk50iK9UDAGGFfGjN7CdyEivd | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgAwQPXAqIcjUSgqdsTewmKW8rpRtjVBNqNd4iO7G7shBXSSNRnvgJ_Ah-Gb-Ec5zLKBJCgoc8JDpxnPhcPsfnfCbkGRcQtMNe4tgUKh742glD5jpBqP0QIpIWGn8NvJv4BzN--KHfZBNiLUzFD9H-cEPLsP4aDVwtE717zhr6cZlmNjcL45B_kWzz_iDErL7R-3MGKVzktAVGyLsL2tzwNva83c37N-LSNn7izxug81foamPP-AaRTa-rlJOznXIld-IvvxE6_tdr3STXa2RK9ypVukUuqKxDru3N85qdQ3XI5WrnynWHXBoaQJXr2-T7rFDUaJqBxfz4-g30NceUdmorOJEp0yzXdGVogr4km5eL4pTGIpcmoyJLKDiU3IAO03qDLpShWPJCsRzMigCqhk8DbevUmJwCwrZGQxcZLcwiLV7SslC6TNFnY08EhfawNJOKdA7Nrk4_3SGz8evpqwOn3vnBETBj9h3mhwNPuIkOuIyZG-t4wCSHA65yTw04Z1q7gVJKJj4ixFiEnMeMBbHPRE-xu2QrM5m6R2gYBOBIWcxdl3GlepJLTwMqU1J6SvqsS5xm3KO4pkXH3TnSqCJ09iIckKgdkC550covK0KQP0o-t2rUion8DNPogn50MtmPRtPhYLw_HEfTLnna6FkExo0rNiJTpixgXgYT0j6u9XaJZ7XmL8-MDo-PJu3Z_X-56Qm5cjwaR0dvJm8fkKtek_LoPiRbq7xUjwCDreRja2U_Ad52K2E | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+near-infrared+spectroscopy+to+distinguish+carbon+and+nitrogen+originating+from+char+and+forest-floor+material+in+soils%3A+usefulness+of+a+genetic+algorithm&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Vohland%2C+Michael&rft.au=Michel%2C+Kerstin&rft.au=Ludwig%2C+Bernard&rft.date=2011-10-01&rft.pub=WILEY-VCH+Verlag&rft.issn=1436-8730&rft.eissn=1522-2624&rft.volume=174&rft.issue=5&rft.spage=695&rft.epage=701&rft_id=info:doi/10.1002%2Fjpln.201000226&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DTB9FGBF_T | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon |