Use of near-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soils: usefulness of a genetic algorithm

Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infr...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant nutrition and soil science Vol. 174; no. 5; pp. 695 - 701
Main Authors Vohland, Michael, Michel, Kerstin, Ludwig, Bernard
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.10.2011
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN1436-8730
1522-2624
DOI10.1002/jpln.201000226

Cover

Abstract Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.
AbstractList Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.
Author Ludwig, Bernard
Michel, Kerstin
Vohland, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Vohland
  fullname: Vohland, Michael
  organization: Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany
– sequence: 2
  givenname: Kerstin
  surname: Michel
  fullname: Michel, Kerstin
  organization: Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131 Wien, Austria
– sequence: 3
  givenname: Bernard
  surname: Ludwig
  fullname: Ludwig, Bernard
  email: bludwig@uni-kassel.de
  organization: Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany
BookMark eNqFkU9vEzEQxS3USrSlV84-ctmw_rO7WW60kLQoantIxdGaeMeJi9de7F1Bvg0fFYegCiEhDpZH1vu9Gc87Jyc-eCTkNStnrCz526fB-Rkvc11yXr8gZ6zivOA1lye5lqIu5o0oX5LzlJ6yRrKWn5EfjwlpMNQjxMJ6EyFiR9OAeowh6TDs6RhoZ9No_XayaUc1xE3wFHxHvc2iLXoaot1aDwcNNTH0VO8g_pKYEDGNhXEhRNrDiNGCo9bTFKxL7-iU0EzOY0qHKYBmNxytpuC22XTc9a_IqQGX8PL3fUEeFx_X1zfF6n55e_1-VYCY56-Jet5yYJ1p5EYLpo1uxUbmk18lx1ZKYQxrEHHT1aysWg1zKbUQja4FlCguyJuj7xDD1ynPrHqbNDoHHsOUFJOybStRMZals6NU5xWliEYN0fYQ94qV6hCFOkShnqPIgPwL0HbM2wp-jGDdv7H2iH2zDvf_aaI-Pazu_mSLI5uTw-_PLMQvqm5EU6nPd0v1YX3VLpZXC7UWPwGhBbP5
CitedBy_id crossref_primary_10_1002_jpln_202400364
crossref_primary_10_1016_j_compag_2016_03_016
crossref_primary_10_1134_S1064229322090071
crossref_primary_10_1007_s11119_021_09792_0
crossref_primary_10_1007_s11119_012_9302_5
crossref_primary_10_3390_s21072386
Cites_doi 10.1016/j.soilbio.2007.05.032
10.1002/jpln.200521712
10.1016/S0016-7061(97)00087-6
10.2136/sssaj1995.03615995005900020014x
10.1002/jpln.200700246
10.1016/S0731-7085(97)00229-X
10.1071/SR03013
10.1111/j.1365-2389.2005.00776.x
10.1016/S0016-7061(98)00036-6
10.1002/jpln.200700022
10.2136/sssaj1981.03615995004500060031x
10.2136/sssaj2002.6400a
10.1016/S0146-6380(01)00029-8
10.1016/j.soilbio.2007.12.011
10.1097/00010694-200202000-00003
10.1016/j.soilbio.2003.08.003
10.1016/j.geoderma.2005.03.007
10.1111/j.1365-2389.2009.01178.x
10.1007/s11104-010-0285-6
10.1016/j.biosystemseng.2005.05.001
10.2527/jas1976.434889x
10.2134/agronj2009.0002
10.1071/SR9960251
10.2136/sssaj2001.652480x
10.1016/S0016-7061(02)00357-9
10.2136/sssaj2002.1249
10.1029/1999GB001208
10.1097/00010694-196508000-00009
10.2136/sssaj2005.0116
10.1016/0377-8401(90)90074-I
10.1016/S0378-1127(02)00467-X
10.1255/jnirs.642
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7S9
L.6
DOI 10.1002/jpln.201000226
DatabaseName Istex
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Botany
EISSN 1522-2624
EndPage 701
ExternalDocumentID 10_1002_jpln_201000226
JPLN201000226
ark_67375_WNG_DTB9FGBF_T
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWD
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-a3836-36892a1df74bc31cfc93b493b92a42e9443ff17eeebd61059ca844c337c63a0e3
IEDL.DBID DR2
ISSN 1436-8730
IngestDate Fri Jul 11 18:25:46 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Oct 01 01:27:49 EDT 2025
Wed Jan 22 16:52:16 EST 2025
Sun Sep 21 06:16:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3836-36892a1df74bc31cfc93b493b92a42e9443ff17eeebd61059ca844c337c63a0e3
Notes istex:A57092B3D2E142EFAF62E095A8AC0B259D7DCA44
ArticleID:JPLN201000226
ark:/67375/WNG-DTB9FGBF-T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1449953511
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_1449953511
crossref_primary_10_1002_jpln_201000226
crossref_citationtrail_10_1002_jpln_201000226
wiley_primary_10_1002_jpln_201000226_JPLN201000226
istex_primary_ark_67375_WNG_DTB9FGBF_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10
October, 2011
2011-10-00
20111001
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Journal of plant nutrition and soil science
PublicationTitleAlternate Z. Pflanzenernähr. Bodenk
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References Couteaux, M. , Berg, B. , Rovira, P. (2003): Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem. 35, 1587-1600.
Gregorich, E. G. , Beare, M. H. , McKim, U. F. , Skjemstad, J. O. (2006): Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 70, 975-985.
Rossel, R. A. V. , Walvoort, D. J. J. , McBratney, A. B. , Janik, L. J. , Skjemstad, J. O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59-75.
Yoshido, H. , Leardi, R. , Funatsu, K. , Varmuza, K. (2001): Feature selection by genetic algorithms for mass spectral classifiers. Analytica Chimica Acta 446, 485-494.
Rumpel, C. , Knicker, H. , Kögel-Knabner, I. , Skjemstad, J. O. , Hüttl, R. F. (1998): Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86, 123-142.
Rumpel, C. , Janik, L. J. , Skjemstad, J. O. , Kögel-Knabner, I. (2001): Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Org. Geochem. 32, 831-839.
Schmidt, M. W. I. , Noack, A. G. (2000): Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycl. 14, 777-793.
Skjemstad, J. O. , Clarke, P. , Taylor, J. A. , Oades, J. M. , McClure, S. G. (1996): The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34, 251-271.
McCarty, G. W. , Reeves, J. B. , Reeves, V. B. , Follett, R. F. , Kimble, J. M. (2002): Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66, 640-646.
Skjemstad, J. O. , Reicosky, D. C. , Wilts, A. R. , McGowan, J. A. (2002): Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 66, 1249-1255.
Smith, P. , Smith, J. U. , Powlson, D. S. , McGill, W. B. , Arah, J. R. M. , Chertov, O. G. , Coleman, K. , Franko, U. , Frolking, S. , Jenkinson, D. S. , Jensen, L. S. , Kelly, R. H. , Klein-Gunnewiek, H. , Komarov, A. S. , Li, C. , Molina, J. A. E. , Mueller, T. , Parton, W. J. , Thornley, J. H. M. , Whitmore, A. P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153-225.
Terhoeven-Urselmans, T. , Michel, K. , Helfrich, M. , Flessa, H. , Ludwig, B. (2006): Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168-174.
Ludwig, B. , Nitschke, R. , Terhoeven-Urselmans, T. , Michel, K. , Flessa, H. (2008): Use of mid-infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 171, 384-391.
Michel, K. , Terhoeven-Urselmans, T. , Nitschke, R. , Steffan, P. , Ludwig, B. (2009): Near- and mid-infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils. J. Plant Nutr. Soil Sci. 162, 63-70.
Bowers, S. A. , Hanks, R. J. (1965): Reflection of radiant energy from soils. Soil Sci. 100, 130-138.
Chang, C. W. , Laird, D. A. (2002): Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 167, 110-116.
Skjemstad, J. O. , Spouncer, L. R. , Cowie, B. , Swift, R. S. (2004): Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools. Aust. J. Soil Res. 42, 79-88.
Leifeld, J. , Reiser, R. , Oberholzer, H. R. (2009): Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agron. J. 101, 1204-1218.
Stoner, E. R. , Baumgardner, M. F. (1981): Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 45, 1161-1165.
Terhoeven-Urselmans, T. , Schmidt, H. , Jörgensen, R. G. , Ludwig, B. (2008): Usefulness of near-infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment. Soil Biol. Biochem. 40, 1178-1188.
Ludwig, B. , Khanna, P. K. , Bauhus, J. , Hopmans, P. (2002): Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manage. 171, 121-132.
Leifeld, J. (2006): Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur. J. Soil Sci. 57, 846-857.
Michel, K. , Bruns, C. , Terhoeven-Urselmans, T. , Kleikamp, B. , Ludwig, B. (2006): Determination of chemical and biological properties of composts using near infrared spectroscopy. J. Near Infrared Spec. 14, 251-259.
Borer, M. W. , Zhou, X. J. , Hays, D. M. , Hofer, J. D. , White, K. C. (1998): Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy. J. Pharma. Biomed. Anal. 17, 641-650.
Elliott, G. N. , Worgan, H. , Broadhurst, D. , Draper, J. , Scullion, J. (2007): Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biol. Biochem. 39, 2888-2896.
Kiem, R. , Knicker, H. , Ligouis, B. , Kögel-Knabner, I. (2003): Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas. Geoderma 114, 109-137.
Chang, C. W. , Laird, D. A. , Mausbach, M. J. , Hurburgh Jr., C. R. (2001): Near-infrared reflectance spectroscopy - principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65, 480-490.
Fang, L. M. , Feng, A. M. , Lin, M. (2010): Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy. Spectrosc. Spect. Anal. 30, 327-330.
Cécillon, L. , Barthès, B. G. , Gomez, C. , Ertlen, D. , Genot, V. , Hedde, M. , Stevens, A. , Brun, J. J. (2009): Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci. 60, 770-784.
Barber, G. , Givens, D. , Kridis, M. , Offer, N. , Murray, I. (1990): Prediction of the organic matter digestibility of grass silage. Anim. Feed Sci. Tech. 28, 115-128.
Ludwig, B. , Hu, K. , Niu, L. , Liu, X. (2010): Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model. Plant Soil 332, 193-206.
Saeys, W. , Mouazen, A. M. , Ramon, H. (2005): Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. Biosyst. Eng. 91, 393-402.
Ben-Dor, E. , Banin, A. (1995): Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 364-372.
Norris, K. H. , Barnes, R. F. , Moore, J. E. , Shenk, J. S. (1976): Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 43, 889-897.
2007; 39
2006; 70
1976; 43
2004; 42
2002; 171
1997; 81
1965; 100
2006; 57
1995; 59
2009; 60
2006; 14
2003; 35
2006; 131
2003; 114
1998; 86
1996; 34
1981; 45
2001; 65
2001; 446
1998; 17
2000; 14
1990; 28
2010; 332
2002; 167
2002; 66
2009; 101
2005; 91
2009; 162
2008; 40
2010; 30
2006; 169
2008; 171
2001; 32
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
Yoshido H. (e_1_2_1_37_1) 2001; 446
e_1_2_1_29_1
e_1_2_1_7_1
Fang L. M. (e_1_2_1_11_1) 2010; 30
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_1_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Michel, K. , Bruns, C. , Terhoeven-Urselmans, T. , Kleikamp, B. , Ludwig, B. (2006): Determination of chemical and biological properties of composts using near infrared spectroscopy. J. Near Infrared Spec. 14, 251-259.
– reference: Bowers, S. A. , Hanks, R. J. (1965): Reflection of radiant energy from soils. Soil Sci. 100, 130-138.
– reference: Leifeld, J. (2006): Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur. J. Soil Sci. 57, 846-857.
– reference: Ludwig, B. , Nitschke, R. , Terhoeven-Urselmans, T. , Michel, K. , Flessa, H. (2008): Use of mid-infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 171, 384-391.
– reference: Terhoeven-Urselmans, T. , Michel, K. , Helfrich, M. , Flessa, H. , Ludwig, B. (2006): Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168-174.
– reference: Michel, K. , Terhoeven-Urselmans, T. , Nitschke, R. , Steffan, P. , Ludwig, B. (2009): Near- and mid-infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils. J. Plant Nutr. Soil Sci. 162, 63-70.
– reference: Fang, L. M. , Feng, A. M. , Lin, M. (2010): Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy. Spectrosc. Spect. Anal. 30, 327-330.
– reference: Borer, M. W. , Zhou, X. J. , Hays, D. M. , Hofer, J. D. , White, K. C. (1998): Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy. J. Pharma. Biomed. Anal. 17, 641-650.
– reference: Kiem, R. , Knicker, H. , Ligouis, B. , Kögel-Knabner, I. (2003): Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas. Geoderma 114, 109-137.
– reference: Saeys, W. , Mouazen, A. M. , Ramon, H. (2005): Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. Biosyst. Eng. 91, 393-402.
– reference: Terhoeven-Urselmans, T. , Schmidt, H. , Jörgensen, R. G. , Ludwig, B. (2008): Usefulness of near-infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment. Soil Biol. Biochem. 40, 1178-1188.
– reference: Leifeld, J. , Reiser, R. , Oberholzer, H. R. (2009): Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agron. J. 101, 1204-1218.
– reference: Schmidt, M. W. I. , Noack, A. G. (2000): Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycl. 14, 777-793.
– reference: Gregorich, E. G. , Beare, M. H. , McKim, U. F. , Skjemstad, J. O. (2006): Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 70, 975-985.
– reference: Skjemstad, J. O. , Spouncer, L. R. , Cowie, B. , Swift, R. S. (2004): Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools. Aust. J. Soil Res. 42, 79-88.
– reference: Rumpel, C. , Knicker, H. , Kögel-Knabner, I. , Skjemstad, J. O. , Hüttl, R. F. (1998): Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86, 123-142.
– reference: Smith, P. , Smith, J. U. , Powlson, D. S. , McGill, W. B. , Arah, J. R. M. , Chertov, O. G. , Coleman, K. , Franko, U. , Frolking, S. , Jenkinson, D. S. , Jensen, L. S. , Kelly, R. H. , Klein-Gunnewiek, H. , Komarov, A. S. , Li, C. , Molina, J. A. E. , Mueller, T. , Parton, W. J. , Thornley, J. H. M. , Whitmore, A. P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153-225.
– reference: Barber, G. , Givens, D. , Kridis, M. , Offer, N. , Murray, I. (1990): Prediction of the organic matter digestibility of grass silage. Anim. Feed Sci. Tech. 28, 115-128.
– reference: Rossel, R. A. V. , Walvoort, D. J. J. , McBratney, A. B. , Janik, L. J. , Skjemstad, J. O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59-75.
– reference: Chang, C. W. , Laird, D. A. , Mausbach, M. J. , Hurburgh Jr., C. R. (2001): Near-infrared reflectance spectroscopy - principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65, 480-490.
– reference: Ludwig, B. , Hu, K. , Niu, L. , Liu, X. (2010): Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model. Plant Soil 332, 193-206.
– reference: Skjemstad, J. O. , Clarke, P. , Taylor, J. A. , Oades, J. M. , McClure, S. G. (1996): The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34, 251-271.
– reference: Rumpel, C. , Janik, L. J. , Skjemstad, J. O. , Kögel-Knabner, I. (2001): Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Org. Geochem. 32, 831-839.
– reference: McCarty, G. W. , Reeves, J. B. , Reeves, V. B. , Follett, R. F. , Kimble, J. M. (2002): Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66, 640-646.
– reference: Cécillon, L. , Barthès, B. G. , Gomez, C. , Ertlen, D. , Genot, V. , Hedde, M. , Stevens, A. , Brun, J. J. (2009): Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci. 60, 770-784.
– reference: Skjemstad, J. O. , Reicosky, D. C. , Wilts, A. R. , McGowan, J. A. (2002): Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 66, 1249-1255.
– reference: Ben-Dor, E. , Banin, A. (1995): Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 364-372.
– reference: Yoshido, H. , Leardi, R. , Funatsu, K. , Varmuza, K. (2001): Feature selection by genetic algorithms for mass spectral classifiers. Analytica Chimica Acta 446, 485-494.
– reference: Norris, K. H. , Barnes, R. F. , Moore, J. E. , Shenk, J. S. (1976): Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 43, 889-897.
– reference: Stoner, E. R. , Baumgardner, M. F. (1981): Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 45, 1161-1165.
– reference: Chang, C. W. , Laird, D. A. (2002): Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 167, 110-116.
– reference: Couteaux, M. , Berg, B. , Rovira, P. (2003): Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem. 35, 1587-1600.
– reference: Elliott, G. N. , Worgan, H. , Broadhurst, D. , Draper, J. , Scullion, J. (2007): Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biol. Biochem. 39, 2888-2896.
– reference: Ludwig, B. , Khanna, P. K. , Bauhus, J. , Hopmans, P. (2002): Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manage. 171, 121-132.
– volume: 60
  start-page: 770
  year: 2009
  end-page: 784
  article-title: Assessment and monitoring of soil quality using near‐infrared reflectance spectroscopy (NIRS).
  publication-title: Eur. J. Soil Sci.
– volume: 169
  start-page: 168
  year: 2006
  end-page: 174
  article-title: Near‐infrared spectroscopy can predict the composition of organic matter in soil and litter.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 43
  start-page: 889
  year: 1976
  end-page: 897
  article-title: Predicting forage quality by infrared reflectance spectroscopy.
  publication-title: J. Anim. Sci.
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties.
  publication-title: Geoderma
– volume: 39
  start-page: 2888
  year: 2007
  end-page: 2896
  article-title: Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm‐based feature selection.
  publication-title: Soil Biol. Biochem.
– volume: 171
  start-page: 121
  year: 2002
  end-page: 132
  article-title: Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability.
  publication-title: For. Ecol. Manage.
– volume: 66
  start-page: 640
  year: 2002
  end-page: 646
  article-title: Mid‐infrared and near‐infrared diffuse reflectance spectroscopy for soil carbon measurement.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 66
  start-page: 1249
  year: 2002
  end-page: 1255
  article-title: Charcoal carbon in US agricultural soils.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 81
  start-page: 153
  year: 1997
  end-page: 225
  article-title: A comparison of the performance of nine soil organic matter models using datasets from seven long‐term experiments.
  publication-title: Geoderma
– volume: 162
  start-page: 63
  year: 2009
  end-page: 70
  article-title: Near‐ and mid‐infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 32
  start-page: 831
  year: 2001
  end-page: 839
  article-title: Quantification of carbon derived from lignite in soils using mid‐infrared spectroscopy and partial least squares.
  publication-title: Org. Geochem.
– volume: 167
  start-page: 110
  year: 2002
  end-page: 116
  article-title: Near‐infrared reflectance spectroscopic analysis of soil C and N.
  publication-title: Soil Sci.
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  article-title: Near‐infrared analysis as a rapid method to simultaneously evaluate several soil properties.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 114
  start-page: 109
  year: 2003
  end-page: 137
  article-title: Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas.
  publication-title: Geoderma
– volume: 332
  start-page: 193
  year: 2010
  end-page: 206
  article-title: Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model.
  publication-title: Plant Soil
– volume: 28
  start-page: 115
  year: 1990
  end-page: 128
  article-title: Prediction of the organic matter digestibility of grass silage.
  publication-title: Anim. Feed Sci. Tech.
– volume: 100
  start-page: 130
  year: 1965
  end-page: 138
  article-title: Reflection of radiant energy from soils.
  publication-title: Soil Sci.
– volume: 17
  start-page: 641
  year: 1998
  end-page: 650
  article-title: Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy.
  publication-title: J. Pharma. Biomed. Anal.
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  article-title: Near‐infrared reflectance spectroscopy – principal components regression analyses of soil properties.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 70
  start-page: 975
  year: 2006
  end-page: 985
  article-title: Chemical and biological characteristics of physically uncomplexed organic matter.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 34
  start-page: 251
  year: 1996
  end-page: 271
  article-title: The chemistry and nature of protected carbon in soil.
  publication-title: Aust. J. Soil Res.
– volume: 91
  start-page: 393
  year: 2005
  end-page: 402
  article-title: Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy.
  publication-title: Biosyst. Eng.
– volume: 57
  start-page: 846
  year: 2006
  end-page: 857
  article-title: Application of diffuse reflectance FT‐IR spectroscopy and partial least‐squares regression to predict NMR properties of soil organic matter.
  publication-title: Eur. J. Soil Sci.
– volume: 171
  start-page: 384
  year: 2008
  end-page: 391
  article-title: Use of mid‐infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 86
  start-page: 123
  year: 1998
  end-page: 142
  article-title: Types and chemical composition of organic matter in reforested lignite‐rich mine soils.
  publication-title: Geoderma
– volume: 42
  start-page: 79
  year: 2004
  end-page: 88
  article-title: Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools.
  publication-title: Aust. J. Soil Res.
– volume: 35
  start-page: 1587
  year: 2003
  end-page: 1600
  article-title: Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils.
  publication-title: Soil Biol. Biochem.
– volume: 101
  start-page: 1204
  year: 2009
  end-page: 1218
  article-title: Consequences of conventional versus organic farming on soil carbon: results from a 27‐year field experiment.
  publication-title: Agron. J.
– volume: 45
  start-page: 1161
  year: 1981
  end-page: 1165
  article-title: Characteristic variations in reflectance of surface soils.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 30
  start-page: 327
  year: 2010
  end-page: 330
  article-title: Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy.
  publication-title: Spectrosc. Spect. Anal.
– volume: 14
  start-page: 251
  year: 2006
  end-page: 259
  article-title: Determination of chemical and biological properties of composts using near infrared spectroscopy.
  publication-title: J. Near Infrared Spec.
– volume: 40
  start-page: 1178
  year: 2008
  end-page: 1188
  article-title: Usefulness of near‐infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment.
  publication-title: Soil Biol. Biochem.
– volume: 446
  start-page: 485
  year: 2001
  end-page: 494
  article-title: Feature selection by genetic algorithms for mass spectral classifiers.
  publication-title: Analytica Chimica Acta
– volume: 14
  start-page: 777
  year: 2000
  end-page: 793
  article-title: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges.
  publication-title: Global Biogeochem. Cycl.
– ident: e_1_2_1_10_1
  doi: 10.1016/j.soilbio.2007.05.032
– ident: e_1_2_1_34_1
  doi: 10.1002/jpln.200521712
– ident: e_1_2_1_32_1
  doi: 10.1016/S0016-7061(97)00087-6
– ident: e_1_2_1_2_1
  doi: 10.2136/sssaj1995.03615995005900020014x
– ident: e_1_2_1_21_1
  doi: 10.1002/jpln.200700246
– ident: e_1_2_1_4_1
  doi: 10.1016/S0731-7085(97)00229-X
– ident: e_1_2_1_23_1
– ident: e_1_2_1_31_1
  doi: 10.1071/SR03013
– ident: e_1_2_1_14_1
  doi: 10.1111/j.1365-2389.2005.00776.x
– ident: e_1_2_1_25_1
  doi: 10.1016/S0016-7061(98)00036-6
– volume: 30
  start-page: 327
  year: 2010
  ident: e_1_2_1_11_1
  article-title: Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy.
  publication-title: Spectrosc. Spect. Anal.
– ident: e_1_2_1_17_1
  doi: 10.1002/jpln.200700022
– ident: e_1_2_1_33_1
  doi: 10.2136/sssaj1981.03615995004500060031x
– ident: e_1_2_1_19_1
  doi: 10.2136/sssaj2002.6400a
– ident: e_1_2_1_26_1
  doi: 10.1016/S0146-6380(01)00029-8
– ident: e_1_2_1_35_1
  doi: 10.1016/j.soilbio.2007.12.011
– ident: e_1_2_1_7_1
  doi: 10.1097/00010694-200202000-00003
– ident: e_1_2_1_9_1
  doi: 10.1016/j.soilbio.2003.08.003
– ident: e_1_2_1_24_1
  doi: 10.1016/j.geoderma.2005.03.007
– ident: e_1_2_1_6_1
  doi: 10.1111/j.1365-2389.2009.01178.x
– ident: e_1_2_1_18_1
  doi: 10.1007/s11104-010-0285-6
– ident: e_1_2_1_3_1
– volume: 446
  start-page: 485
  year: 2001
  ident: e_1_2_1_37_1
  article-title: Feature selection by genetic algorithms for mass spectral classifiers.
  publication-title: Analytica Chimica Acta
– ident: e_1_2_1_27_1
  doi: 10.1016/j.biosystemseng.2005.05.001
– ident: e_1_2_1_22_1
  doi: 10.2527/jas1976.434889x
– ident: e_1_2_1_15_1
  doi: 10.2134/agronj2009.0002
– ident: e_1_2_1_29_1
  doi: 10.1071/SR9960251
– ident: e_1_2_1_8_1
  doi: 10.2136/sssaj2001.652480x
– ident: e_1_2_1_13_1
  doi: 10.1016/S0016-7061(02)00357-9
– ident: e_1_2_1_30_1
  doi: 10.2136/sssaj2002.1249
– ident: e_1_2_1_28_1
  doi: 10.1029/1999GB001208
– ident: e_1_2_1_5_1
  doi: 10.1097/00010694-196508000-00009
– ident: e_1_2_1_12_1
  doi: 10.2136/sssaj2005.0116
– ident: e_1_2_1_1_1
  doi: 10.1016/0377-8401(90)90074-I
– ident: e_1_2_1_36_1
– ident: e_1_2_1_16_1
  doi: 10.1016/S0378-1127(02)00467-X
– ident: e_1_2_1_20_1
  doi: 10.1255/jnirs.642
SSID ssj0004192
Score 1.9918337
Snippet Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for...
Several algorithms exist for the calibration procedures of near-infrared spectra in soil-scientific studies, but the potential of a genetic algorithm (GA) for...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 695
SubjectTerms algorithms
carbon
char
genetic algorithm
lignite
NIR spectroscopy
nitrogen
partial least squares regression
soil
soil organic carbon
spectroscopy
Title Use of near-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soils: usefulness of a genetic algorithm
URI https://api.istex.fr/ark:/67375/WNG-DTB9FGBF-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.201000226
https://www.proquest.com/docview/1449953511
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1436-8730
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2624
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004192
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQAAkeuBQQHRcZCcFTtiZ2k5S3FeimCSqEWrG3yHbsriyLq1wkyhM_gR_BL-OXcI6TdCsSQoKHPCQ6cZz4XD7H53wm5DkXELTjQeq5FCoehcaLY-Z7UWzCGCKSEQZ_DbyfhkdzfnwyPLlUxd_wQ2x-uKFlOH-NBi5kuX9BGvp5leUuNQvDEHJuw9PcnOrjBX8ULnG68iJk3QVd7lgbB8H-9u1bUekqfuAvW5DzMnB1kWdym4iuz03CydleXck99fU3Osf_eak75FYLS-lBo0d3yRWd98jNg0XRUnPoHrnebFu57pFrYwuQcn2P_JiXmlpDczCXn9--g7IWmM9OXfkm0mTa1ZpWlqboSPJFvSxPqRKFtDkVeUrBmxQWFJi2u3OhDMV6F4q1YE4EIDV8GWjbZNYWFOC1sxi6zGlpl1n5italNnWGDht7Iii0h3WZVGQLaLY6Pb9P5pO3s9dHXrvtgydguhx6LIxHgfBTE3GpmK-MGjHJ4YCrPNAjzpkxfqS1lmmI8FCJmHPFWKRCJgaaPSA7uc31Q0LjKAIvyhT3fca1HkguAwOQTEsZaBmyPvG6YU9Uy4mOW3NkScPmHCQ4IMlmQPrk5UZ-1bCB_FHyhdOijZgozjCHLhomn6aHyZvZeDQ5HE-SWZ8869QsAcvG5RqRa1uXMCmD2egQF3r7JHBK85dnJscf3k03Z7v_ctMjciPokhz9x2SnKmr9BFBXJZ86y_oFALAnvA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgBgQseBQQ5WkkBKvMNLGbpOymQKcMnQqhVrCL7MTulClxlYdEWfEJfARfxpdwr_MYioSQYJFFohvn4fs4tu89JuQJFxC0w17i2BQqHvjaCUPmOkGo_RAikhYapwaOp_54zo8-9JtsQqyFqfgh2gk3tAzrr9HAcUJ6_4w19ON6ldrcLIxD_nmyy30YrCAuenfGIIWLnLbACHl3QZsb3saet799_1Zc2sVf_HkLdP4KXW3sGV0jsnnrKuXkdK8s5F785TdCx__6rOvkao1M6UGlSjfIOZV2yJWDRVazc6gOuVjtXLnpkAtDA6hyc5N8n-eKGk1TsJgfX7-BvmaY0k5tBScyZZr1hhaGJuhL0kW5zE9oLDJpUirShIJDyQzoMK036EIZiiUvFMvBrAigavg10LZeGZNRQNjWaOgypblZrvLntMwVfB36bHwTQaE9LM2kYrWAZouTT7fIfPRq9mLs1Ds_OAJGzL7D_HDgCTfRAZcxc2MdD5jkcMBV7qkB50xrN1BKycRHhBiLkPOYsSD2megpdpvspCZVdwgNgwAcKYu56zKuVE9y6WlAZUpKT0mfdYnT9HsU17TouDvHKqoInb0IOyRqO6RLnrXy64oQ5I-ST60atWIiO8U0uqAfvZ8eRi9nw8HocDiKZl3yuNGzCIwbV2xEqkyZw7gMBqR9XOvtEs9qzV-eGR29nUzbs7v_ctMjcmk8O55Ek9fTN_fIZa_JeXTvk50iK9UDAGGFfGjN7CdyEivd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgAwQPXAqIcjUSgqdsTewmKW8rpRtjVBNqNd4iO7G7shBXSSNRnvgJ_Ah-Gb-Ec5zLKBJCgoc8JDpxnPhcPsfnfCbkGRcQtMNe4tgUKh742glD5jpBqP0QIpIWGn8NvJv4BzN--KHfZBNiLUzFD9H-cEPLsP4aDVwtE717zhr6cZlmNjcL45B_kWzz_iDErL7R-3MGKVzktAVGyLsL2tzwNva83c37N-LSNn7izxug81foamPP-AaRTa-rlJOznXIld-IvvxE6_tdr3STXa2RK9ypVukUuqKxDru3N85qdQ3XI5WrnynWHXBoaQJXr2-T7rFDUaJqBxfz4-g30NceUdmorOJEp0yzXdGVogr4km5eL4pTGIpcmoyJLKDiU3IAO03qDLpShWPJCsRzMigCqhk8DbevUmJwCwrZGQxcZLcwiLV7SslC6TNFnY08EhfawNJOKdA7Nrk4_3SGz8evpqwOn3vnBETBj9h3mhwNPuIkOuIyZG-t4wCSHA65yTw04Z1q7gVJKJj4ixFiEnMeMBbHPRE-xu2QrM5m6R2gYBOBIWcxdl3GlepJLTwMqU1J6SvqsS5xm3KO4pkXH3TnSqCJ09iIckKgdkC550covK0KQP0o-t2rUion8DNPogn50MtmPRtPhYLw_HEfTLnna6FkExo0rNiJTpixgXgYT0j6u9XaJZ7XmL8-MDo-PJu3Z_X-56Qm5cjwaR0dvJm8fkKtek_LoPiRbq7xUjwCDreRja2U_Ad52K2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+near-infrared+spectroscopy+to+distinguish+carbon+and+nitrogen+originating+from+char+and+forest-floor+material+in+soils%3A+usefulness+of+a+genetic+algorithm&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Vohland%2C+Michael&rft.au=Michel%2C+Kerstin&rft.au=Ludwig%2C+Bernard&rft.date=2011-10-01&rft.pub=WILEY-VCH+Verlag&rft.issn=1436-8730&rft.eissn=1522-2624&rft.volume=174&rft.issue=5&rft.spage=695&rft.epage=701&rft_id=info:doi/10.1002%2Fjpln.201000226&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DTB9FGBF_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon