The Solvation Structure of Na+ and K+ in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations

Knowledge of the hydration structure of Na+ and K+ in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to pla...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 8; no. 10; pp. 3526 - 3535
Main Authors Rowley, Christopher N, Roux, Benoı̂t
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.10.2012
Online AccessGet full text
ISSN1549-9618
1549-9626
DOI10.1021/ct300091w

Cover

Abstract Knowledge of the hydration structure of Na+ and K+ in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na+ and K+ hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na+ or K+ ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7–5.8 for Na+ and 6.9–7.0 for K+.
AbstractList Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+).Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+).
Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+).
Author Rowley, Christopher N
Roux, Benoı̂t
AuthorAffiliation The University of Chicago
AuthorAffiliation_xml – name: The University of Chicago
Author_xml – sequence: 1
  givenname: Christopher N
  surname: Rowley
  fullname: Rowley, Christopher N
– sequence: 2
  givenname: Benoı̂t
  surname: Roux
  fullname: Roux, Benoı̂t
  email: roux@uchicago.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26593000$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vFDEMhiNURD_gwB9AviCBqqX52JnZHKvy0YoFDlvEMfJkHJpqJmmTTNH-e2bYtgfUi21Zz_tatg_ZXoiBGHst-AfBpTixRXHOtfjzjB2IaqkXupb13mMtVvvsMOdrzpVaSvWC7cu60rPkgG0vrwg2sb_D4mOATUmjLWMiiA6-4zFg6ODrMfgAa387-g5-YaEEH2mKgw_UgUtxgHP_-wrWdEc9YAsXwU9u8C32ZMceJ3wbcPA2w8YPU2MelV-y5w77TK_u8xH7-fnT5dn5Yv3jy8XZ6XqBaiXKwgmrJVeOWtURVnNB0nZWWSm5dNhKZ4W2jcbVEp1S2lWtrWmprG4UNrU6Yu92vjcp3o6Uixl8ttT3GCiO2YimaXijVtWMvrlHx3agztwkP2DamodzTcDJDrAp5pzIGevLv3VKQt8bwc38EPP4kEnx_j_Fg-lT7Nsdizab6zimMN3lCe4v4TGXnw
CitedBy_id crossref_primary_10_1021_acs_jpcc_0c07621
crossref_primary_10_1007_s10876_017_1210_4
crossref_primary_10_1021_acs_jctc_1c00522
crossref_primary_10_1021_jacs_6b07347
crossref_primary_10_1080_08927022_2014_938068
crossref_primary_10_1039_C6CP05714D
crossref_primary_10_1002_qua_26343
crossref_primary_10_1021_acs_jcim_4c01711
crossref_primary_10_1103_PhysRevApplied_23_024009
crossref_primary_10_1021_acs_langmuir_0c02367
crossref_primary_10_1016_j_molliq_2020_114919
crossref_primary_10_1085_jgp_201311049
crossref_primary_10_1021_acs_jpclett_8b02173
crossref_primary_10_3390_computation12040078
crossref_primary_10_3390_polym13183027
crossref_primary_10_1021_ct4005596
crossref_primary_10_1021_jp502922c
crossref_primary_10_1002_chem_202401789
crossref_primary_10_1039_C5CP06313B
crossref_primary_10_1039_C7CP03663A
crossref_primary_10_1021_acs_jctc_8b00557
crossref_primary_10_1021_acs_jpclett_3c00671
crossref_primary_10_1063_1_4943580
crossref_primary_10_3390_app8112145
crossref_primary_10_1021_acs_langmuir_5b00087
crossref_primary_10_1007_s00214_016_1983_9
crossref_primary_10_1016_j_gca_2020_07_007
crossref_primary_10_1088_1367_2630_16_2_025001
crossref_primary_10_1002_cphc_201900389
crossref_primary_10_1063_1_5038010
crossref_primary_10_1016_j_carbon_2024_119531
crossref_primary_10_1021_ct400296w
crossref_primary_10_1021_acs_jpcb_6b08589
crossref_primary_10_1139_cjc_2012_0515
crossref_primary_10_1002_qua_27324
crossref_primary_10_1093_nar_gky812
crossref_primary_10_1021_acs_jctc_9b00778
crossref_primary_10_1063_1_5019874
crossref_primary_10_1016_j_colsurfa_2017_12_009
crossref_primary_10_1016_j_cplett_2018_03_067
crossref_primary_10_1039_C9CP06161D
crossref_primary_10_1111_jace_17283
crossref_primary_10_3389_fchem_2017_00076
crossref_primary_10_1002_anie_201916287
crossref_primary_10_1002_wcms_1656
crossref_primary_10_1002_anie_201805261
crossref_primary_10_1021_acs_jctc_7b00474
crossref_primary_10_1016_j_molliq_2016_11_126
crossref_primary_10_1021_acs_macromol_0c01855
crossref_primary_10_1021_acs_jctc_7b01206
crossref_primary_10_1063_5_0087390
crossref_primary_10_1063_1_4823729
crossref_primary_10_1002_wcms_1255
crossref_primary_10_1021_acs_jctc_0c00932
crossref_primary_10_1021_acs_jpcb_5b09656
crossref_primary_10_1080_00268976_2014_905721
crossref_primary_10_1134_S0022476620120070
crossref_primary_10_1134_S1070363220090169
crossref_primary_10_1016_j_commatsci_2019_109349
crossref_primary_10_1016_j_checat_2021_04_009
crossref_primary_10_1063_1_5089199
crossref_primary_10_1016_j_jelechem_2020_114296
crossref_primary_10_1002_jcc_23839
crossref_primary_10_1021_acs_jctc_9b00947
crossref_primary_10_1002_jcc_23685
crossref_primary_10_1039_c3fd00087g
crossref_primary_10_1063_5_0095932
crossref_primary_10_1002_wcms_1446
crossref_primary_10_1021_acs_jctc_9b00941
crossref_primary_10_1080_08927022_2014_911870
crossref_primary_10_1085_jgp_201912359
crossref_primary_10_3390_liquids2030014
crossref_primary_10_1002_eem2_12238
crossref_primary_10_1021_acs_jctc_7b00964
crossref_primary_10_3390_molecules27092660
crossref_primary_10_1039_C7CP01708A
crossref_primary_10_1063_5_0159341
crossref_primary_10_1063_1_5000799
crossref_primary_10_1021_acs_jctc_8b00729
crossref_primary_10_29235_1561_8323_2021_65_6_692_701
crossref_primary_10_1063_5_0219851
crossref_primary_10_1002_qua_24597
crossref_primary_10_1021_acs_jpcc_1c07266
crossref_primary_10_1021_jp4007944
crossref_primary_10_1002_jcc_26021
crossref_primary_10_1021_acs_jced_2c00521
crossref_primary_10_1063_5_0240275
crossref_primary_10_1016_j_jmgm_2024_108775
crossref_primary_10_1021_acs_jpcb_7b06657
crossref_primary_10_1103_PhysRevLett_120_216001
crossref_primary_10_1021_jacs_0c02394
crossref_primary_10_1063_1_5143746
crossref_primary_10_1002_wcms_1559
crossref_primary_10_1002_jcc_23716
crossref_primary_10_1021_jacs_6b03156
crossref_primary_10_1002_adsu_202300008
crossref_primary_10_1002_wcms_1310
crossref_primary_10_1039_D2CP00162D
crossref_primary_10_1021_ct300260q
crossref_primary_10_1002_qua_25336
crossref_primary_10_1021_acs_accounts_6b00054
crossref_primary_10_1021_jacs_3c02423
crossref_primary_10_1021_ct300722e
crossref_primary_10_1080_08927022_2013_842995
crossref_primary_10_3103_S1541308X23030068
crossref_primary_10_1021_acs_jctc_4c00162
crossref_primary_10_1063_1_4974164
crossref_primary_10_1021_acs_jpcb_4c04100
crossref_primary_10_1126_sciadv_abd2569
crossref_primary_10_1021_acs_jpcb_5b09041
crossref_primary_10_1002_aenm_202300716
crossref_primary_10_1016_j_gca_2019_07_038
crossref_primary_10_1002_ange_201916287
crossref_primary_10_1080_08927022_2015_1132317
crossref_primary_10_1021_acs_cgd_1c00209
crossref_primary_10_1039_C7CP03449K
crossref_primary_10_1039_D0CP02119A
crossref_primary_10_1063_1_4813283
crossref_primary_10_1021_acs_jpcb_2c02247
crossref_primary_10_1039_C8CP01155A
crossref_primary_10_1039_C3CP55239J
crossref_primary_10_1021_acs_jpcb_7b05949
crossref_primary_10_1021_ct401095k
crossref_primary_10_1063_1_4772761
crossref_primary_10_1016_j_bpj_2021_10_009
crossref_primary_10_1021_acs_inorgchem_3c00084
crossref_primary_10_1063_1_4937376
crossref_primary_10_1002_batt_202000161
crossref_primary_10_1021_acs_biochem_7b00016
crossref_primary_10_1021_acs_jctc_5b00499
crossref_primary_10_1002_cphc_202200188
crossref_primary_10_1038_s41563_021_01066_4
crossref_primary_10_1063_1_4935599
crossref_primary_10_1021_acsnano_9b04229
crossref_primary_10_1021_acs_chemrev_5b00644
crossref_primary_10_1140_epjd_e2016_60529_7
crossref_primary_10_1021_acs_jpcb_9b04472
crossref_primary_10_1021_acs_jctc_0c01149
crossref_primary_10_1021_jp506557r
crossref_primary_10_1016_j_jmgm_2018_05_003
crossref_primary_10_1021_acs_jctc_6b00038
crossref_primary_10_1021_acs_jctc_2c00799
crossref_primary_10_1063_1_5089673
crossref_primary_10_1016_j_colsurfa_2022_130641
crossref_primary_10_1016_j_bpj_2022_05_006
crossref_primary_10_3390_molecules23081882
crossref_primary_10_1016_j_chemphys_2014_02_006
crossref_primary_10_1016_j_gca_2021_04_027
crossref_primary_10_3390_molecules20034780
crossref_primary_10_1021_acs_jpclett_1c02086
crossref_primary_10_1063_1_4985919
crossref_primary_10_1016_j_nucengdes_2014_10_019
crossref_primary_10_1021_acs_jpca_2c06690
crossref_primary_10_1002_pld3_275
crossref_primary_10_1021_acs_jctc_3c00171
crossref_primary_10_1039_C9SC06017K
crossref_primary_10_3389_fchem_2018_00275
crossref_primary_10_1021_ct300331f
crossref_primary_10_1080_00319104_2018_1476975
crossref_primary_10_1039_C8CP01282B
crossref_primary_10_1021_acs_jctc_3c01380
crossref_primary_10_1063_1_5124878
crossref_primary_10_1039_D0CP05216G
crossref_primary_10_1016_j_mtcomm_2023_106496
crossref_primary_10_1021_acs_jpca_0c03085
crossref_primary_10_1021_acs_jpcb_2c05674
crossref_primary_10_1021_acs_jctc_9b00180
crossref_primary_10_1021_acs_jctc_9b00182
crossref_primary_10_1021_acs_jpca_8b10453
crossref_primary_10_1039_C5RA11268K
crossref_primary_10_1021_acs_jctc_7b01218
crossref_primary_10_1016_j_ijhydene_2024_02_073
crossref_primary_10_1016_j_cemconcomp_2014_12_005
crossref_primary_10_1002_ange_201805261
crossref_primary_10_1002_jcc_26064
crossref_primary_10_1039_C5CP07136D
crossref_primary_10_1039_C8DT02169D
crossref_primary_10_1039_D1CP00116G
crossref_primary_10_1063_5_0067855
crossref_primary_10_1063_1_4816629
crossref_primary_10_1021_acs_langmuir_0c01287
crossref_primary_10_1002_cphc_201402105
crossref_primary_10_1063_5_0067861
crossref_primary_10_1021_acs_jcim_5b00025
crossref_primary_10_1063_5_0064075
crossref_primary_10_1063_1_4935179
crossref_primary_10_1039_C4RA10987B
crossref_primary_10_1021_acs_jpcc_1c00388
crossref_primary_10_1063_5_0059206
Cites_doi 10.1039/f19878302985
10.1007/978-94-015-7658-1_21
10.1039/B313756B
10.1016/j.bpc.2006.04.009
10.1016/j.cplett.2005.10.135
10.1021/j100384a009
10.1063/1.449246
10.1007/s002140050249
10.1039/b508541a
10.1021/ja037005r
10.1021/ja00007a021
10.1063/1.479418
10.1103/PhysRevA.31.1695
10.1002/jcc.20587
10.1063/1.3436632
10.1007/BF01881023
10.1103/PhysRevLett.78.1396
10.1063/1.3153871
10.1063/1.3369624
10.1002/qua.22299
10.1021/ct700172b
10.1016/S0009-2614(02)00210-5
10.1007/s00214-005-0049-1
10.1021/jp047788i
10.1103/PhysRevB.54.1703
10.1063/1.447334
10.1007/s00214-005-0054-4
10.1007/s002140050269
10.1063/1.445869
10.1021/ar700111a
10.1103/PhysRev.46.618
10.1021/ct800531s
10.1021/jp902584c
10.1021/ct900148e
10.1016/S0378-3812(01)00426-5
10.1021/jp8093462
10.1063/1.1288688
10.1021/ic2018693
10.1021/jp982270y
10.1016/j.bpc.2006.04.018
10.1063/1.466711
10.1016/j.molliq.2010.01.005
10.1063/1.3137054
10.1098/rspa.1938.0173
10.1085/jgp.201010577
10.1063/1.2985613
10.1021/jp0673617
10.1063/1.1520134
10.1098/rsta.2001.0866
10.1016/0021-9991(77)90098-5
10.1021/ct600180x
10.1016/0009-2614(85)85050-8
10.1021/ct6002719
10.1021/ct900576a
10.1021/jp011235f
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ct300091w
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 3535
ExternalDocumentID 26593000
10_1021_ct300091w
g91710232
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a381t-f1c9203feb3dea53febe2cdc3c2202fab2fc19c79a84af339f5bc6e43c973a763
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Thu Jul 10 23:54:31 EDT 2025
Thu Jan 02 22:25:23 EST 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 00:36:42 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-f1c9203feb3dea53febe2cdc3c2202fab2fc19c79a84af339f5bc6e43c973a763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26593000
PQID 1777073856
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1777073856
pubmed_primary_26593000
crossref_citationtrail_10_1021_ct300091w
crossref_primary_10_1021_ct300091w
acs_journals_10_1021_ct300091w
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-09
PublicationDateYYYYMMDD 2012-10-09
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References White J. (ref20/cit20) 2000; 113
Reinhardt P. (ref32/cit32) 2009; 109
Chandler D. (ref2/cit2) 1987
Rempe S. (ref21/cit21) 2001; 183
Azam S. S. (ref27/cit27) 2010; 153
Zhao Y. (ref59/cit59) 2008; 41
Grimme S. (ref56/cit56) 2010
Goedecker S. (ref48/cit48) 1996; 54
Nosé S. (ref49/cit49) 1984; 81
Whitfield T. W. (ref16/cit16) 2007; 3
Aaqvist J. (ref9/cit9) 1990; 94
Perdew J. P. (ref33/cit33) 1997; 78
Glezakou V.-A. (ref7/cit7) 2006; 115
Liu Y. (ref23/cit23) 2010; 132
Schurhammer R. (ref18/cit18) 2001; 105
ref10/cit10
Azam S. S. (ref26/cit26) 2009; 113
Leung K. (ref24/cit24) 2009; 130
Dang L. X. (ref15/cit15) 1991; 113
Weigend F. (ref36/cit36) 1997; 97
Beglov D. (ref11/cit11) 1994; 100
Mähler J. (ref51/cit51) 2012; 51
Kuo I. F. W. (ref53/cit53) 2004; 108
Harder E. (ref62/cit62) 2006; 2
Soper A. K. (ref6/cit6) 2006; 124
Yoo S. (ref54/cit54) 2009; 130
Cramer C. (ref39/cit39) 2004
Woodcock H. L. (ref43/cit43) 2007; 28
Lybrand T. P. (ref14/cit14) 1985; 83
Roux B. (ref55/cit55) 2010; 132
Yu H. (ref57/cit57) 2010; 6
Tongraar A. (ref25/cit25) 1998; 102
Hoover W. G. (ref50/cit50) 1985; 31
Joung I. S. (ref12/cit12) 2009; 113
Ramaniah L. (ref19/cit19) 1999; 111
Zhao Y. (ref34/cit34) 2006; 3
Born M. (ref58/cit58) 1920; 1
Jorgensen W. L. (ref13/cit13) 1983; 79
Weigend F. (ref44/cit44) 2005; 7
Kendall R. A. (ref45/cit45) 1997; 97
Ansell S. (ref4/cit4) 2006; 124
Heyden A. (ref31/cit31) 2007; 111
Das D. (ref42/cit42) 2002; 117
Skipper N. T. (ref8/cit8) 1989; 1
Ryckaert J.-P. (ref46/cit46) 1977; 23
Neilson G. W. (ref5/cit5) 1985; 114
Grossfield A. (ref52/cit52) 2003; 125
Perdew J. P. (ref60/cit60) 2009; 5
Bulo R. E. (ref40/cit40) 2009; 5
Buckingham R. A. (ref61/cit61) 1938; 168
Rogers D. M. (ref29/cit29) 2008; 129
Kerdcharoen T. (ref30/cit30) 2002; 355
Marcus Y. (ref17/cit17) 1987; 83
Møller C. (ref35/cit35) 1934; 46
Rempe S. (ref22/cit22) 2004; 6
ref41/cit41
Neilson G. W. (ref3/cit3) 2001; 359
ref47/cit47
Lamoureux G. (ref38/cit38) 2006; 418
Pratt L. (ref28/cit28) 2006
Roux B. (ref1/cit1) 2011; 137
Rode B. (ref37/cit37) 2006; 115
References_xml – volume: 83
  start-page: 2985
  year: 1987
  ident: ref17/cit17
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/f19878302985
– ident: ref10/cit10
  doi: 10.1007/978-94-015-7658-1_21
– volume: 6
  start-page: 1966
  year: 2004
  ident: ref22/cit22
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B313756B
– volume: 124
  start-page: 180
  year: 2006
  ident: ref6/cit6
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2006.04.009
– volume: 418
  start-page: 245
  year: 2006
  ident: ref38/cit38
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.10.135
– volume: 94
  start-page: 8021
  year: 1990
  ident: ref9/cit9
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100384a009
– volume: 83
  start-page: 2923
  year: 1985
  ident: ref14/cit14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449246
– ident: ref47/cit47
– volume: 97
  start-page: 158
  year: 1997
  ident: ref45/cit45
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140050249
– volume: 7
  start-page: 3297
  year: 2005
  ident: ref44/cit44
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 125
  start-page: 15671
  year: 2003
  ident: ref52/cit52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037005r
– volume: 113
  start-page: 2481
  year: 1991
  ident: ref15/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00007a021
– volume: 111
  start-page: 1587
  year: 1999
  ident: ref19/cit19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479418
– volume: 31
  start-page: 1695
  year: 1985
  ident: ref50/cit50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume-title: Introduction to Modern Statistical Mechanics
  year: 1987
  ident: ref2/cit2
– volume: 28
  start-page: 1485
  year: 2007
  ident: ref43/cit43
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20587
– volume: 132
  start-page: 234101
  year: 2010
  ident: ref55/cit55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3436632
– volume: 1
  start-page: 45
  year: 1920
  ident: ref58/cit58
  publication-title: Z. Phys
  doi: 10.1007/BF01881023
– volume-title: The Potential Distribution Theorem and Models of Molecular Solutions
  year: 2006
  ident: ref28/cit28
– volume: 78
  start-page: 1396
  year: 1997
  ident: ref33/cit33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 130
  start-page: 221102
  year: 2009
  ident: ref54/cit54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3153871
– volume: 132
  start-page: 124503
  year: 2010
  ident: ref23/cit23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3369624
– volume: 109
  start-page: 3259
  year: 2009
  ident: ref32/cit32
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.22299
– volume: 3
  start-page: 2068
  year: 2007
  ident: ref16/cit16
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700172b
– volume: 355
  start-page: 257
  year: 2002
  ident: ref30/cit30
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00210-5
– volume: 115
  start-page: 77
  year: 2006
  ident: ref37/cit37
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0049-1
– volume: 108
  start-page: 12990
  year: 2004
  ident: ref53/cit53
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047788i
– volume: 54
  start-page: 1703
  year: 1996
  ident: ref48/cit48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.1703
– volume: 81
  start-page: 511
  year: 1984
  ident: ref49/cit49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 115
  start-page: 86
  year: 2006
  ident: ref7/cit7
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0054-4
– volume: 97
  start-page: 331
  year: 1997
  ident: ref36/cit36
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140050269
– volume: 79
  start-page: 926
  year: 1983
  ident: ref13/cit13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 1
  start-page: 4141
  year: 1989
  ident: ref8/cit8
  publication-title: J. Phys.: Condens. Matter
– volume: 41
  start-page: 157
  year: 2008
  ident: ref59/cit59
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700111a
– start-page: 132,
  year: 2010
  ident: ref56/cit56
  publication-title: J. Chem. Phys.
– volume: 46
  start-page: 618
  year: 1934
  ident: ref35/cit35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 5
  start-page: 902
  year: 2009
  ident: ref60/cit60
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800531s
– volume: 113
  start-page: 13279
  year: 2009
  ident: ref12/cit12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp902584c
– volume: 5
  start-page: 2212
  year: 2009
  ident: ref40/cit40
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900148e
– volume: 183
  start-page: 121
  year: 2001
  ident: ref21/cit21
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(01)00426-5
– volume-title: Essentials of Computational Chemistry: Theories and Models
  year: 2004
  ident: ref39/cit39
– volume: 113
  start-page: 1827
  year: 2009
  ident: ref26/cit26
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8093462
– volume: 113
  start-page: 4668
  year: 2000
  ident: ref20/cit20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1288688
– volume: 51
  start-page: 425
  year: 2012
  ident: ref51/cit51
  publication-title: Inorg. Chem.
  doi: 10.1021/ic2018693
– volume: 102
  start-page: 10340
  year: 1998
  ident: ref25/cit25
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp982270y
– volume: 124
  start-page: 171
  year: 2006
  ident: ref4/cit4
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2006.04.018
– volume: 100
  start-page: 9050
  year: 1994
  ident: ref11/cit11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466711
– volume: 153
  start-page: 95
  year: 2010
  ident: ref27/cit27
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2010.01.005
– volume: 130
  start-page: 204507
  year: 2009
  ident: ref24/cit24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3137054
– volume: 168
  start-page: 264
  year: 1938
  ident: ref61/cit61
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1938.0173
– volume: 137
  start-page: 415
  year: 2011
  ident: ref1/cit1
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201010577
– volume: 129
  start-page: 134505
  year: 2008
  ident: ref29/cit29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2985613
– volume: 111
  start-page: 2231
  year: 2007
  ident: ref31/cit31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0673617
– volume: 117
  start-page: 10534
  year: 2002
  ident: ref42/cit42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1520134
– volume: 359
  start-page: 1575
  year: 2001
  ident: ref3/cit3
  publication-title: Phil. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.2001.0866
– volume: 23
  start-page: 327
  year: 1977
  ident: ref46/cit46
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 2
  start-page: 1587
  year: 2006
  ident: ref62/cit62
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct600180x
– volume: 114
  start-page: 35
  year: 1985
  ident: ref5/cit5
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)85050-8
– volume: 3
  start-page: 289
  year: 2006
  ident: ref34/cit34
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct6002719
– volume: 6
  start-page: 774
  year: 2010
  ident: ref57/cit57
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900576a
– ident: ref41/cit41
– volume: 105
  start-page: 10700
  year: 2001
  ident: ref18/cit18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011235f
SSID ssj0033423
Score 2.483342
Snippet Knowledge of the hydration structure of Na+ and K+ in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous...
Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3526
Title The Solvation Structure of Na+ and K+ in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations
URI http://dx.doi.org/10.1021/ct300091w
https://www.ncbi.nlm.nih.gov/pubmed/26593000
https://www.proquest.com/docview/1777073856
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dBe2kJbuqVFA_SAhAKJ7cTJcbULouVx2SK4Rc7YllalCbC7QuLXY-exoiqUWw4Tx8pMPDOZme8D-C5VQWFsdZDGGQWCKxEoY0RQhNpy7fxPmvoB59Oz5Ohc_LyML5dg-5kKPov2acZ9IBDdvYJllqSRz7AGw3F33HIPYVeDogoPNRmlHXzQ41u966Hp367nmXiy9iuH72DUTec07SS_9-azYo_u_wVr_N-W38PbNq7EQWMIK7BkylV4Pezo3D6AZ6jDcXXV_ILFcY0bO781WFk8U7uoSo3Huzgp8WRyM59ovHBR6C2O2nYZo9FPoqDvC8ET32mEqsAfvvWowtOOYxdHDcH9FMeTPy0x2PQjnB8e_BoeBS3vQqCc_54FNqKMhdy6PFsbFfsLw0gTJ8ZCZlXBLEUZyUylQlnOMxsXlBjBKZNcuQPrE_TKqjSfASNKSRLxRCgjJNfOIiSPw8TGJhEuU-nDhlNM3n4307wuibMoX7zBPux0OsupRS335BlXT4luLUSvG6iOp4Q2O8XnTgG-OqJKU83do6WUocf2Sfqw1ljEYhmWxJlf4MtL212HNy6iYnW3X_YVek6X5puLWmbFRm21Dyui5no
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoPdBL348tLZ1WPVRCoYkfcXJES9FSdveyoHKLnLEtrYAEyK6Q-PXYTrKlFVW55eA4I8_E8yUz_j5CvkpVYiysjjKRY8SZ4pEyhkdlrC3TLv9kmT_gPJmmo2P-80ScdDQ5_iyMM6JxMzWhiP-bXSD5jgvm8UBy_Yg8DgwoHgYNZ_2uyzyTXeBG5Z5xMsl6FqG7t_oMhM2fGegfsDKkl_1nrU5RMCx0lZzuLBflDt78xdn4MMufk6cdyoTdNixekDVTvSQbw17c7RXxenUwq8_aH7IwCyyyyysDtYWp2gZVaTjchnkF4_nlcq7hl8OkV7DXNc8YDf5cCvguERj7viNQJRz4RqQaJr3iLuy1cvcNzObnnUxY85oc7_84Go6iToUhUi6bLyKbYE5jZt1XtzZK-AtDUSNDSmNqVUktJjnKXGVcWcZyK0pMDWeYS6bc9vWGrFd1Zd4RSDBDichSrgyXTLv4kEzEqRXGeTQTA7LlFrDo3qKmCAVymhSrFRyQb73rCuw4zL2Uxtl9Q7-shl60xB33Dfrc-79wDvC1ElWZeukeLaWMPdNPOiBv28BYTUNTkfsJ3v_P3E9kY3Q0GRfjg-nhJnnisBYNfYD5B7Lu_Go-OjyzKLdCIN8CiTTu5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL78LyKAPigFSlJH7EyRHtsmrpdkFaKnqLnLEtrVqS0uwKiV-PJ48VoCK45eA4I8_Y8zkefx9jr7UpMVbeRpnKMZLCyMg4J6Mytl7YkH-yjC44H8_TgxP54VSd9htFugsTjGhCT017iE-z-sL6nmEgeYsrQZgg-X6d3VBE_UZQaLwYVl5BbHYtP6ok1skkG5iEfn2VshA2v2ehv0DLNsVM77CPG-PaypKz_fWq3Mcff_A2_r_1d9ntHm3Cuy487rFrrrrPbo0HkbcHjHTrYFGfdz9mYdGyya4vHdQe5mYPTGXhaA-WFcyW39ZLC18CNr2ESV9E4yzQ_RSgahGYUf0RmBIOqSCphuNBeRcmnex9A4vl114urHnITqbvP48Pol6NITIhq68in2DOY-HD7ts6o-jBcbQokPOYe1Nyj0mOOjeZNF6I3KsSUycF5lqYsIztsK2qrtxjBglmqBFFKo2TWtgQJ1qoOPXKpTLsX0ZsNwxi0c-mpmgPynlSbEZwxN4M7iuw5zInSY3zq5q-2jS96Ag8rmr0coiBIjiAzkxM5ep1-LTWOibGn3TEHnXBsemGpyqnDp78y9wX7OanybSYHc6PnrLtALl4Ww6YP2Nbwa3ueYA1q3K3jeWfR53xXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Solvation+Structure+of+Na%2B+and+K%2B+in+Liquid+Water+Determined+from+High+Level+ab+Initio+Molecular+Dynamics+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Rowley%2C+Christopher+N&rft.au=Roux%2C+Beno%C4%B1%CC%82t&rft.date=2012-10-09&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=8&rft.issue=10&rft.spage=3526&rft.epage=3535&rft_id=info:doi/10.1021%2Fct300091w&rft.externalDocID=g91710232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon