The Solvation Structure of Na+ and K+ in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations
Knowledge of the hydration structure of Na+ and K+ in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to pla...
Saved in:
Published in | Journal of chemical theory and computation Vol. 8; no. 10; pp. 3526 - 3535 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.10.2012
|
Online Access | Get full text |
ISSN | 1549-9618 1549-9626 |
DOI | 10.1021/ct300091w |
Cover
Abstract | Knowledge of the hydration structure of Na+ and K+ in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na+ and K+ hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na+ or K+ ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7–5.8 for Na+ and 6.9–7.0 for K+. |
---|---|
AbstractList | Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+).Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+). Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+). |
Author | Rowley, Christopher N Roux, Benoı̂t |
AuthorAffiliation | The University of Chicago |
AuthorAffiliation_xml | – name: The University of Chicago |
Author_xml | – sequence: 1 givenname: Christopher N surname: Rowley fullname: Rowley, Christopher N – sequence: 2 givenname: Benoı̂t surname: Roux fullname: Roux, Benoı̂t email: roux@uchicago.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26593000$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1vFDEMhiNURD_gwB9AviCBqqX52JnZHKvy0YoFDlvEMfJkHJpqJmmTTNH-e2bYtgfUi21Zz_tatg_ZXoiBGHst-AfBpTixRXHOtfjzjB2IaqkXupb13mMtVvvsMOdrzpVaSvWC7cu60rPkgG0vrwg2sb_D4mOATUmjLWMiiA6-4zFg6ODrMfgAa387-g5-YaEEH2mKgw_UgUtxgHP_-wrWdEc9YAsXwU9u8C32ZMceJ3wbcPA2w8YPU2MelV-y5w77TK_u8xH7-fnT5dn5Yv3jy8XZ6XqBaiXKwgmrJVeOWtURVnNB0nZWWSm5dNhKZ4W2jcbVEp1S2lWtrWmprG4UNrU6Yu92vjcp3o6Uixl8ttT3GCiO2YimaXijVtWMvrlHx3agztwkP2DamodzTcDJDrAp5pzIGevLv3VKQt8bwc38EPP4kEnx_j_Fg-lT7Nsdizab6zimMN3lCe4v4TGXnw |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_0c07621 crossref_primary_10_1007_s10876_017_1210_4 crossref_primary_10_1021_acs_jctc_1c00522 crossref_primary_10_1021_jacs_6b07347 crossref_primary_10_1080_08927022_2014_938068 crossref_primary_10_1039_C6CP05714D crossref_primary_10_1002_qua_26343 crossref_primary_10_1021_acs_jcim_4c01711 crossref_primary_10_1103_PhysRevApplied_23_024009 crossref_primary_10_1021_acs_langmuir_0c02367 crossref_primary_10_1016_j_molliq_2020_114919 crossref_primary_10_1085_jgp_201311049 crossref_primary_10_1021_acs_jpclett_8b02173 crossref_primary_10_3390_computation12040078 crossref_primary_10_3390_polym13183027 crossref_primary_10_1021_ct4005596 crossref_primary_10_1021_jp502922c crossref_primary_10_1002_chem_202401789 crossref_primary_10_1039_C5CP06313B crossref_primary_10_1039_C7CP03663A crossref_primary_10_1021_acs_jctc_8b00557 crossref_primary_10_1021_acs_jpclett_3c00671 crossref_primary_10_1063_1_4943580 crossref_primary_10_3390_app8112145 crossref_primary_10_1021_acs_langmuir_5b00087 crossref_primary_10_1007_s00214_016_1983_9 crossref_primary_10_1016_j_gca_2020_07_007 crossref_primary_10_1088_1367_2630_16_2_025001 crossref_primary_10_1002_cphc_201900389 crossref_primary_10_1063_1_5038010 crossref_primary_10_1016_j_carbon_2024_119531 crossref_primary_10_1021_ct400296w crossref_primary_10_1021_acs_jpcb_6b08589 crossref_primary_10_1139_cjc_2012_0515 crossref_primary_10_1002_qua_27324 crossref_primary_10_1093_nar_gky812 crossref_primary_10_1021_acs_jctc_9b00778 crossref_primary_10_1063_1_5019874 crossref_primary_10_1016_j_colsurfa_2017_12_009 crossref_primary_10_1016_j_cplett_2018_03_067 crossref_primary_10_1039_C9CP06161D crossref_primary_10_1111_jace_17283 crossref_primary_10_3389_fchem_2017_00076 crossref_primary_10_1002_anie_201916287 crossref_primary_10_1002_wcms_1656 crossref_primary_10_1002_anie_201805261 crossref_primary_10_1021_acs_jctc_7b00474 crossref_primary_10_1016_j_molliq_2016_11_126 crossref_primary_10_1021_acs_macromol_0c01855 crossref_primary_10_1021_acs_jctc_7b01206 crossref_primary_10_1063_5_0087390 crossref_primary_10_1063_1_4823729 crossref_primary_10_1002_wcms_1255 crossref_primary_10_1021_acs_jctc_0c00932 crossref_primary_10_1021_acs_jpcb_5b09656 crossref_primary_10_1080_00268976_2014_905721 crossref_primary_10_1134_S0022476620120070 crossref_primary_10_1134_S1070363220090169 crossref_primary_10_1016_j_commatsci_2019_109349 crossref_primary_10_1016_j_checat_2021_04_009 crossref_primary_10_1063_1_5089199 crossref_primary_10_1016_j_jelechem_2020_114296 crossref_primary_10_1002_jcc_23839 crossref_primary_10_1021_acs_jctc_9b00947 crossref_primary_10_1002_jcc_23685 crossref_primary_10_1039_c3fd00087g crossref_primary_10_1063_5_0095932 crossref_primary_10_1002_wcms_1446 crossref_primary_10_1021_acs_jctc_9b00941 crossref_primary_10_1080_08927022_2014_911870 crossref_primary_10_1085_jgp_201912359 crossref_primary_10_3390_liquids2030014 crossref_primary_10_1002_eem2_12238 crossref_primary_10_1021_acs_jctc_7b00964 crossref_primary_10_3390_molecules27092660 crossref_primary_10_1039_C7CP01708A crossref_primary_10_1063_5_0159341 crossref_primary_10_1063_1_5000799 crossref_primary_10_1021_acs_jctc_8b00729 crossref_primary_10_29235_1561_8323_2021_65_6_692_701 crossref_primary_10_1063_5_0219851 crossref_primary_10_1002_qua_24597 crossref_primary_10_1021_acs_jpcc_1c07266 crossref_primary_10_1021_jp4007944 crossref_primary_10_1002_jcc_26021 crossref_primary_10_1021_acs_jced_2c00521 crossref_primary_10_1063_5_0240275 crossref_primary_10_1016_j_jmgm_2024_108775 crossref_primary_10_1021_acs_jpcb_7b06657 crossref_primary_10_1103_PhysRevLett_120_216001 crossref_primary_10_1021_jacs_0c02394 crossref_primary_10_1063_1_5143746 crossref_primary_10_1002_wcms_1559 crossref_primary_10_1002_jcc_23716 crossref_primary_10_1021_jacs_6b03156 crossref_primary_10_1002_adsu_202300008 crossref_primary_10_1002_wcms_1310 crossref_primary_10_1039_D2CP00162D crossref_primary_10_1021_ct300260q crossref_primary_10_1002_qua_25336 crossref_primary_10_1021_acs_accounts_6b00054 crossref_primary_10_1021_jacs_3c02423 crossref_primary_10_1021_ct300722e crossref_primary_10_1080_08927022_2013_842995 crossref_primary_10_3103_S1541308X23030068 crossref_primary_10_1021_acs_jctc_4c00162 crossref_primary_10_1063_1_4974164 crossref_primary_10_1021_acs_jpcb_4c04100 crossref_primary_10_1126_sciadv_abd2569 crossref_primary_10_1021_acs_jpcb_5b09041 crossref_primary_10_1002_aenm_202300716 crossref_primary_10_1016_j_gca_2019_07_038 crossref_primary_10_1002_ange_201916287 crossref_primary_10_1080_08927022_2015_1132317 crossref_primary_10_1021_acs_cgd_1c00209 crossref_primary_10_1039_C7CP03449K crossref_primary_10_1039_D0CP02119A crossref_primary_10_1063_1_4813283 crossref_primary_10_1021_acs_jpcb_2c02247 crossref_primary_10_1039_C8CP01155A crossref_primary_10_1039_C3CP55239J crossref_primary_10_1021_acs_jpcb_7b05949 crossref_primary_10_1021_ct401095k crossref_primary_10_1063_1_4772761 crossref_primary_10_1016_j_bpj_2021_10_009 crossref_primary_10_1021_acs_inorgchem_3c00084 crossref_primary_10_1063_1_4937376 crossref_primary_10_1002_batt_202000161 crossref_primary_10_1021_acs_biochem_7b00016 crossref_primary_10_1021_acs_jctc_5b00499 crossref_primary_10_1002_cphc_202200188 crossref_primary_10_1038_s41563_021_01066_4 crossref_primary_10_1063_1_4935599 crossref_primary_10_1021_acsnano_9b04229 crossref_primary_10_1021_acs_chemrev_5b00644 crossref_primary_10_1140_epjd_e2016_60529_7 crossref_primary_10_1021_acs_jpcb_9b04472 crossref_primary_10_1021_acs_jctc_0c01149 crossref_primary_10_1021_jp506557r crossref_primary_10_1016_j_jmgm_2018_05_003 crossref_primary_10_1021_acs_jctc_6b00038 crossref_primary_10_1021_acs_jctc_2c00799 crossref_primary_10_1063_1_5089673 crossref_primary_10_1016_j_colsurfa_2022_130641 crossref_primary_10_1016_j_bpj_2022_05_006 crossref_primary_10_3390_molecules23081882 crossref_primary_10_1016_j_chemphys_2014_02_006 crossref_primary_10_1016_j_gca_2021_04_027 crossref_primary_10_3390_molecules20034780 crossref_primary_10_1021_acs_jpclett_1c02086 crossref_primary_10_1063_1_4985919 crossref_primary_10_1016_j_nucengdes_2014_10_019 crossref_primary_10_1021_acs_jpca_2c06690 crossref_primary_10_1002_pld3_275 crossref_primary_10_1021_acs_jctc_3c00171 crossref_primary_10_1039_C9SC06017K crossref_primary_10_3389_fchem_2018_00275 crossref_primary_10_1021_ct300331f crossref_primary_10_1080_00319104_2018_1476975 crossref_primary_10_1039_C8CP01282B crossref_primary_10_1021_acs_jctc_3c01380 crossref_primary_10_1063_1_5124878 crossref_primary_10_1039_D0CP05216G crossref_primary_10_1016_j_mtcomm_2023_106496 crossref_primary_10_1021_acs_jpca_0c03085 crossref_primary_10_1021_acs_jpcb_2c05674 crossref_primary_10_1021_acs_jctc_9b00180 crossref_primary_10_1021_acs_jctc_9b00182 crossref_primary_10_1021_acs_jpca_8b10453 crossref_primary_10_1039_C5RA11268K crossref_primary_10_1021_acs_jctc_7b01218 crossref_primary_10_1016_j_ijhydene_2024_02_073 crossref_primary_10_1016_j_cemconcomp_2014_12_005 crossref_primary_10_1002_ange_201805261 crossref_primary_10_1002_jcc_26064 crossref_primary_10_1039_C5CP07136D crossref_primary_10_1039_C8DT02169D crossref_primary_10_1039_D1CP00116G crossref_primary_10_1063_5_0067855 crossref_primary_10_1063_1_4816629 crossref_primary_10_1021_acs_langmuir_0c01287 crossref_primary_10_1002_cphc_201402105 crossref_primary_10_1063_5_0067861 crossref_primary_10_1021_acs_jcim_5b00025 crossref_primary_10_1063_5_0064075 crossref_primary_10_1063_1_4935179 crossref_primary_10_1039_C4RA10987B crossref_primary_10_1021_acs_jpcc_1c00388 crossref_primary_10_1063_5_0059206 |
Cites_doi | 10.1039/f19878302985 10.1007/978-94-015-7658-1_21 10.1039/B313756B 10.1016/j.bpc.2006.04.009 10.1016/j.cplett.2005.10.135 10.1021/j100384a009 10.1063/1.449246 10.1007/s002140050249 10.1039/b508541a 10.1021/ja037005r 10.1021/ja00007a021 10.1063/1.479418 10.1103/PhysRevA.31.1695 10.1002/jcc.20587 10.1063/1.3436632 10.1007/BF01881023 10.1103/PhysRevLett.78.1396 10.1063/1.3153871 10.1063/1.3369624 10.1002/qua.22299 10.1021/ct700172b 10.1016/S0009-2614(02)00210-5 10.1007/s00214-005-0049-1 10.1021/jp047788i 10.1103/PhysRevB.54.1703 10.1063/1.447334 10.1007/s00214-005-0054-4 10.1007/s002140050269 10.1063/1.445869 10.1021/ar700111a 10.1103/PhysRev.46.618 10.1021/ct800531s 10.1021/jp902584c 10.1021/ct900148e 10.1016/S0378-3812(01)00426-5 10.1021/jp8093462 10.1063/1.1288688 10.1021/ic2018693 10.1021/jp982270y 10.1016/j.bpc.2006.04.018 10.1063/1.466711 10.1016/j.molliq.2010.01.005 10.1063/1.3137054 10.1098/rspa.1938.0173 10.1085/jgp.201010577 10.1063/1.2985613 10.1021/jp0673617 10.1063/1.1520134 10.1098/rsta.2001.0866 10.1016/0021-9991(77)90098-5 10.1021/ct600180x 10.1016/0009-2614(85)85050-8 10.1021/ct6002719 10.1021/ct900576a 10.1021/jp011235f |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ct300091w |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 3535 |
ExternalDocumentID | 26593000 10_1021_ct300091w g91710232 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 J9A JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a381t-f1c9203feb3dea53febe2cdc3c2202fab2fc19c79a84af339f5bc6e43c973a763 |
IEDL.DBID | ACS |
ISSN | 1549-9618 |
IngestDate | Thu Jul 10 23:54:31 EDT 2025 Thu Jan 02 22:25:23 EST 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 00:36:42 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-f1c9203feb3dea53febe2cdc3c2202fab2fc19c79a84af339f5bc6e43c973a763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26593000 |
PQID | 1777073856 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1777073856 pubmed_primary_26593000 crossref_citationtrail_10_1021_ct300091w crossref_primary_10_1021_ct300091w acs_journals_10_1021_ct300091w |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-09 |
PublicationDateYYYYMMDD | 2012-10-09 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | White J. (ref20/cit20) 2000; 113 Reinhardt P. (ref32/cit32) 2009; 109 Chandler D. (ref2/cit2) 1987 Rempe S. (ref21/cit21) 2001; 183 Azam S. S. (ref27/cit27) 2010; 153 Zhao Y. (ref59/cit59) 2008; 41 Grimme S. (ref56/cit56) 2010 Goedecker S. (ref48/cit48) 1996; 54 Nosé S. (ref49/cit49) 1984; 81 Whitfield T. W. (ref16/cit16) 2007; 3 Aaqvist J. (ref9/cit9) 1990; 94 Perdew J. P. (ref33/cit33) 1997; 78 Glezakou V.-A. (ref7/cit7) 2006; 115 Liu Y. (ref23/cit23) 2010; 132 Schurhammer R. (ref18/cit18) 2001; 105 ref10/cit10 Azam S. S. (ref26/cit26) 2009; 113 Leung K. (ref24/cit24) 2009; 130 Dang L. X. (ref15/cit15) 1991; 113 Weigend F. (ref36/cit36) 1997; 97 Beglov D. (ref11/cit11) 1994; 100 Mähler J. (ref51/cit51) 2012; 51 Kuo I. F. W. (ref53/cit53) 2004; 108 Harder E. (ref62/cit62) 2006; 2 Soper A. K. (ref6/cit6) 2006; 124 Yoo S. (ref54/cit54) 2009; 130 Cramer C. (ref39/cit39) 2004 Woodcock H. L. (ref43/cit43) 2007; 28 Lybrand T. P. (ref14/cit14) 1985; 83 Roux B. (ref55/cit55) 2010; 132 Yu H. (ref57/cit57) 2010; 6 Tongraar A. (ref25/cit25) 1998; 102 Hoover W. G. (ref50/cit50) 1985; 31 Joung I. S. (ref12/cit12) 2009; 113 Ramaniah L. (ref19/cit19) 1999; 111 Zhao Y. (ref34/cit34) 2006; 3 Born M. (ref58/cit58) 1920; 1 Jorgensen W. L. (ref13/cit13) 1983; 79 Weigend F. (ref44/cit44) 2005; 7 Kendall R. A. (ref45/cit45) 1997; 97 Ansell S. (ref4/cit4) 2006; 124 Heyden A. (ref31/cit31) 2007; 111 Das D. (ref42/cit42) 2002; 117 Skipper N. T. (ref8/cit8) 1989; 1 Ryckaert J.-P. (ref46/cit46) 1977; 23 Neilson G. W. (ref5/cit5) 1985; 114 Grossfield A. (ref52/cit52) 2003; 125 Perdew J. P. (ref60/cit60) 2009; 5 Bulo R. E. (ref40/cit40) 2009; 5 Buckingham R. A. (ref61/cit61) 1938; 168 Rogers D. M. (ref29/cit29) 2008; 129 Kerdcharoen T. (ref30/cit30) 2002; 355 Marcus Y. (ref17/cit17) 1987; 83 Møller C. (ref35/cit35) 1934; 46 Rempe S. (ref22/cit22) 2004; 6 ref41/cit41 Neilson G. W. (ref3/cit3) 2001; 359 ref47/cit47 Lamoureux G. (ref38/cit38) 2006; 418 Pratt L. (ref28/cit28) 2006 Roux B. (ref1/cit1) 2011; 137 Rode B. (ref37/cit37) 2006; 115 |
References_xml | – volume: 83 start-page: 2985 year: 1987 ident: ref17/cit17 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/f19878302985 – ident: ref10/cit10 doi: 10.1007/978-94-015-7658-1_21 – volume: 6 start-page: 1966 year: 2004 ident: ref22/cit22 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B313756B – volume: 124 start-page: 180 year: 2006 ident: ref6/cit6 publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2006.04.009 – volume: 418 start-page: 245 year: 2006 ident: ref38/cit38 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.10.135 – volume: 94 start-page: 8021 year: 1990 ident: ref9/cit9 publication-title: J. Phys. Chem. doi: 10.1021/j100384a009 – volume: 83 start-page: 2923 year: 1985 ident: ref14/cit14 publication-title: J. Chem. Phys. doi: 10.1063/1.449246 – ident: ref47/cit47 – volume: 97 start-page: 158 year: 1997 ident: ref45/cit45 publication-title: Theor. Chem. Acc. doi: 10.1007/s002140050249 – volume: 7 start-page: 3297 year: 2005 ident: ref44/cit44 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 125 start-page: 15671 year: 2003 ident: ref52/cit52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037005r – volume: 113 start-page: 2481 year: 1991 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00007a021 – volume: 111 start-page: 1587 year: 1999 ident: ref19/cit19 publication-title: J. Chem. Phys. doi: 10.1063/1.479418 – volume: 31 start-page: 1695 year: 1985 ident: ref50/cit50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume-title: Introduction to Modern Statistical Mechanics year: 1987 ident: ref2/cit2 – volume: 28 start-page: 1485 year: 2007 ident: ref43/cit43 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20587 – volume: 132 start-page: 234101 year: 2010 ident: ref55/cit55 publication-title: J. Chem. Phys. doi: 10.1063/1.3436632 – volume: 1 start-page: 45 year: 1920 ident: ref58/cit58 publication-title: Z. Phys doi: 10.1007/BF01881023 – volume-title: The Potential Distribution Theorem and Models of Molecular Solutions year: 2006 ident: ref28/cit28 – volume: 78 start-page: 1396 year: 1997 ident: ref33/cit33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 130 start-page: 221102 year: 2009 ident: ref54/cit54 publication-title: J. Chem. Phys. doi: 10.1063/1.3153871 – volume: 132 start-page: 124503 year: 2010 ident: ref23/cit23 publication-title: J. Chem. Phys. doi: 10.1063/1.3369624 – volume: 109 start-page: 3259 year: 2009 ident: ref32/cit32 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.22299 – volume: 3 start-page: 2068 year: 2007 ident: ref16/cit16 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700172b – volume: 355 start-page: 257 year: 2002 ident: ref30/cit30 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00210-5 – volume: 115 start-page: 77 year: 2006 ident: ref37/cit37 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0049-1 – volume: 108 start-page: 12990 year: 2004 ident: ref53/cit53 publication-title: J. Phys. Chem. B doi: 10.1021/jp047788i – volume: 54 start-page: 1703 year: 1996 ident: ref48/cit48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.1703 – volume: 81 start-page: 511 year: 1984 ident: ref49/cit49 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 115 start-page: 86 year: 2006 ident: ref7/cit7 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0054-4 – volume: 97 start-page: 331 year: 1997 ident: ref36/cit36 publication-title: Theor. Chem. Acc. doi: 10.1007/s002140050269 – volume: 79 start-page: 926 year: 1983 ident: ref13/cit13 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 1 start-page: 4141 year: 1989 ident: ref8/cit8 publication-title: J. Phys.: Condens. Matter – volume: 41 start-page: 157 year: 2008 ident: ref59/cit59 publication-title: Acc. Chem. Res. doi: 10.1021/ar700111a – start-page: 132, year: 2010 ident: ref56/cit56 publication-title: J. Chem. Phys. – volume: 46 start-page: 618 year: 1934 ident: ref35/cit35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.46.618 – volume: 5 start-page: 902 year: 2009 ident: ref60/cit60 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800531s – volume: 113 start-page: 13279 year: 2009 ident: ref12/cit12 publication-title: J. Phys. Chem. B doi: 10.1021/jp902584c – volume: 5 start-page: 2212 year: 2009 ident: ref40/cit40 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900148e – volume: 183 start-page: 121 year: 2001 ident: ref21/cit21 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(01)00426-5 – volume-title: Essentials of Computational Chemistry: Theories and Models year: 2004 ident: ref39/cit39 – volume: 113 start-page: 1827 year: 2009 ident: ref26/cit26 publication-title: J. Phys. Chem. A doi: 10.1021/jp8093462 – volume: 113 start-page: 4668 year: 2000 ident: ref20/cit20 publication-title: J. Chem. Phys. doi: 10.1063/1.1288688 – volume: 51 start-page: 425 year: 2012 ident: ref51/cit51 publication-title: Inorg. Chem. doi: 10.1021/ic2018693 – volume: 102 start-page: 10340 year: 1998 ident: ref25/cit25 publication-title: J. Phys. Chem. A doi: 10.1021/jp982270y – volume: 124 start-page: 171 year: 2006 ident: ref4/cit4 publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2006.04.018 – volume: 100 start-page: 9050 year: 1994 ident: ref11/cit11 publication-title: J. Chem. Phys. doi: 10.1063/1.466711 – volume: 153 start-page: 95 year: 2010 ident: ref27/cit27 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2010.01.005 – volume: 130 start-page: 204507 year: 2009 ident: ref24/cit24 publication-title: J. Chem. Phys. doi: 10.1063/1.3137054 – volume: 168 start-page: 264 year: 1938 ident: ref61/cit61 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1938.0173 – volume: 137 start-page: 415 year: 2011 ident: ref1/cit1 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201010577 – volume: 129 start-page: 134505 year: 2008 ident: ref29/cit29 publication-title: J. Chem. Phys. doi: 10.1063/1.2985613 – volume: 111 start-page: 2231 year: 2007 ident: ref31/cit31 publication-title: J. Phys. Chem. B doi: 10.1021/jp0673617 – volume: 117 start-page: 10534 year: 2002 ident: ref42/cit42 publication-title: J. Chem. Phys. doi: 10.1063/1.1520134 – volume: 359 start-page: 1575 year: 2001 ident: ref3/cit3 publication-title: Phil. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.2001.0866 – volume: 23 start-page: 327 year: 1977 ident: ref46/cit46 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 2 start-page: 1587 year: 2006 ident: ref62/cit62 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct600180x – volume: 114 start-page: 35 year: 1985 ident: ref5/cit5 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)85050-8 – volume: 3 start-page: 289 year: 2006 ident: ref34/cit34 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct6002719 – volume: 6 start-page: 774 year: 2010 ident: ref57/cit57 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900576a – ident: ref41/cit41 – volume: 105 start-page: 10700 year: 2001 ident: ref18/cit18 publication-title: J. Phys. Chem. B doi: 10.1021/jp011235f |
SSID | ssj0033423 |
Score | 2.483342 |
Snippet | Knowledge of the hydration structure of Na+ and K+ in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous... Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3526 |
Title | The Solvation Structure of Na+ and K+ in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations |
URI | http://dx.doi.org/10.1021/ct300091w https://www.ncbi.nlm.nih.gov/pubmed/26593000 https://www.proquest.com/docview/1777073856 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dBe2kJbuqVFA_SAhAKJ7cTJcbULouVx2SK4Rc7YllalCbC7QuLXY-exoiqUWw4Tx8pMPDOZme8D-C5VQWFsdZDGGQWCKxEoY0RQhNpy7fxPmvoB59Oz5Ohc_LyML5dg-5kKPov2acZ9IBDdvYJllqSRz7AGw3F33HIPYVeDogoPNRmlHXzQ41u966Hp367nmXiy9iuH72DUTec07SS_9-azYo_u_wVr_N-W38PbNq7EQWMIK7BkylV4Pezo3D6AZ6jDcXXV_ILFcY0bO781WFk8U7uoSo3Huzgp8WRyM59ovHBR6C2O2nYZo9FPoqDvC8ET32mEqsAfvvWowtOOYxdHDcH9FMeTPy0x2PQjnB8e_BoeBS3vQqCc_54FNqKMhdy6PFsbFfsLw0gTJ8ZCZlXBLEUZyUylQlnOMxsXlBjBKZNcuQPrE_TKqjSfASNKSRLxRCgjJNfOIiSPw8TGJhEuU-nDhlNM3n4307wuibMoX7zBPux0OsupRS335BlXT4luLUSvG6iOp4Q2O8XnTgG-OqJKU83do6WUocf2Sfqw1ljEYhmWxJlf4MtL212HNy6iYnW3X_YVek6X5puLWmbFRm21Dyui5no |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoPdBL348tLZ1WPVRCoYkfcXJES9FSdveyoHKLnLEtrYAEyK6Q-PXYTrKlFVW55eA4I8_E8yUz_j5CvkpVYiysjjKRY8SZ4pEyhkdlrC3TLv9kmT_gPJmmo2P-80ScdDQ5_iyMM6JxMzWhiP-bXSD5jgvm8UBy_Yg8DgwoHgYNZ_2uyzyTXeBG5Z5xMsl6FqG7t_oMhM2fGegfsDKkl_1nrU5RMCx0lZzuLBflDt78xdn4MMufk6cdyoTdNixekDVTvSQbw17c7RXxenUwq8_aH7IwCyyyyysDtYWp2gZVaTjchnkF4_nlcq7hl8OkV7DXNc8YDf5cCvguERj7viNQJRz4RqQaJr3iLuy1cvcNzObnnUxY85oc7_84Go6iToUhUi6bLyKbYE5jZt1XtzZK-AtDUSNDSmNqVUktJjnKXGVcWcZyK0pMDWeYS6bc9vWGrFd1Zd4RSDBDichSrgyXTLv4kEzEqRXGeTQTA7LlFrDo3qKmCAVymhSrFRyQb73rCuw4zL2Uxtl9Q7-shl60xB33Dfrc-79wDvC1ElWZeukeLaWMPdNPOiBv28BYTUNTkfsJ3v_P3E9kY3Q0GRfjg-nhJnnisBYNfYD5B7Lu_Go-OjyzKLdCIN8CiTTu5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL78LyKAPigFSlJH7EyRHtsmrpdkFaKnqLnLEtrVqS0uwKiV-PJ48VoCK45eA4I8_Y8zkefx9jr7UpMVbeRpnKMZLCyMg4J6Mytl7YkH-yjC44H8_TgxP54VSd9htFugsTjGhCT017iE-z-sL6nmEgeYsrQZgg-X6d3VBE_UZQaLwYVl5BbHYtP6ok1skkG5iEfn2VshA2v2ehv0DLNsVM77CPG-PaypKz_fWq3Mcff_A2_r_1d9ntHm3Cuy487rFrrrrPbo0HkbcHjHTrYFGfdz9mYdGyya4vHdQe5mYPTGXhaA-WFcyW39ZLC18CNr2ESV9E4yzQ_RSgahGYUf0RmBIOqSCphuNBeRcmnex9A4vl114urHnITqbvP48Pol6NITIhq68in2DOY-HD7ts6o-jBcbQokPOYe1Nyj0mOOjeZNF6I3KsSUycF5lqYsIztsK2qrtxjBglmqBFFKo2TWtgQJ1qoOPXKpTLsX0ZsNwxi0c-mpmgPynlSbEZwxN4M7iuw5zInSY3zq5q-2jS96Ag8rmr0coiBIjiAzkxM5ep1-LTWOibGn3TEHnXBsemGpyqnDp78y9wX7OanybSYHc6PnrLtALl4Ww6YP2Nbwa3ueYA1q3K3jeWfR53xXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Solvation+Structure+of+Na%2B+and+K%2B+in+Liquid+Water+Determined+from+High+Level+ab+Initio+Molecular+Dynamics+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Rowley%2C+Christopher+N&rft.au=Roux%2C+Beno%C4%B1%CC%82t&rft.date=2012-10-09&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=8&rft.issue=10&rft.spage=3526&rft.epage=3535&rft_id=info:doi/10.1021%2Fct300091w&rft.externalDocID=g91710232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |