Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm

The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that p...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 6; no. 2; pp. 359 - 369
Main Authors Wang, Bo, Truhlar, Donald G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.02.2010
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
DOI10.1021/ct900366m

Cover

Abstract The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that passes through a covalent bond, especially a polar covalent bond. In this study, we develop a new algorithm to treat such boundaries; the new method is called the balanced redistributed charge (balanced RC or BRC) scheme with a tuned fluorine link atom. The MM point charge on the MM boundary atom is modified to conserve the total charge of the entire system, and the modified charge is redistributed to the midpoints of the bonds between an MM boundary atom and its neighboring MM atoms. A pseudopotential is added to the fluorine link atom to reproduce the partial charge of the uncapped portion of the QM subsystem. We select proton affinities as the property used to validate the new method because the energy change associated with the addition of an entire charge (proton) to the QM system is very sensitive to the treatment of electrostatics at the boundary; we apply the new method to calculate proton affinities of 25 molecules with 13 different kinds of bonds being cut. The average proton affinity in the test set is 373 kcal/mol, and the test set provides a more challenging test than those usually used for testing QM/MM methods. For this challenging test set, common unbalanced schemes give a mean unsigned error (MUE) of 15−21 kcal/mol for H link atoms or 16−24 kcal/mol for F link atoms, much larger than the 5 kcal/mol obtained by simply omitting the MM region with either kind of link atom. Balancing the charges reduces the error to 5−7 kcal/mol for H link atoms and 4−6 kcal/mol for F link atoms. Balancing the charges and also tuning an F link atom lowers the MUE to 1.3−4 kcal/mol, with the best result for the balanced RC scheme. We conclude that properly tuning the link atom and correctly treating the point charges near the QM/MM boundary significantly improves the accuracy of the calculated proton affinities.
AbstractList The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that passes through a covalent bond, especially a polar covalent bond. In this study, we develop a new algorithm to treat such boundaries; the new method is called the balanced redistributed charge (balanced RC or BRC) scheme with a tuned fluorine link atom. The MM point charge on the MM boundary atom is modified to conserve the total charge of the entire system, and the modified charge is redistributed to the midpoints of the bonds between an MM boundary atom and its neighboring MM atoms. A pseudopotential is added to the fluorine link atom to reproduce the partial charge of the uncapped portion of the QM subsystem. We select proton affinities as the property used to validate the new method because the energy change associated with the addition of an entire charge (proton) to the QM system is very sensitive to the treatment of electrostatics at the boundary; we apply the new method to calculate proton affinities of 25 molecules with 13 different kinds of bonds being cut. The average proton affinity in the test set is 373 kcal/mol, and the test set provides a more challenging test than those usually used for testing QM/MM methods. For this challenging test set, common unbalanced schemes give a mean unsigned error (MUE) of 15-21 kcal/mol for H link atoms or 16-24 kcal/mol for F link atoms, much larger than the 5 kcal/mol obtained by simply omitting the MM region with either kind of link atom. Balancing the charges reduces the error to 5-7 kcal/mol for H link atoms and 4-6 kcal/mol for F link atoms. Balancing the charges and also tuning an F link atom lowers the MUE to 1.3-4 kcal/mol, with the best result for the balanced RC scheme. We conclude that properly tuning the link atom and correctly treating the point charges near the QM/MM boundary significantly improves the accuracy of the calculated proton affinities.
The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that passes through a covalent bond, especially a polar covalent bond. In this study, we develop a new algorithm to treat such boundaries; the new method is called the balanced redistributed charge (balanced RC or BRC) scheme with a tuned fluorine link atom. The MM point charge on the MM boundary atom is modified to conserve the total charge of the entire system, and the modified charge is redistributed to the midpoints of the bonds between an MM boundary atom and its neighboring MM atoms. A pseudopotential is added to the fluorine link atom to reproduce the partial charge of the uncapped portion of the QM subsystem. We select proton affinities as the property used to validate the new method because the energy change associated with the addition of an entire charge (proton) to the QM system is very sensitive to the treatment of electrostatics at the boundary; we apply the new method to calculate proton affinities of 25 molecules with 13 different kinds of bonds being cut. The average proton affinity in the test set is 373 kcal/mol, and the test set provides a more challenging test than those usually used for testing QM/MM methods. For this challenging test set, common unbalanced schemes give a mean unsigned error (MUE) of 15−21 kcal/mol for H link atoms or 16−24 kcal/mol for F link atoms, much larger than the 5 kcal/mol obtained by simply omitting the MM region with either kind of link atom. Balancing the charges reduces the error to 5−7 kcal/mol for H link atoms and 4−6 kcal/mol for F link atoms. Balancing the charges and also tuning an F link atom lowers the MUE to 1.3−4 kcal/mol, with the best result for the balanced RC scheme. We conclude that properly tuning the link atom and correctly treating the point charges near the QM/MM boundary significantly improves the accuracy of the calculated proton affinities.
Author Truhlar, Donald G
Wang, Bo
Author_xml – sequence: 1
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
– sequence: 2
  givenname: Donald G
  surname: Truhlar
  fullname: Truhlar, Donald G
  email: truhlar@umn.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26617295$$D View this record in MEDLINE/PubMed
BookMark eNpt0Utv1DAQAGALFdEHHPgDyBckOITaTtYPbiUqD6mr0lLOkeNMdl0lduvHoT-Ff4ujLStU9eTHfDO2Zo7RgfMOEHpLySdKGD01SRFScz6_QEd01ahKccYP9nsqD9FxjLfF1A2rX6FDxjkVTK2O0J_Wz711MOCrrF3KM16D2WpnjZ6wdgNe-wlMnnT4P7CGtPVDxKMPuNXTEk_WbfBPn8AlW8S5g7B5wL9yGLWB-Bnf5OWRpeIXPWlnyuEaBhtTsH1OMFTtVocN4LNp44NN2_k1ejnqKcKbx_UE_f56ftN-ry4uv_1ozy4qXUuaqp7wWhKmhGmEkCsQPQNluGwa1hPGpdB8rAc1KgAzQEOUYFIKPqx4uR-1qE_Qh13du-DvM8TUzTYamMonwefYUVHLRpKmWei7R5r7GYbuLthZh4fuXzsL-LgDJvgYA4x7Qkm3jKrbj6rY0yfW2FTa6F0K2k7PZrzfZWgTu1ufgyt9ecb9Be_Mox0
CitedBy_id crossref_primary_10_1021_acs_jctc_0c00153
crossref_primary_10_1021_ct2005209
crossref_primary_10_1021_jp507983u
crossref_primary_10_1016_j_cplett_2011_12_004
crossref_primary_10_1039_D0CP02855J
crossref_primary_10_1007_s00214_012_1277_9
crossref_primary_10_1371_journal_pone_0018868
crossref_primary_10_1021_acs_chemrev_0c00148
crossref_primary_10_1039_C8CP03871F
crossref_primary_10_1021_ar500068a
crossref_primary_10_1002_cmtd_202100012
crossref_primary_10_1039_c0cp02850a
crossref_primary_10_1002_eem2_12051
crossref_primary_10_1021_acs_jpcb_6b07814
crossref_primary_10_1021_jp404292t
crossref_primary_10_1021_acs_jctc_2c00584
crossref_primary_10_1021_acs_jctc_3c00497
crossref_primary_10_1063_5_0153656
crossref_primary_10_1021_cr300461d
crossref_primary_10_1007_s00214_011_1036_3
crossref_primary_10_1021_acs_jctc_4c00201
crossref_primary_10_1021_acs_jpcb_1c02328
crossref_primary_10_1021_acs_jctc_6b01049
crossref_primary_10_1021_acs_jcim_2c01071
crossref_primary_10_1039_C4CP01572J
crossref_primary_10_1021_ct400903n
crossref_primary_10_1039_D3MA00518F
crossref_primary_10_1021_ct300845q
crossref_primary_10_1039_C7CP06751H
crossref_primary_10_1002_jcc_23362
crossref_primary_10_1080_08927022_2014_911870
crossref_primary_10_1021_acs_jcim_2c01311
crossref_primary_10_1088_2516_1075_ac8c73
crossref_primary_10_1021_ar300278j
crossref_primary_10_1063_5_0221974
crossref_primary_10_1021_ct100530r
crossref_primary_10_1063_5_0219851
crossref_primary_10_1021_jacs_8b07456
crossref_primary_10_1063_1_4827020
crossref_primary_10_1021_ct300935m
crossref_primary_10_1002_wcms_85
crossref_primary_10_1021_cr5004419
crossref_primary_10_1021_acs_jctc_3c01123
crossref_primary_10_1016_j_cpc_2023_108987
crossref_primary_10_1039_C8RE00213D
crossref_primary_10_1063_1_4825402
crossref_primary_10_1021_acscentsci_7b00500
crossref_primary_10_1021_acs_jctc_9b00274
crossref_primary_10_3390_molecules23061309
Cites_doi 10.1021/jp9809890
10.1002/jcc.20297
10.1016/S0166-1280(98)00475-8
10.1063/1.1520134
10.1016/0009-2614(90)85396-T
10.1146/annurev.physchem.59.032607.093618
10.1103/RevModPhys.71.1267
10.1002/jcc.540160911
10.1002/anie.200802019
10.1002/jcc.20857
10.1016/j.cbpa.2007.01.684
10.1016/j.sbi.2004.03.008
10.1146/annurev.physchem.53.091301.150114
10.1002/jcc.540150303
10.1021/ja808927h
10.1146/annurev.physchem.55.091602.094410
10.1007/s00214-006-0143-z
10.1007/s00214-002-0413-3
10.1063/1.1477182
10.1063/1.1839857
10.1021/jp991771w
10.1002/jcc.20291
10.1063/1.1689633
10.1007/s002140000247
10.1007/s00214-005-0008-x
10.1021/jp0446332
10.1021/jp026742r
10.1007/s00214-007-0310-x
10.1063/1.478083
10.1002/9780470125847.ch3
10.1016/S1359-6446(05)03611-1
10.1021/jp9536514
10.1116/1.571046
10.2533/000942902777680865
10.1021/jp0442347
10.1063/1.2994288
10.1021/jp036755k
10.1039/a701790a
10.1021/ct7001607
10.1007/s002140000138
10.2533/000942905777676128
10.1063/1.448263
10.1002/jcc.540070604
10.1021/jp056361o
10.1016/S0166-1280(03)00285-9
10.1063/1.1829051
10.1021/jp9924124
10.1021/ar700111a
10.1063/1.1834899
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ct900366m
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Combined QM/MM Methods
EISSN 1549-9626
EndPage 369
ExternalDocumentID 26617295
10_1021_ct900366m
a037522385
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a381t-b06380297c47785e7b2e9c68442b02687a6f3d9f9eecde409728876d566f3fa73
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Fri Jul 11 16:55:40 EDT 2025
Thu Jan 02 22:23:38 EST 2025
Tue Jul 01 00:36:38 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-b06380297c47785e7b2e9c68442b02687a6f3d9f9eecde409728876d566f3fa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26617295
PQID 1738480447
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1738480447
pubmed_primary_26617295
crossref_primary_10_1021_ct900366m
crossref_citationtrail_10_1021_ct900366m
acs_journals_10_1021_ct900366m
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-09
PublicationDateYYYYMMDD 2010-02-09
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Maseras F. (ref56/cit56) 1995; 16
Walker R. C. (ref43/cit43) 2008; 29
Bakowies D. (ref25/cit25) 1996; 100
Colombo M. C. (ref6/cit6) 2002; 56
Zhao Y. (ref54/cit54) 2008; 41
Moret M.-E. (ref13/cit13) 2005; 59
Nasluzov V. A. (ref31/cit31) 2003; 107
Friesner R. A. (ref12/cit12) 2005; 56
Nicoll R. M. (ref5/cit5) 2001; 106
Parks J. M. (ref35/cit35) 2008; 129
ref8/cit8
von Lilienfeld O. A. (ref40/cit40) 2005; 122
DiLabio G. A. (ref39/cit39) 2005; 122
ref48/cit48
Case D. A. (ref46/cit46) 2008
Dapprich S. (ref57/cit57) 1999; 461
Das D. (ref45/cit45) 2002; 117
Senn H. M. (ref23/cit23) 2009; 48
Hu H. (ref21/cit21) 2008; 59
Riccardi D. (ref17/cit17) 2006; 110
Sherwood P. (ref44/cit44) 1997; 106
ref49/cit49
Gao J. (ref2/cit2) 1996; 7
Senn H. M. (ref19/cit19) 2007; 11
Lin H. (ref42/cit42) 2005; 109
Mulholland A. J. (ref14/cit14) 2005; 10
Zhang Y. (ref18/cit18) 2006; 116
Singh U. C. (ref24/cit24) 1986; 7
Reuter N. (ref3/cit3) 2000; 104
Spoel D. V. D. (ref16/cit16) 2005; 26
Pu J. (ref28/cit28) 2004; 108
Alary F. (ref36/cit36) 2000; 104
Hammes-Schiffer S. (ref11/cit11) 2004; 14
Théry V. (ref26/cit26) 1994; 15
Zhang Y. (ref34/cit34) 2005; 122
Zhao Y. (ref53/cit53) 2008; 120
Sherwood P. (ref9/cit9) 2003; 632
ref51/cit51
Amara P. (ref10/cit10) 2003; 109
Pacios L. F. (ref50/cit50) 1985; 82
Redondo A. (ref29/cit29) 1981; 19
Zhang Y. (ref33/cit33) 1999; 110
Moon S. (ref38/cit38) 2004; 120
Jorgensen W. L. (ref15/cit15) 2005; 26
Antes I. (ref32/cit32) 1999; 103
Gao J. (ref27/cit27) 1998; 102
Gao J. (ref7/cit7) 2002; 53
ref22/cit22
Lin H. (ref20/cit20) 2007; 117
ref4/cit4
König P. H. (ref47/cit47) 2005; 109
Koga N. (ref30/cit30) 1990; 172
DiLabio G. A. (ref37/cit37) 2002; 116
Olson R. M. (ref55/cit55) 2007; 3
Pople J. A. (ref41/cit41) 1999; 71
Ponder J. W. (ref52/cit52) 2004
Truhlar D. G. (ref1/cit1) 2008; 130
References_xml – volume: 102
  start-page: 4714
  year: 1998
  ident: ref27/cit27
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9809890
– volume: 26
  start-page: 1689
  year: 2005
  ident: ref15/cit15
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20297
– volume: 461
  start-page: 1
  year: 1999
  ident: ref57/cit57
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/S0166-1280(98)00475-8
– volume: 117
  start-page: 10534
  year: 2002
  ident: ref45/cit45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1520134
– volume-title: AMBER 10
  year: 2008
  ident: ref46/cit46
– volume: 172
  start-page: 243
  year: 1990
  ident: ref30/cit30
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)85396-T
– ident: ref4/cit4
– volume: 59
  start-page: 573
  year: 2008
  ident: ref21/cit21
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093618
– volume: 71
  start-page: 1267
  year: 1999
  ident: ref41/cit41
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.1267
– volume: 16
  start-page: 1170
  year: 1995
  ident: ref56/cit56
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540160911
– volume: 48
  start-page: 1198
  year: 2009
  ident: ref23/cit23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802019
– volume: 29
  start-page: 1019
  year: 2008
  ident: ref43/cit43
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20857
– volume: 11
  start-page: 182
  year: 2007
  ident: ref19/cit19
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2007.01.684
– ident: ref22/cit22
– volume: 14
  start-page: 192
  year: 2004
  ident: ref11/cit11
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2004.03.008
– volume: 53
  start-page: 467
  year: 2002
  ident: ref7/cit7
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.53.091301.150114
– ident: ref8/cit8
– volume: 15
  start-page: 269
  year: 1994
  ident: ref26/cit26
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540150303
– volume: 130
  start-page: 16824
  year: 2008
  ident: ref1/cit1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808927h
– volume: 56
  start-page: 389
  year: 2005
  ident: ref12/cit12
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.55.091602.094410
– volume: 117
  start-page: 185
  year: 2007
  ident: ref20/cit20
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-006-0143-z
– ident: ref51/cit51
– volume: 109
  start-page: 43
  year: 2003
  ident: ref10/cit10
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-002-0413-3
– volume: 116
  start-page: 9578
  year: 2002
  ident: ref37/cit37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1477182
– volume: 122
  start-page: 044708
  year: 2005
  ident: ref39/cit39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1839857
– volume: 103
  start-page: 9290
  year: 1999
  ident: ref32/cit32
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp991771w
– volume: 26
  start-page: 1701
  year: 2005
  ident: ref16/cit16
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– volume-title: TINKER
  year: 2004
  ident: ref52/cit52
– ident: ref49/cit49
– volume: 120
  start-page: 9080
  year: 2004
  ident: ref38/cit38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1689633
– volume: 106
  start-page: 105
  year: 2001
  ident: ref5/cit5
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140000247
– volume: 116
  start-page: 43
  year: 2006
  ident: ref18/cit18
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0008-x
– volume: 109
  start-page: 3991
  year: 2005
  ident: ref42/cit42
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0446332
– ident: ref48/cit48
– volume: 107
  start-page: 2228
  year: 2003
  ident: ref31/cit31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026742r
– volume: 120
  start-page: 215
  year: 2008
  ident: ref53/cit53
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 110
  start-page: 46
  year: 1999
  ident: ref33/cit33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478083
– volume: 7
  start-page: 119
  year: 1996
  ident: ref2/cit2
  publication-title: Rev. Comp. Chem.
  doi: 10.1002/9780470125847.ch3
– volume: 10
  start-page: 1393
  year: 2005
  ident: ref14/cit14
  publication-title: Drug Discovery Today
  doi: 10.1016/S1359-6446(05)03611-1
– volume: 100
  start-page: 10580
  year: 1996
  ident: ref25/cit25
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9536514
– volume: 19
  start-page: 498
  year: 1981
  ident: ref29/cit29
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.571046
– volume: 56
  start-page: 13
  year: 2002
  ident: ref6/cit6
  publication-title: Chimia
  doi: 10.2533/000942902777680865
– volume: 109
  start-page: 9082
  year: 2005
  ident: ref47/cit47
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0442347
– volume: 129
  start-page: 154106
  year: 2008
  ident: ref35/cit35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2994288
– volume: 108
  start-page: 632
  year: 2004
  ident: ref28/cit28
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp036755k
– volume: 106
  start-page: 79
  year: 1997
  ident: ref44/cit44
  publication-title: Faraday Discuss.
  doi: 10.1039/a701790a
– volume: 3
  start-page: 2046
  year: 2007
  ident: ref55/cit55
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct7001607
– volume: 104
  start-page: 174
  year: 2000
  ident: ref36/cit36
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140000138
– volume: 59
  start-page: 493
  year: 2005
  ident: ref13/cit13
  publication-title: Chimia
  doi: 10.2533/000942905777676128
– volume: 82
  start-page: 2664
  year: 1985
  ident: ref50/cit50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448263
– volume: 7
  start-page: 718
  year: 1986
  ident: ref24/cit24
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540070604
– volume: 110
  start-page: 6458
  year: 2006
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp056361o
– volume: 632
  start-page: 1
  year: 2003
  ident: ref9/cit9
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/S0166-1280(03)00285-9
– volume: 122
  start-page: 014113
  year: 2005
  ident: ref40/cit40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1829051
– volume: 104
  start-page: 1720
  year: 2000
  ident: ref3/cit3
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9924124
– volume: 41
  start-page: 157
  year: 2008
  ident: ref54/cit54
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700111a
– volume: 122
  start-page: 024114
  year: 2005
  ident: ref34/cit34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1834899
SSID ssj0033423
Score 2.1918824
Snippet The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 359
SubjectTerms Quantum Electronic Structure
Title Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm
URI http://dx.doi.org/10.1021/ct900366m
https://www.ncbi.nlm.nih.gov/pubmed/26617295
https://www.proquest.com/docview/1738480447
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoHNpLoS-6LUXu49CLYWM7TtLbdgtClbZqC0jcIj8mC2I3W-0mF_4J_5aZZLOiKtBjlIkdecaeGc_jY-yT18ZlmbYCTKKEdq4vbBEZoQKoCDJj4-YecvTDHJ3q72fx2Rr7eE8EX0b7vqLLNmOmj9iGNGlEHtZgeNwdt4pa2DVNUTW1mozSrn3Q7U9J9fjF36rnHnuy0SuHm-xbV53TppNc7tWV2_NX_zZrfOiXt9jTpV3JB60gPGNrUD5nj4cdnNsLdo07H71gCPxXjatZT_kIqOqXmMRtGfioA8q9_WLUAEwvOJq2fGgnvgH7Ksf856yiNCOkOGiKB_lxPS8ou-sLP6lpEhrxK6VNenz4TcW_LbQWBEER_jHwwWQ8m19U59OX7PTw4GR4JJa4DMKifq-EIzOHQK-8TpI0hsRJyLxJtZYOXbo0saZQISsyAB-AGmpJPMpMQMuxUIVN1Cu2Xs5KeM24VYULGl0uoIhiMFYGadFhj4sUD45Y9tguMi5f7qtF3oTMZZSvVrjHPnc8zf2yqzmBa0zuIv2wIv3TtvK4i-h9Jxg5MoiiJ7aEWY1TJyrVaV_rpMe2W4lZDUNWDnop8Zv__e5b9qRNP5Cin-2w9Wpewzu0aiq320j1DSdP8X0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqFR4GyPIpBHLi43cSOk_RWVq0W2lRAt1JvkV_ZVt3Nok1y4Z_wbzvjJNsWFcExysS2bMcz45n5PkI-GiF1mgrFnIw5E1oPmSoCybh1PHCpVJG_h8yO5fhUfD2LzjqYHKyFgUFU0FLlg_jX6ALBjqnxzk3K-X3ywCOgoBk0OulPXY5Idh4bVSDiZJD0KEI3P0UNZKrbGugvZqVXLwePW54iPzCfVXK53dR62_z6A7Px_0b-hDzqrEy6126Lp-SeKzfI-qgnd3tGfsM5AD6xs_R7A3PbzGnmsAYYl4yq0tKsp829-SLzdNMVBUOXjtTMeOqvckq_LWpMOgKJfV9KSE-aZYG5Xrt00mAn2OJnTKI08PADS4Fboi1nGcb7p47uzaaL5UV9Pn9OTg_2J6Mx61gamAJtXzONRg9SYBkRx0nkYh261MhEiFCDg5fEShbcpkXqnLEO4bVCONikBTuy4IWK-QuyVi5K95JQxQttBThgDuOLVqrQhgrc96hI4BiJwgHZggnOu7-syn0APQzy1QwPyKd-aXPTYZwj1cbsLtEPK9GfLbDHXULv-_2RwwJhLEWVbtFA1zFPRDIUIh6QzXbjrJpBmwd8lujVv4b7jqyPJ9lRfvTl-PA1edgmJoRsmL4ha_WycW_B3qn1lt_oV7Fu-eg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNBLy5vlUQziwMXtJnachFtZuiqPLYW2Um-Rn1vU3Wy1SS78E_5tZ5xkVVARHKNMHMsez8Mz8w0hb4yQOs-FYk6mnAmth0z5SDJuHY9cLlUS7iEnB3L_RHw6TU47RxFrYWASFYxUhSA-nuoL6zuEgWjH1HjvJuX8JrmVIPQbmkKjo17yckSzC_ioAlEno6xHErr6KWohU_2uhf5iWgYVM94kX1eTC5kl59tNrbfNzz9wG_9_9nfJRmdt0t2WPe6RG668T-6M-iZvD8gvkAfgGztLvzWwxs2cThzWAuPWUVVaOunb5159MQltpysKBi8dqZkJLcDKKT1c1Jh8BBR7oaSQHjVLjzlf7-hxgz_BEd9jMqWBh-9YEtw23HKWYdx_6ujubLpY_qjP5g_JyXjveLTPum4NTIHWr5lG4wdbYRmRplniUh273MhMiFiDo5elSnpuc587Z6xDmK0YBJy0YE967lXKH5G1clG6J4Qq7rUV4Ig5jDNaqWIbK3DjE5-BOEniAdmCRS6601YVIZAeR8VqhQfkbb-9hemwzrHlxuw60tcr0osW4OM6olc9jxSwQRhTUaVbNPDrlGciGwqRDsjjlnlWw6DtA75L8vRf031Jbh9-GBdfPh58fkbW2_yEmA3z52StXjbuBZg9td4KvH4Juxv8Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Quantum+Mechanical+and+Molecular+Mechanical+Methods+for+Calculating+Potential+Energy+Surfaces%3A+Tuned+and+Balanced+Redistributed-Charge+Algorithm&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Wang%2C+Bo&rft.au=Truhlar%2C+Donald+G&rft.date=2010-02-09&rft.issn=1549-9618&rft.volume=6&rft.issue=2&rft.spage=359&rft_id=info:doi/10.1021%2Fct900366m&rft_id=info%3Apmid%2F26617295&rft.externalDocID=26617295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon