Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm
The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that p...
Saved in:
Published in | Journal of chemical theory and computation Vol. 6; no. 2; pp. 359 - 369 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.02.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9618 1549-9626 |
DOI | 10.1021/ct900366m |
Cover
Abstract | The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that passes through a covalent bond, especially a polar covalent bond. In this study, we develop a new algorithm to treat such boundaries; the new method is called the balanced redistributed charge (balanced RC or BRC) scheme with a tuned fluorine link atom. The MM point charge on the MM boundary atom is modified to conserve the total charge of the entire system, and the modified charge is redistributed to the midpoints of the bonds between an MM boundary atom and its neighboring MM atoms. A pseudopotential is added to the fluorine link atom to reproduce the partial charge of the uncapped portion of the QM subsystem. We select proton affinities as the property used to validate the new method because the energy change associated with the addition of an entire charge (proton) to the QM system is very sensitive to the treatment of electrostatics at the boundary; we apply the new method to calculate proton affinities of 25 molecules with 13 different kinds of bonds being cut. The average proton affinity in the test set is 373 kcal/mol, and the test set provides a more challenging test than those usually used for testing QM/MM methods. For this challenging test set, common unbalanced schemes give a mean unsigned error (MUE) of 15−21 kcal/mol for H link atoms or 16−24 kcal/mol for F link atoms, much larger than the 5 kcal/mol obtained by simply omitting the MM region with either kind of link atom. Balancing the charges reduces the error to 5−7 kcal/mol for H link atoms and 4−6 kcal/mol for F link atoms. Balancing the charges and also tuning an F link atom lowers the MUE to 1.3−4 kcal/mol, with the best result for the balanced RC scheme. We conclude that properly tuning the link atom and correctly treating the point charges near the QM/MM boundary significantly improves the accuracy of the calculated proton affinities. |
---|---|
AbstractList | The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that passes through a covalent bond, especially a polar covalent bond. In this study, we develop a new algorithm to treat such boundaries; the new method is called the balanced redistributed charge (balanced RC or BRC) scheme with a tuned fluorine link atom. The MM point charge on the MM boundary atom is modified to conserve the total charge of the entire system, and the modified charge is redistributed to the midpoints of the bonds between an MM boundary atom and its neighboring MM atoms. A pseudopotential is added to the fluorine link atom to reproduce the partial charge of the uncapped portion of the QM subsystem. We select proton affinities as the property used to validate the new method because the energy change associated with the addition of an entire charge (proton) to the QM system is very sensitive to the treatment of electrostatics at the boundary; we apply the new method to calculate proton affinities of 25 molecules with 13 different kinds of bonds being cut. The average proton affinity in the test set is 373 kcal/mol, and the test set provides a more challenging test than those usually used for testing QM/MM methods. For this challenging test set, common unbalanced schemes give a mean unsigned error (MUE) of 15-21 kcal/mol for H link atoms or 16-24 kcal/mol for F link atoms, much larger than the 5 kcal/mol obtained by simply omitting the MM region with either kind of link atom. Balancing the charges reduces the error to 5-7 kcal/mol for H link atoms and 4-6 kcal/mol for F link atoms. Balancing the charges and also tuning an F link atom lowers the MUE to 1.3-4 kcal/mol, with the best result for the balanced RC scheme. We conclude that properly tuning the link atom and correctly treating the point charges near the QM/MM boundary significantly improves the accuracy of the calculated proton affinities. The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization effects in simulations of large and complex systems, and the present article is concerned with the systematics of treating a QM/MM boundary that passes through a covalent bond, especially a polar covalent bond. In this study, we develop a new algorithm to treat such boundaries; the new method is called the balanced redistributed charge (balanced RC or BRC) scheme with a tuned fluorine link atom. The MM point charge on the MM boundary atom is modified to conserve the total charge of the entire system, and the modified charge is redistributed to the midpoints of the bonds between an MM boundary atom and its neighboring MM atoms. A pseudopotential is added to the fluorine link atom to reproduce the partial charge of the uncapped portion of the QM subsystem. We select proton affinities as the property used to validate the new method because the energy change associated with the addition of an entire charge (proton) to the QM system is very sensitive to the treatment of electrostatics at the boundary; we apply the new method to calculate proton affinities of 25 molecules with 13 different kinds of bonds being cut. The average proton affinity in the test set is 373 kcal/mol, and the test set provides a more challenging test than those usually used for testing QM/MM methods. For this challenging test set, common unbalanced schemes give a mean unsigned error (MUE) of 15−21 kcal/mol for H link atoms or 16−24 kcal/mol for F link atoms, much larger than the 5 kcal/mol obtained by simply omitting the MM region with either kind of link atom. Balancing the charges reduces the error to 5−7 kcal/mol for H link atoms and 4−6 kcal/mol for F link atoms. Balancing the charges and also tuning an F link atom lowers the MUE to 1.3−4 kcal/mol, with the best result for the balanced RC scheme. We conclude that properly tuning the link atom and correctly treating the point charges near the QM/MM boundary significantly improves the accuracy of the calculated proton affinities. |
Author | Truhlar, Donald G Wang, Bo |
Author_xml | – sequence: 1 givenname: Bo surname: Wang fullname: Wang, Bo – sequence: 2 givenname: Donald G surname: Truhlar fullname: Truhlar, Donald G email: truhlar@umn.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26617295$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0Utv1DAQAGALFdEHHPgDyBckOITaTtYPbiUqD6mr0lLOkeNMdl0lduvHoT-Ff4ujLStU9eTHfDO2Zo7RgfMOEHpLySdKGD01SRFScz6_QEd01ahKccYP9nsqD9FxjLfF1A2rX6FDxjkVTK2O0J_Wz711MOCrrF3KM16D2WpnjZ6wdgNe-wlMnnT4P7CGtPVDxKMPuNXTEk_WbfBPn8AlW8S5g7B5wL9yGLWB-Bnf5OWRpeIXPWlnyuEaBhtTsH1OMFTtVocN4LNp44NN2_k1ejnqKcKbx_UE_f56ftN-ry4uv_1ozy4qXUuaqp7wWhKmhGmEkCsQPQNluGwa1hPGpdB8rAc1KgAzQEOUYFIKPqx4uR-1qE_Qh13du-DvM8TUzTYamMonwefYUVHLRpKmWei7R5r7GYbuLthZh4fuXzsL-LgDJvgYA4x7Qkm3jKrbj6rY0yfW2FTa6F0K2k7PZrzfZWgTu1ufgyt9ecb9Be_Mox0 |
CitedBy_id | crossref_primary_10_1021_acs_jctc_0c00153 crossref_primary_10_1021_ct2005209 crossref_primary_10_1021_jp507983u crossref_primary_10_1016_j_cplett_2011_12_004 crossref_primary_10_1039_D0CP02855J crossref_primary_10_1007_s00214_012_1277_9 crossref_primary_10_1371_journal_pone_0018868 crossref_primary_10_1021_acs_chemrev_0c00148 crossref_primary_10_1039_C8CP03871F crossref_primary_10_1021_ar500068a crossref_primary_10_1002_cmtd_202100012 crossref_primary_10_1039_c0cp02850a crossref_primary_10_1002_eem2_12051 crossref_primary_10_1021_acs_jpcb_6b07814 crossref_primary_10_1021_jp404292t crossref_primary_10_1021_acs_jctc_2c00584 crossref_primary_10_1021_acs_jctc_3c00497 crossref_primary_10_1063_5_0153656 crossref_primary_10_1021_cr300461d crossref_primary_10_1007_s00214_011_1036_3 crossref_primary_10_1021_acs_jctc_4c00201 crossref_primary_10_1021_acs_jpcb_1c02328 crossref_primary_10_1021_acs_jctc_6b01049 crossref_primary_10_1021_acs_jcim_2c01071 crossref_primary_10_1039_C4CP01572J crossref_primary_10_1021_ct400903n crossref_primary_10_1039_D3MA00518F crossref_primary_10_1021_ct300845q crossref_primary_10_1039_C7CP06751H crossref_primary_10_1002_jcc_23362 crossref_primary_10_1080_08927022_2014_911870 crossref_primary_10_1021_acs_jcim_2c01311 crossref_primary_10_1088_2516_1075_ac8c73 crossref_primary_10_1021_ar300278j crossref_primary_10_1063_5_0221974 crossref_primary_10_1021_ct100530r crossref_primary_10_1063_5_0219851 crossref_primary_10_1021_jacs_8b07456 crossref_primary_10_1063_1_4827020 crossref_primary_10_1021_ct300935m crossref_primary_10_1002_wcms_85 crossref_primary_10_1021_cr5004419 crossref_primary_10_1021_acs_jctc_3c01123 crossref_primary_10_1016_j_cpc_2023_108987 crossref_primary_10_1039_C8RE00213D crossref_primary_10_1063_1_4825402 crossref_primary_10_1021_acscentsci_7b00500 crossref_primary_10_1021_acs_jctc_9b00274 crossref_primary_10_3390_molecules23061309 |
Cites_doi | 10.1021/jp9809890 10.1002/jcc.20297 10.1016/S0166-1280(98)00475-8 10.1063/1.1520134 10.1016/0009-2614(90)85396-T 10.1146/annurev.physchem.59.032607.093618 10.1103/RevModPhys.71.1267 10.1002/jcc.540160911 10.1002/anie.200802019 10.1002/jcc.20857 10.1016/j.cbpa.2007.01.684 10.1016/j.sbi.2004.03.008 10.1146/annurev.physchem.53.091301.150114 10.1002/jcc.540150303 10.1021/ja808927h 10.1146/annurev.physchem.55.091602.094410 10.1007/s00214-006-0143-z 10.1007/s00214-002-0413-3 10.1063/1.1477182 10.1063/1.1839857 10.1021/jp991771w 10.1002/jcc.20291 10.1063/1.1689633 10.1007/s002140000247 10.1007/s00214-005-0008-x 10.1021/jp0446332 10.1021/jp026742r 10.1007/s00214-007-0310-x 10.1063/1.478083 10.1002/9780470125847.ch3 10.1016/S1359-6446(05)03611-1 10.1021/jp9536514 10.1116/1.571046 10.2533/000942902777680865 10.1021/jp0442347 10.1063/1.2994288 10.1021/jp036755k 10.1039/a701790a 10.1021/ct7001607 10.1007/s002140000138 10.2533/000942905777676128 10.1063/1.448263 10.1002/jcc.540070604 10.1021/jp056361o 10.1016/S0166-1280(03)00285-9 10.1063/1.1829051 10.1021/jp9924124 10.1021/ar700111a 10.1063/1.1834899 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ct900366m |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Combined QM/MM Methods |
EISSN | 1549-9626 |
EndPage | 369 |
ExternalDocumentID | 26617295 10_1021_ct900366m a037522385 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 J9A JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a381t-b06380297c47785e7b2e9c68442b02687a6f3d9f9eecde409728876d566f3fa73 |
IEDL.DBID | ACS |
ISSN | 1549-9618 |
IngestDate | Fri Jul 11 16:55:40 EDT 2025 Thu Jan 02 22:23:38 EST 2025 Tue Jul 01 00:36:38 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a381t-b06380297c47785e7b2e9c68442b02687a6f3d9f9eecde409728876d566f3fa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26617295 |
PQID | 1738480447 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1738480447 pubmed_primary_26617295 crossref_primary_10_1021_ct900366m crossref_citationtrail_10_1021_ct900366m acs_journals_10_1021_ct900366m |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-09 |
PublicationDateYYYYMMDD | 2010-02-09 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Maseras F. (ref56/cit56) 1995; 16 Walker R. C. (ref43/cit43) 2008; 29 Bakowies D. (ref25/cit25) 1996; 100 Colombo M. C. (ref6/cit6) 2002; 56 Zhao Y. (ref54/cit54) 2008; 41 Moret M.-E. (ref13/cit13) 2005; 59 Nasluzov V. A. (ref31/cit31) 2003; 107 Friesner R. A. (ref12/cit12) 2005; 56 Nicoll R. M. (ref5/cit5) 2001; 106 Parks J. M. (ref35/cit35) 2008; 129 ref8/cit8 von Lilienfeld O. A. (ref40/cit40) 2005; 122 DiLabio G. A. (ref39/cit39) 2005; 122 ref48/cit48 Case D. A. (ref46/cit46) 2008 Dapprich S. (ref57/cit57) 1999; 461 Das D. (ref45/cit45) 2002; 117 Senn H. M. (ref23/cit23) 2009; 48 Hu H. (ref21/cit21) 2008; 59 Riccardi D. (ref17/cit17) 2006; 110 Sherwood P. (ref44/cit44) 1997; 106 ref49/cit49 Gao J. (ref2/cit2) 1996; 7 Senn H. M. (ref19/cit19) 2007; 11 Lin H. (ref42/cit42) 2005; 109 Mulholland A. J. (ref14/cit14) 2005; 10 Zhang Y. (ref18/cit18) 2006; 116 Singh U. C. (ref24/cit24) 1986; 7 Reuter N. (ref3/cit3) 2000; 104 Spoel D. V. D. (ref16/cit16) 2005; 26 Pu J. (ref28/cit28) 2004; 108 Alary F. (ref36/cit36) 2000; 104 Hammes-Schiffer S. (ref11/cit11) 2004; 14 Théry V. (ref26/cit26) 1994; 15 Zhang Y. (ref34/cit34) 2005; 122 Zhao Y. (ref53/cit53) 2008; 120 Sherwood P. (ref9/cit9) 2003; 632 ref51/cit51 Amara P. (ref10/cit10) 2003; 109 Pacios L. F. (ref50/cit50) 1985; 82 Redondo A. (ref29/cit29) 1981; 19 Zhang Y. (ref33/cit33) 1999; 110 Moon S. (ref38/cit38) 2004; 120 Jorgensen W. L. (ref15/cit15) 2005; 26 Antes I. (ref32/cit32) 1999; 103 Gao J. (ref27/cit27) 1998; 102 Gao J. (ref7/cit7) 2002; 53 ref22/cit22 Lin H. (ref20/cit20) 2007; 117 ref4/cit4 König P. H. (ref47/cit47) 2005; 109 Koga N. (ref30/cit30) 1990; 172 DiLabio G. A. (ref37/cit37) 2002; 116 Olson R. M. (ref55/cit55) 2007; 3 Pople J. A. (ref41/cit41) 1999; 71 Ponder J. W. (ref52/cit52) 2004 Truhlar D. G. (ref1/cit1) 2008; 130 |
References_xml | – volume: 102 start-page: 4714 year: 1998 ident: ref27/cit27 publication-title: J. Phys. Chem. A doi: 10.1021/jp9809890 – volume: 26 start-page: 1689 year: 2005 ident: ref15/cit15 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20297 – volume: 461 start-page: 1 year: 1999 ident: ref57/cit57 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/S0166-1280(98)00475-8 – volume: 117 start-page: 10534 year: 2002 ident: ref45/cit45 publication-title: J. Chem. Phys. doi: 10.1063/1.1520134 – volume-title: AMBER 10 year: 2008 ident: ref46/cit46 – volume: 172 start-page: 243 year: 1990 ident: ref30/cit30 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)85396-T – ident: ref4/cit4 – volume: 59 start-page: 573 year: 2008 ident: ref21/cit21 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093618 – volume: 71 start-page: 1267 year: 1999 ident: ref41/cit41 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.1267 – volume: 16 start-page: 1170 year: 1995 ident: ref56/cit56 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540160911 – volume: 48 start-page: 1198 year: 2009 ident: ref23/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802019 – volume: 29 start-page: 1019 year: 2008 ident: ref43/cit43 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20857 – volume: 11 start-page: 182 year: 2007 ident: ref19/cit19 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2007.01.684 – ident: ref22/cit22 – volume: 14 start-page: 192 year: 2004 ident: ref11/cit11 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2004.03.008 – volume: 53 start-page: 467 year: 2002 ident: ref7/cit7 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.53.091301.150114 – ident: ref8/cit8 – volume: 15 start-page: 269 year: 1994 ident: ref26/cit26 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540150303 – volume: 130 start-page: 16824 year: 2008 ident: ref1/cit1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808927h – volume: 56 start-page: 389 year: 2005 ident: ref12/cit12 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.55.091602.094410 – volume: 117 start-page: 185 year: 2007 ident: ref20/cit20 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-006-0143-z – ident: ref51/cit51 – volume: 109 start-page: 43 year: 2003 ident: ref10/cit10 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-002-0413-3 – volume: 116 start-page: 9578 year: 2002 ident: ref37/cit37 publication-title: J. Chem. Phys. doi: 10.1063/1.1477182 – volume: 122 start-page: 044708 year: 2005 ident: ref39/cit39 publication-title: J. Chem. Phys. doi: 10.1063/1.1839857 – volume: 103 start-page: 9290 year: 1999 ident: ref32/cit32 publication-title: J. Phys. Chem. A doi: 10.1021/jp991771w – volume: 26 start-page: 1701 year: 2005 ident: ref16/cit16 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20291 – volume-title: TINKER year: 2004 ident: ref52/cit52 – ident: ref49/cit49 – volume: 120 start-page: 9080 year: 2004 ident: ref38/cit38 publication-title: J. Chem. Phys. doi: 10.1063/1.1689633 – volume: 106 start-page: 105 year: 2001 ident: ref5/cit5 publication-title: Theor. Chem. Acc. doi: 10.1007/s002140000247 – volume: 116 start-page: 43 year: 2006 ident: ref18/cit18 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0008-x – volume: 109 start-page: 3991 year: 2005 ident: ref42/cit42 publication-title: J. Phys. Chem. A doi: 10.1021/jp0446332 – ident: ref48/cit48 – volume: 107 start-page: 2228 year: 2003 ident: ref31/cit31 publication-title: J. Phys. Chem. B doi: 10.1021/jp026742r – volume: 120 start-page: 215 year: 2008 ident: ref53/cit53 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 110 start-page: 46 year: 1999 ident: ref33/cit33 publication-title: J. Chem. Phys. doi: 10.1063/1.478083 – volume: 7 start-page: 119 year: 1996 ident: ref2/cit2 publication-title: Rev. Comp. Chem. doi: 10.1002/9780470125847.ch3 – volume: 10 start-page: 1393 year: 2005 ident: ref14/cit14 publication-title: Drug Discovery Today doi: 10.1016/S1359-6446(05)03611-1 – volume: 100 start-page: 10580 year: 1996 ident: ref25/cit25 publication-title: J. Phys. Chem. doi: 10.1021/jp9536514 – volume: 19 start-page: 498 year: 1981 ident: ref29/cit29 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.571046 – volume: 56 start-page: 13 year: 2002 ident: ref6/cit6 publication-title: Chimia doi: 10.2533/000942902777680865 – volume: 109 start-page: 9082 year: 2005 ident: ref47/cit47 publication-title: J. Phys. Chem. B doi: 10.1021/jp0442347 – volume: 129 start-page: 154106 year: 2008 ident: ref35/cit35 publication-title: J. Chem. Phys. doi: 10.1063/1.2994288 – volume: 108 start-page: 632 year: 2004 ident: ref28/cit28 publication-title: J. Phys. Chem. A doi: 10.1021/jp036755k – volume: 106 start-page: 79 year: 1997 ident: ref44/cit44 publication-title: Faraday Discuss. doi: 10.1039/a701790a – volume: 3 start-page: 2046 year: 2007 ident: ref55/cit55 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct7001607 – volume: 104 start-page: 174 year: 2000 ident: ref36/cit36 publication-title: Theor. Chem. Acc. doi: 10.1007/s002140000138 – volume: 59 start-page: 493 year: 2005 ident: ref13/cit13 publication-title: Chimia doi: 10.2533/000942905777676128 – volume: 82 start-page: 2664 year: 1985 ident: ref50/cit50 publication-title: J. Chem. Phys. doi: 10.1063/1.448263 – volume: 7 start-page: 718 year: 1986 ident: ref24/cit24 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540070604 – volume: 110 start-page: 6458 year: 2006 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp056361o – volume: 632 start-page: 1 year: 2003 ident: ref9/cit9 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/S0166-1280(03)00285-9 – volume: 122 start-page: 014113 year: 2005 ident: ref40/cit40 publication-title: J. Chem. Phys. doi: 10.1063/1.1829051 – volume: 104 start-page: 1720 year: 2000 ident: ref3/cit3 publication-title: J. Phys. Chem. A doi: 10.1021/jp9924124 – volume: 41 start-page: 157 year: 2008 ident: ref54/cit54 publication-title: Acc. Chem. Res. doi: 10.1021/ar700111a – volume: 122 start-page: 024114 year: 2005 ident: ref34/cit34 publication-title: J. Chem. Phys. doi: 10.1063/1.1834899 |
SSID | ssj0033423 |
Score | 2.1918824 |
Snippet | The combined quantum mechanical and molecular mechanical (QM/MM) method is one of the most powerful approaches for including correlation and polarization... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 359 |
SubjectTerms | Quantum Electronic Structure |
Title | Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm |
URI | http://dx.doi.org/10.1021/ct900366m https://www.ncbi.nlm.nih.gov/pubmed/26617295 https://www.proquest.com/docview/1738480447 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYoHNpLoS-6LUXu49CLYWM7TtLbdgtClbZqC0jcIj8mC2I3W-0mF_4J_5aZZLOiKtBjlIkdecaeGc_jY-yT18ZlmbYCTKKEdq4vbBEZoQKoCDJj4-YecvTDHJ3q72fx2Rr7eE8EX0b7vqLLNmOmj9iGNGlEHtZgeNwdt4pa2DVNUTW1mozSrn3Q7U9J9fjF36rnHnuy0SuHm-xbV53TppNc7tWV2_NX_zZrfOiXt9jTpV3JB60gPGNrUD5nj4cdnNsLdo07H71gCPxXjatZT_kIqOqXmMRtGfioA8q9_WLUAEwvOJq2fGgnvgH7Ksf856yiNCOkOGiKB_lxPS8ou-sLP6lpEhrxK6VNenz4TcW_LbQWBEER_jHwwWQ8m19U59OX7PTw4GR4JJa4DMKifq-EIzOHQK-8TpI0hsRJyLxJtZYOXbo0saZQISsyAB-AGmpJPMpMQMuxUIVN1Cu2Xs5KeM24VYULGl0uoIhiMFYGadFhj4sUD45Y9tguMi5f7qtF3oTMZZSvVrjHPnc8zf2yqzmBa0zuIv2wIv3TtvK4i-h9Jxg5MoiiJ7aEWY1TJyrVaV_rpMe2W4lZDUNWDnop8Zv__e5b9qRNP5Cin-2w9Wpewzu0aiq320j1DSdP8X0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqFR4GyPIpBHLi43cSOk_RWVq0W2lRAt1JvkV_ZVt3Nok1y4Z_wbzvjJNsWFcExysS2bMcz45n5PkI-GiF1mgrFnIw5E1oPmSoCybh1PHCpVJG_h8yO5fhUfD2LzjqYHKyFgUFU0FLlg_jX6ALBjqnxzk3K-X3ywCOgoBk0OulPXY5Idh4bVSDiZJD0KEI3P0UNZKrbGugvZqVXLwePW54iPzCfVXK53dR62_z6A7Px_0b-hDzqrEy6126Lp-SeKzfI-qgnd3tGfsM5AD6xs_R7A3PbzGnmsAYYl4yq0tKsp829-SLzdNMVBUOXjtTMeOqvckq_LWpMOgKJfV9KSE-aZYG5Xrt00mAn2OJnTKI08PADS4Fboi1nGcb7p47uzaaL5UV9Pn9OTg_2J6Mx61gamAJtXzONRg9SYBkRx0nkYh261MhEiFCDg5fEShbcpkXqnLEO4bVCONikBTuy4IWK-QuyVi5K95JQxQttBThgDuOLVqrQhgrc96hI4BiJwgHZggnOu7-syn0APQzy1QwPyKd-aXPTYZwj1cbsLtEPK9GfLbDHXULv-_2RwwJhLEWVbtFA1zFPRDIUIh6QzXbjrJpBmwd8lujVv4b7jqyPJ9lRfvTl-PA1edgmJoRsmL4ha_WycW_B3qn1lt_oV7Fu-eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNBLy5vlUQziwMXtJnachFtZuiqPLYW2Um-Rn1vU3Wy1SS78E_5tZ5xkVVARHKNMHMsez8Mz8w0hb4yQOs-FYk6mnAmth0z5SDJuHY9cLlUS7iEnB3L_RHw6TU47RxFrYWASFYxUhSA-nuoL6zuEgWjH1HjvJuX8JrmVIPQbmkKjo17yckSzC_ioAlEno6xHErr6KWohU_2uhf5iWgYVM94kX1eTC5kl59tNrbfNzz9wG_9_9nfJRmdt0t2WPe6RG668T-6M-iZvD8gvkAfgGztLvzWwxs2cThzWAuPWUVVaOunb5159MQltpysKBi8dqZkJLcDKKT1c1Jh8BBR7oaSQHjVLjzlf7-hxgz_BEd9jMqWBh-9YEtw23HKWYdx_6ujubLpY_qjP5g_JyXjveLTPum4NTIHWr5lG4wdbYRmRplniUh273MhMiFiDo5elSnpuc587Z6xDmK0YBJy0YE967lXKH5G1clG6J4Qq7rUV4Ig5jDNaqWIbK3DjE5-BOEniAdmCRS6601YVIZAeR8VqhQfkbb-9hemwzrHlxuw60tcr0osW4OM6olc9jxSwQRhTUaVbNPDrlGciGwqRDsjjlnlWw6DtA75L8vRf031Jbh9-GBdfPh58fkbW2_yEmA3z52StXjbuBZg9td4KvH4Juxv8Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Quantum+Mechanical+and+Molecular+Mechanical+Methods+for+Calculating+Potential+Energy+Surfaces%3A+Tuned+and+Balanced+Redistributed-Charge+Algorithm&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Wang%2C+Bo&rft.au=Truhlar%2C+Donald+G&rft.date=2010-02-09&rft.issn=1549-9618&rft.volume=6&rft.issue=2&rft.spage=359&rft_id=info:doi/10.1021%2Fct900366m&rft_id=info%3Apmid%2F26617295&rft.externalDocID=26617295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |