Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence Papers from the Ray Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia, November 30 - December 2, 2011

This proceedings of the Ray Solomonoff 85th memorial conference, presents 35 papers on universal Bayesian prediction and artificial intelligence (machine learning). A tribute to Solomonoff's work, which influences modern data mining, econometrics and more.

Saved in:
Bibliographic Details
Main Author Dowe, David L.
Format eBook Book
LanguageEnglish
Published Berlin, Heidelberg Springer Nature 2013
Springer
Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642449581
3642449581
3642449573
9783642449574
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-44958-1

Cover

Abstract This proceedings of the Ray Solomonoff 85th memorial conference, presents 35 papers on universal Bayesian prediction and artificial intelligence (machine learning). A tribute to Solomonoff's work, which influences modern data mining, econometrics and more.
AbstractList This proceedings of the Ray Solomonoff 85th memorial conference, presents 35 papers on universal Bayesian prediction and artificial intelligence (machine learning). A tribute to Solomonoff's work, which influences modern data mining, econometrics and more.
Algorithmic probability and friends: Proceedings of the Ray Solomonoff 85th memorial conference is a collection of original work and surveys. The Solomonoff 85th memorial conference was held at Monash University's Clayton campus in Melbourne, Australia as a tribute to pioneer, Ray Solomonoff (1926-2009), honouring his various pioneering works - most particularly, his revolutionary insight in the early 1960s that the universality of Universal Turing Machines (UTMs) could be used for universal Bayesian prediction and artificial intelligence (machine learning). This work continues to increasingly influence and under-pin statistics, econometrics, machine learning, data mining, inductive inference, search algorithms, data compression, theories of (general) intelligence and philosophy of science - and applications of these areas. Ray not only envisioned this as the path to genuine artificial intelligence, but also, still in the 1960s, anticipated stages of progress in machine intelligence which would ultimately lead to machines surpassing human intelligence. Ray warned of the need to anticipate and discuss the potential consequences - and dangers - sooner rather than later. Possibly foremostly, Ray Solomonoff was a fine, happy, frugal and adventurous human being of gentle resolve who managed to fund himself while electing to conduct so much of his paradigm-changing research outside of the university system. The volume contains 35 papers pertaining to the abovementioned topics in tribute to Ray Solomonoff and his legacy.
Author Dowe, David L.
Author_xml – sequence: 1
  fullname: Dowe, David L.
BackLink https://cir.nii.ac.jp/crid/1130282269140963200$$DView record in CiNii
BookMark eNpd0U1v1DAQBmADBbGU_QHcIoRUcUg7YzuJfdyu2lKpEhwqrpaTTHZNXXuJw0f_Pc6GC1xsafy8c3j9hp2EGIixdwjnCNBc6EaVoqwlL6XUlSrxGVvnmciT4wCfsxXWiKUQUr_47-2ErUAAL3UjxSu2UrVUHCspXrN1St8AAEFqUakVu9_4XRzdtH90XfFljK1tnXfTU2FDX1yPjkKfzotL-0TJ2ZAF9a6bXAxHsBknN7jOWV_chom8dzsKHb1lLwfrE63_3qfs6_XV_fZTeff55na7uSutUAi_S67aBoEk7y3RMHA-WOhEL2tbyVqh1qiqpq10a4dqgB5gwCFHSRHZnrdKnLKPy2KbHuhX2kc_JfPTUxvjQzL_VJLtxWLTYXRhR6NZFIKZC5-1ESZ7cwyYOXG2JA5j_P6D0mSOizsK02i9ubrcCphb1Fl-WGRwznRuPhHzByjOa40SdC04QGbvF9bZZH1m5jGGuBvtYZ9MJRGbvO8PBX2Qdg
ContentType eBook
Book
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DBID I4C
RYH
DEWEY 004
DOI 10.1007/978-3-642-44958-1
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
DocumentTitleAlternate Algorithmic probability and friends : Bayesian prediction and artificial intelligence, papers from the Ray Solomonoff 85th memorial conference, Melbourne, VIC, Australia, November/December 2011
EISBN 9783642449581
3642449581
EISSN 1611-3349
Edition 1
2013
Editor Dowe, David L
Editor_xml – sequence: 1
  fullname: Dowe, David L
ExternalDocumentID 9783642449581
321121
EBC3093589
BB14726129
5411709
GroupedDBID -JY
-K2
0D6
0DA
2HV
38.
AABBV
AARVG
AAUBL
AAWHR
ABBVZ
ABFTD
ABMNI
AEDXK
AEHWL
AEKFX
AEZAY
AFJMS
ALMA_UNASSIGNED_HOLDINGS
ARZOH
AZZ
BBABE
CZZ
I4C
IEZ
IX0
LDH
MA.
N2R
NUC
SAO
SBO
TPJZQ
TSXQS
Z7R
Z7S
Z83
Z84
Z88
ACPRQ
ADHDZ
ADNMO
AEJLV
AFPTF
RYH
Z7X
-DT
-GH
-~X
1SB
29L
2HA
5QI
875
AASHB
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-a3810x-28b710e42daeeff22fa0c3d46a54681991857b59baf5f0d00f1fa38e8eead2b83
ISBN 9783642449581
3642449581
3642449573
9783642449574
ISSN 0302-9743
IngestDate Fri Nov 08 04:00:08 EST 2024
Wed Sep 17 02:55:11 EDT 2025
Fri May 30 22:52:24 EDT 2025
Fri Jun 27 00:59:03 EDT 2025
Tue Nov 14 22:45:40 EST 2023
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3810x-28b710e42daeeff22fa0c3d46a54681991857b59baf5f0d00f1fa38e8eead2b83
Notes Includes bibliographical references and index
OCLC 864821543
PQID EBC3093589
PageCount 457
ParticipantIDs askewsholts_vlebooks_9783642449581
springer_books_10_1007_978_3_642_44958_1
proquest_ebookcentral_EBC3093589
nii_cinii_1130282269140963200
casalini_monographs_5411709
PublicationCentury 2000
PublicationDate 2013
c2013
2013-10-22
PublicationDateYYYYMMDD 2013-01-01
2013-10-22
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Netherlands
– name: Heidelberg
– name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationYear 2013
Publisher Springer Nature
Springer
Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0001049358
ssj0002792
Score 1.9028023
Snippet This proceedings of the Ray Solomonoff 85th memorial conference, presents 35 papers on universal Bayesian prediction and artificial intelligence (machine...
Algorithmic probability and friends: Proceedings of the Ray Solomonoff 85th memorial conference is a collection of original work and surveys. The Solomonoff...
SourceID askewsholts
springer
proquest
nii
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Algorithms -- Congresses
Artificial intelligence
Artificial intelligence -- Congresses
Bayesian statistical decision theory
Bayesian statistical decision theory -- Congresses
Computer Science
Computer Science, general
Computer science-Congresses
Data processing Computer science
Memorial
Probabilities
Probabilities -- Congresses
Ray Solomonoff
Subtitle Papers from the Ray Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia, November 30 - December 2, 2011
TableOfContents 3 Mirage Codes Using Algorithmic Information Theory -- 4 Probabilistic Automata -- 5 Definitions of Transducers -- 6 Frequency Transducers -- References -- A Critical Survey of Some Competing Accounts of Concrete Digital Computation -- 1 Introduction -- 2 The Formal Symbol Manipulation Account -- 3 The Physical Symbol Systems Account -- 4 The Mechanistic Account of Computation -- 5 Discussion -- 6 Conclusion -- References -- Further Reflections on the Timescale of AI -- References -- Towards Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL -- 1 Introduction -- 2 Definitions and Notation -- 3 MDL Modeling of Time Series -- 4 Experimental Evaluation -- 4.1 An Example Application in Physiology -- 5 Discussion of Time and Space Complexity and Conclusions -- References -- Complexity Measures for Meta-learning and Their Optimality -- 1 Introduction -- 2 Complexity Measures for Learning Machines -- 3 Example of an Application -- 4 Summary -- References -- Design of a Conscious Machine -- Introduction -- 2 Functional Requirements -- 2.1 Worldly Facts -- 2.2 Smaller Factal Groups -- 2.3 Cognitive Functions -- 2.4 Macro Structures of the Whole Cortex (Brodmann) -- 3 Processing in an Information Domain -- 3.1 Caveats -- 4 Implementation Notes -- 4.1 The Modeling Strategy -- 4.2 Coincidence Records -- 4.3 Hippocampal Routing -- References -- No Free Lunch versus Occam's Razor in Supervised Learning -- 1 Introduction -- 2 Preliminaries -- 3 No Free Lunch Theorem -- 4 Complexity-Based Classification -- 5 Discussion -- References -- An Approximation of the Universal Intelligence Measure -- 1 Introduction -- 2 Background -- 2.1 Universal Intelligence Tests -- 2.2 Universal Intelligence Measure -- 3 Algorithmic Intelligence Quotient -- 3.1 Environment Sampling -- 3.2 Environment Simulation -- 3.3 Temporal Preference
Intro -- Preface -- Organization -- Table of Contents -- Introduction -- Introduction to Ray Solomonoff 85th Memorial Conference -- 1 Introduction - and Summary -- 1.1 Short Summary -- 1.2 (Universal) Turing Machines and Prediction -- 1.3 Technological Singularity (and Training Sequences) -- 2 Papers - Beginning in 1950 -- 3 Birth of the Theory in 1960 - and Onwards -- 3.1 End of the 1970s, and Fundamental Convergence Result -- 3.2 Notes on Papers from the 1980s -- 3.3 Notes on Papers from the 1990s -- 3.4 Notes on Papers from the 2000s -- 4 Further Notes (And Perhaps Some Afterthoughts) -- 4.1 Uniqueness of Logarithm-Loss Information-Theoretic Cost -- 4.2 Prediction, Inference, Induction, Explanation -- 4.3 How to Choose a Bayesian Prior? -- 4.4 Information Theory, (Artificial) Intelligence and Recognising It -- 4.5 A Music Note -- 4.6 Originality, Creativity, Humour, Illusion -- 4.7 Some Further Work -- 4.8 From Here -- References -- Invited Papers -- Ray Solomonoff and the New Probability -- 1 Introduction -- 2 Early Years -- 3 From the University to the Birth of AI -- 4 The Beginnings of AI -- 5 The Discovery of Algorithmic Probability -- 6 The Guerrilla Workshop -- 7 LaterWork -- References -- Universal Heuristics: How Do Humans Solve "Unsolvable" Problems? -- Partial Match Distance -- 1 Introduction -- 2 Partial Matching -- 3 TheDmin Distance -- 4 Question Answering -- 5 Voice Recognition Correction -- References -- Long Papers -- Falsification and Future Performance -- 1 Introduction -- 2 Measurement -- 2.1 Semantics -- 2.2 Risk -- 3 Statistical Learning Theory -- 4 Falsification -- 4.1 Empirical VC Entropy -- 4.2 Empirical Rademacher Complexity -- 5 Discussion -- References -- The Semimeasure Property of Algorithmic Probability - "Feature" or "Bug"? -- 1 Introduction -- 2 Notation -- 3 Algorithmic Probability (ALP)
3.4 Reference Machine Selection -- 3.5 BF Reference Machine -- 3.6 Variance Reduction Techniques for AIQ Estimation -- 4 Empirical Results -- 4.1 Comparison of Artificial Agents -- 4.2 Measuring Agent Scalability -- 4.3 Environment Distribution -- 5 Related Work and Discussion -- 6 Conclusion -- References -- Minimum Message Length Analysis of the Behrens-Fisher Problem -- 1 Introduction -- 2 Minimum Message Length (MML) -- 3 MML and the Behrens-Fisher Problem -- 3.1 Shared Population Mean -- 3.2 Different Population Means -- 3.3 MML Hypothesis Testing -- 4 Simulation and Discussion -- 5 Extensions -- References -- MMLD Inference of Multilayer Perceptrons -- 1 Introduction -- 2 Minimum Message Length (MML) -- 2.1 The Wallace-Freeman Approximation -- 2.2 The MMLD Approximation -- 3 A General Algorithm for Computing MMLD Codelengths -- 3.1 Spherical Uncertainty Region -- 3.2 Ellipsoidal Uncertainty Region -- 3.3 A Simple Example: Univariate Normal Distribution -- 4 MMLD Inference of Multilayer Perceptrons -- 4.1 Prior Density for the Model Parameters -- 4.2 Prior Density for the Network Architecture -- 5 Discussion and Results -- References -- An Optimal Superfarthingale and Its Convergence over a Computable Topological Space -- 1 Introduction -- 2 Preliminaries -- 2.1 Algorithmic Probability -- 2.2 Algorithmic Randomness -- 2.3 Game-Theoretic Probability -- 2.4 Computable Topology -- 3 OptimalTest -- 3.1 Approximation -- 3.2 Existence of an Optimal Test -- 4 Optimal Integral Test -- 4.1 Computable Bound -- 4.2 Computable Enumeration -- 4.3 The Existence of an Optimal Integral Test -- 5 Optimal Superfarthingale -- 5.1 Effectivization of Game-Theoretic Probability -- 5.2 Convergence to a Measure -- References -- Diverse Consequences of Algorithmic Probability -- 1 Introduction -- 2 Solomonoff Induction -- 3 The Axiomatization of Artificial Intelligence
2.3 ASNF (Abstraction SuperStructuring Normal Form) Theorems
4 The Semimeasure Property of ALP -- 5 ALP's Application to Induction, and the Semimeasure Problem -- 6 "Bug" or "Feature"? -- 7 Another Way of Tackling the Semimeasure Problem -- References -- Inductive Inference and Partition Exchangeability in Classification -- 1 Introduction -- 2 Supervised Predictive Classification under Partition Exchangeability -- 3 Asymptotic Properties of Supervised Classifiers under Partition Exchangeability -- 4 Discussion -- References -- Learning in the Limit: A Mutational and Adaptive Approach -- 1 Introduction -- 2 The First-Order Adaptive Automaton -- 2.1 Notations and Technical Preliminaries -- 2.2 Automata Transformations -- 3 The Second-Order Adaptive Automaton -- 4 Second-Order Adaptive Automata and Learning in the Limit -- 4.1 Illustrating Example -- 5 Conclusion -- 5.1 Future Work -- References -- Algorithmic Simplicity and Relevance -- 1 Complexity, Simplicity and the Human Mind -- 2 Relevance -- 3 Simplicity Theory -- 4 Relevance from an Algorithmic Perspective -- 4.1 First-Order Relevance -- 4.2 Second-Order Relevance -- 5 Examples -- 5.1 The 'Nude Model' Story -- 5.2 The 'Rally' Discussion -- 6 Discussion -- References -- Categorisation as Topographic Mapping between Uncorrelated Spaces -- 1 Introduction -- 2 Topographic Mappings in the Brain -- 2.1 Easy to See Mappings -- 2.2 Continuous and Discrete - Ocular Dominance Stripes -- 3 The Topographic Extrapolation -- 3.1 Measuring Topographicity -- 3.2 Extrapolation -- 3.3 A Normal Similarity Measure -- 3.4 Extrapolation from Highly Topographic Functions -- 3.5 Independently Varying Spaces -- 4 Explaining the Categorical Nature of Language -- 5 Synaesthesia -- 6 Conclusion -- References -- Algorithmic Information Theory and Computational Complexity -- 1 Introduction -- 2 Tools from Algorithmic Information Theory
4 Incremental Machine Learning -- 5 Cognitive Architecture -- 6 Philosophical Foundation and Consequences -- 7 Intellectual Property towards Infinity Point -- 8 Conclusion -- References -- An Adaptive Compression Algorithm in a Deterministic World -- 1 Introduction -- 2 Adaptive Compression -- 3 Excess and the RC-Frontier -- 4 Discussion -- References -- Toward an Algorithmic Metaphysics -- 1 TheToyWorldW -- 2 Things in -- 2.1 Composition and Division -- 2.2 Scattered Objects -- 2.3 Object Overlap and Coincidence -- 3 Properties in -- References -- Limiting Context by Using the Web to Minimize Conceptual Jump Size -- 1 Introduction -- 1.1 Common Sense Knowledge as a Contextual Filter -- 1.2 Subjectivity -- 1.3 What is Conceptual Jump Size -- 2 Our Trials with Commonsense Knowledge -- Self-correcting Universal Dialog System. -- Toward Concept Search and Manipulation. -- Generating Chains of Concepts. -- Evaluating Concept Triplets. -- - -- - -- - -- - -- - -- Limiting Context. -- Experiment and Its Results. -- 3 Object-Oriented Programming between Artificial and Natural Languages -- 4 Conclusions -- References -- Minimum Message Length Order Selection and Parameter Estimation of Moving Average Models -- 1 Introduction -- 1.1 The Minimum Message Length Principle -- 2 Message Lengths of Moving Average Models -- 2.1 Fisher Information Matrix -- 2.2 Minimising the Message Length -- 2.3 Properties of the MML87 Estimator -- 3 Evaluation -- 3.1 Parameter Estimation -- 3.2 Order Selection -- 3.3 The Southern Oscillation Index Time Series -- References -- Abstraction Super-Structuring Normal Forms: Towards a Theory of Structural Induction -- 1 Introduction -- 2 Abstraction Super-Structuring Normal Forms -- 2.1 Generative Grammars and Turing Machines -- 2.2 Structural Induction, Generative Grammars and Motivation
Title Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence
URI http://digital.casalini.it/9783642449581
https://cir.nii.ac.jp/crid/1130282269140963200
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3093589
http://link.springer.com/10.1007/978-3-642-44958-1
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783642449581
Volume 7070
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdYeWEvfIsyhk6IB6QmU77j8EZL0ZgGD2hMe7OcxN4qSlstYXz8g_xb3Dlxkg4kBA-10tS13dyv57vzfTD2HPdwlakwddNAKjdKfO7iNqLc3JNFiS-dFRTv_O59cvgxOjqLz2xJ-Da6pM4Pih9_jCv5H6riPaQrRcn-A2W7QfEGXiN9sUUKY3tN-O3etq7Fy_M1avUX5NhOJWGaZNtNKiVNmYvLyuj6U_ldmSjJzSUdyNTW95jw0qaOWAxyctLz3sgNxfR2YScfJHIX5JD4o9ZaT3hcX0w-k3vuwmQWsfGCxrCqlr2N9PTtzPAda0tpDomuFBUgmYSe-1oVzXVAn5CA0MnU66-qc7efHB8MDRNUJGLLMGENk1sKa5hQYF0WN5V5fmPfQ48N7OlSV1Ry-72q8yCcTv0opfRn2Q7bSVNUu2--mh8dn_b2NVR9wphTOI-dM2wSLvVrsKfcbaLhrTl32a6sPuFGg5tQXZHUIitJwaoohKwWiy2F5NoZuhFNTu6wEYWr3GU31Ooeu22LdEDLs--znwOswAArgDiAFivwEixSoEeK6dEjBYZIcaDBCRBOAHECiBPocQKEE7A4gR4nDnQocQAx4kCHEAcsPmCADwgcIHQ8YKdv5iezQ7et3uFKyhr3zQ14juKrioJSKqV1EGjpFWEZJTKOEk4udzxO8zjLpY61V3qe9jV-VXGF3C3IefiQjVbrlXrEoIziIgjSNAzzPCq4ltorOFc5xU0rX8dj9mxALHG1NJ4GlRhQm_tjtmdpKOhZmIzwlYgjKr6Ujdk-klUUC2p9Os5H0TnJKB9cEiLTGTOwBBdm9NZ5Wsyns8abAId4YYEgmvltTnBchwgFrkSYpQj_8V9m22O3-r_UEzaqL7-ofZR-6_xpC_RfatSlEg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Algorithmic+probability+and+friends+%3A+Bayesian+prediction+and+artificial+intelligence%2C+papers+from+the+Ray+Solomonoff+85th+memorial+conference%2C+Melbourne%2C+VIC%2C+Australia%2C+November+30-December+2%2C+2011&rft.au=Dowe%2C+David+L.&rft.date=2013-01-01&rft.pub=Springer&rft.isbn=9783642449574&rft_id=info:doi/10.1007%2F978-3-642-44958-1&rft.externalDocID=BB14726129
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97836424%2F9783642449581.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-642-44958-1