Solution Structure of the RNase H Domain of the HIV-1 Reverse Transcriptase in the Presence of Magnesium
This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg2+. An investigation of the dependence of the 1H−15N HSQC spectrum of the RNase H...
Saved in:
| Published in | Biochemistry (Easton) Vol. 42; no. 3; pp. 639 - 650 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
28.01.2003
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-2960 1520-4995 |
| DOI | 10.1021/bi0204894 |
Cover
| Abstract | This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg2+. An investigation of the dependence of the 1H−15N HSQC spectrum of the RNase H domain on [Mg2+] indicates that Mg2+ produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl2 concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K D for site A = 2.7−3.2 mM and K D for site B ∼ 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-13C,15N]RNase H domain, measured at pH 6.8, in 80 mM MgCl2, were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6−114 which was similar to the crystal structure of the isolated domain, 1HRH. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134−L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P212121 space group, while these residues adopt an α-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg2+ binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain. |
|---|---|
| AbstractList | This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg(2+). An investigation of the dependence of the (1)H-(15)N HSQC spectrum of the RNase H domain on [Mg(2+)] indicates that Mg(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K(D) for site A = 2.7-3.2 mM and K(D) for site B approximately 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-(13)C,(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain,. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2(1)2(1)2(1) space group, while these residues adopt an alpha-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg(2+). An investigation of the dependence of the (1)H-(15)N HSQC spectrum of the RNase H domain on [Mg(2+)] indicates that Mg(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K(D) for site A = 2.7-3.2 mM and K(D) for site B approximately 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-(13)C,(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain,. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2(1)2(1)2(1) space group, while these residues adopt an alpha-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain. This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg(2+). An investigation of the dependence of the (1)H-(15)N HSQC spectrum of the RNase H domain on [Mg(2+)] indicates that Mg(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K(D) for site A = 2.7-3.2 mM and K(D) for site B approximately 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-(13)C,(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain,. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2(1)2(1)2(1) space group, while these residues adopt an alpha-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain. This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg2+. An investigation of the dependence of the 1H−15N HSQC spectrum of the RNase H domain on [Mg2+] indicates that Mg2+ produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl2 concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K D for site A = 2.7−3.2 mM and K D for site B ∼ 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-13C,15N]RNase H domain, measured at pH 6.8, in 80 mM MgCl2, were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6−114 which was similar to the crystal structure of the isolated domain, 1HRH. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134−L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P212121 space group, while these residues adopt an α-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg2+ binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain. This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg super(2+). An investigation of the dependence of the super(1)H- super(15)N HSQC spectrum of the RNase H domain on [Mg super(2+)] indicates that Mg super(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl sub(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K sub(D) for site A = 2.7-3.2 mM and K sub(D) for site B similar to 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U- super(13)C, super(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl sub(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain, 1HRH. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2 sub(1)2 sub(1)2 sub(1) space group, while these residues adopt an alpha -helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg super(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain. |
| Author | Pari, Koteppa DeRose, Eugene F Kirby, Thomas W London, Robert E Mueller, Geoffrey A |
| Author_xml | – sequence: 1 givenname: Koteppa surname: Pari fullname: Pari, Koteppa – sequence: 2 givenname: Geoffrey A surname: Mueller fullname: Mueller, Geoffrey A – sequence: 3 givenname: Eugene F surname: DeRose fullname: DeRose, Eugene F – sequence: 4 givenname: Thomas W surname: Kirby fullname: Kirby, Thomas W – sequence: 5 givenname: Robert E surname: London fullname: London, Robert E |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12534276$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0UtPFTEYBuDGYOSALvwDZjaauBjpbXpZCioHREXO8bJrOp2vUpzLse0Y-PfM8QAmhsRV0_b53sX77aCtfugBoacEvyKYkr06YIq50vwBmpGK4pJrXW2hGcZYlFQLvI12UrqYrhxL_ghtE1oxTqWYofPF0I45DH2xyHF0eYxQDL7I51CcfbQJinnxZuhs6G9f50dfS1KcwW-I0-8y2j65GFZ5bSe1JqcREvTuT9AH-6OHFMbuMXrobZvgyc25i768e7s8mJcnnw6PDl6flJYpnEviwVGhBNWuYcw1riGeW62V59jzqhaNbriqMdaegZBAsa8l46A8YZIoz3bRi03uKg6_RkjZdCE5aFvbwzAmI6c-CKP6v5AoRZiQYoLPbuBYd9CYVQydjVfmtsQJvNwAF4eUIvi_BJv1gszdgia79491Idv1AnK0ob13otxMhJTh8i7axp9GSCYrszxdmONvn_f59_fKHE7--cZbl8zFMMZ-qvue3GtLjatP |
| CitedBy_id | crossref_primary_10_1021_jm0408464 crossref_primary_10_1021_bi902116z crossref_primary_10_1021_ja101494m crossref_primary_10_1021_ja4006095 crossref_primary_10_1016_j_bbrc_2004_03_061 crossref_primary_10_1016_j_toxicon_2009_06_009 crossref_primary_10_1128_AAC_01594_10 crossref_primary_10_1007_s10973_018_7445_y crossref_primary_10_1016_j_virusres_2008_01_001 crossref_primary_10_3390_v8100260 crossref_primary_10_1016_j_jmb_2018_02_027 crossref_primary_10_1093_nar_gku143 crossref_primary_10_1021_acs_chemrev_0c00967 crossref_primary_10_1016_j_jmb_2004_11_007 crossref_primary_10_1016_j_jmb_2008_10_071 crossref_primary_10_1007_s00018_011_0859_3 crossref_primary_10_1021_acs_jpcb_6b08323 crossref_primary_10_1073_pnas_2123092119 crossref_primary_10_1016_j_bbrc_2005_08_274 crossref_primary_10_1016_j_peptides_2012_10_001 crossref_primary_10_4236_ajac_2011_26073 crossref_primary_10_1080_15257770802088902 crossref_primary_10_1016_j_compbiomed_2009_01_011 crossref_primary_10_1111_j_1747_0285_2010_01052_x crossref_primary_10_1021_acsinfecdis_9b00300 crossref_primary_10_1002_prot_24843 crossref_primary_10_1111_cbdd_12010 crossref_primary_10_1128_JVI_00353_10 crossref_primary_10_1016_j_bpj_2010_11_004 crossref_primary_10_1021_bi900790x crossref_primary_10_1021_bi901668y crossref_primary_10_1016_j_ccr_2012_07_006 crossref_primary_10_1016_j_pep_2010_01_001 crossref_primary_10_2217_17584310_3_1_39 crossref_primary_10_1093_nar_gks791 crossref_primary_10_1039_c001097a crossref_primary_10_1128_AAC_00056_14 crossref_primary_10_1021_jm1014692 crossref_primary_10_1042_BCJ20170480 crossref_primary_10_1016_j_virusres_2007_12_007 crossref_primary_10_1016_j_regpep_2008_06_004 crossref_primary_10_1002_prot_24594 crossref_primary_10_1093_nar_gkv1538 crossref_primary_10_1128_AAC_00658_11 |
| Cites_doi | 10.1107/S0907444993002409 10.1074/jbc.M009626200 10.1002/j.1460-2075.1990.tb08224.x 10.1021/ja00076a099 10.1021/bi0160056 10.1007/BF00178264 10.1016/0263-7855(96)00009-4 10.1007/BF00175245 10.1006/jmrb.1994.1032 10.1006/jmrb.1993.1035 10.1006/jmrb.1994.1031 10.1016/0014-5793(91)80613-8 10.1023/A:1008392405740 10.1006/jmrb.1993.1019 10.1093/oxfordjournals.jbchem.a135290 10.1006/jmbi.1994.0053 10.1007/BF00197809 10.1007/BF00404272 10.1007/s007750050009 10.1016/0014-5793(89)81559-5 10.1023/A:1008365802830 10.1111/j.1432-1033.1993.tb17707.x 10.1107/S0907444998003254 10.1016/0014-5793(90)81238-J 10.1002/j.1460-2075.1991.tb07917.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2003 American Chemical Society |
| Copyright_xml | – notice: Copyright © 2003 American Chemical Society |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7U9 H94 7X8 |
| DOI | 10.1021/bi0204894 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1520-4995 |
| EndPage | 650 |
| ExternalDocumentID | 12534276 10_1021_bi0204894 ark_67375_TPS_JWQB4XK8_G b674816594 |
| Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
| GroupedDBID | - .K2 02 08R 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ADKFC AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GJ GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 6TJ ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XOL XSW ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM VXZ 7TM 7U9 H94 7X8 |
| ID | FETCH-LOGICAL-a380t-1fec268629cd33cdcd1f4a998f40f45b6d9d48b009f3e67e20fb734e8f13718f3 |
| IEDL.DBID | ACS |
| ISSN | 0006-2960 |
| IngestDate | Thu Oct 02 11:31:00 EDT 2025 Thu Oct 02 12:10:44 EDT 2025 Wed Feb 19 01:35:38 EST 2025 Thu Apr 24 22:59:41 EDT 2025 Wed Oct 01 02:37:46 EDT 2025 Wed Oct 30 09:48:49 EDT 2024 Thu Aug 27 13:42:35 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a380t-1fec268629cd33cdcd1f4a998f40f45b6d9d48b009f3e67e20fb734e8f13718f3 |
| Notes | ark:/67375/TPS-JWQB4XK8-G The authors gratefully acknowledge support from the NIEHS intramural AIDS program. K.P. is the recipient of the National Institutes of Health Visiting Fellowship. istex:7A818AC96037FF2EC7D709396F22953934DD965C ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 12534276 |
| PQID | 18813676 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_72961329 proquest_miscellaneous_18813676 pubmed_primary_12534276 crossref_primary_10_1021_bi0204894 crossref_citationtrail_10_1021_bi0204894 istex_primary_ark_67375_TPS_JWQB4XK8_G acs_journals_10_1021_bi0204894 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2003-01-28 |
| PublicationDateYYYYMMDD | 2003-01-28 |
| PublicationDate_xml | – month: 01 year: 2003 text: 2003-01-28 day: 28 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biochemistry (Easton) |
| PublicationTitleAlternate | Biochemistry |
| PublicationYear | 2003 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Pascal S. M. (bi0204894b00030/bi0204894b00030_1) 1994; 103 Leech A. P. (bi0204894b00049/bi0204894b00049_1) 1993; 212 Huang H. (bi0204894b00008/bi0204894b00008_1) 1998 Chattopadhyay D. (bi0204894b00013/bi0204894b00013_1) 1993; 49 Kay L. E. (bi0204894b00034/bi0204894b00034_1) 1994; 109 Yang W. (bi0204894b00020/bi0204894b00020_1) 1995 Nakamura H. (bi0204894b00018/bi0204894b00018_1) 1991 Powers R. (bi0204894b00015/bi0204894b00015_1) 1991; 221 Becerra S. P. (bi0204894b00004/bi0204894b00004_1) 1990; 270 Goedken E. R. (bi0204894b00024/bi0204894b00024_1) 2001; 276 Davies J. F., II (bi0204894b00012/bi0204894b00012_1) 1991; 252 Levy L. A. (bi0204894b00045/bi0204894b00045_1) 1988 Wishart D. S. (bi0204894b00037/bi0204894b00037_1) 1994; 4 Koradi R. (bi0204894b00028/bi0204894b00028_1) 1996; 14 Johnson B. A. (bi0204894b00027/bi0204894b00027_1) 1994; 4 Hostomsky Z. H., Z. (bi0204894b00005/bi0204894b00005_1) 1991 Laskowski R. A. (bi0204894b00052/bi0204894b00052_1) 1998 Arts E. J. (bi0204894b00025/bi0204894b00025_1) 1998 Oda Y. (bi0204894b00017/bi0204894b00017_1) 1991; 1 Wishart D. S. (bi0204894b00038/bi0204894b00038_1) 1992 Cristofaro J. V. (bi0204894b00044/bi0204894b00044_1) 2002 Linge J. P. (bi0204894b00042/bi0204894b00042_1) 1999; 13 Cirino N. M. (bi0204894b00022/bi0204894b00022_1) 1995 Ren J. (bi0204894b00010/bi0204894b00010_1) 1995 Kern G. (bi0204894b00016/bi0204894b00016_1) 1998 Stammers D. K. (bi0204894b00006/bi0204894b00006_1) 1991; 283 Vuister G. W. (bi0204894b00035/bi0204894b00035_1) 1993; 101 Grzesiek S. (bi0204894b00031/bi0204894b00031_1) 1993; 101 Tisdale M. S., T. (bi0204894b00003/bi0204894b00003_1) 1991; 72 Ren J. (bi0204894b00009/bi0204894b00009_1) 1995 Takimoto K. (bi0204894b00048/bi0204894b00048_1) 1985; 98 Nilges M. (bi0204894b00040/bi0204894b00040_1) 1997 Heinonen E. (bi0204894b00046/bi0204894b00046_1) 1987; 898 Nilges M. (bi0204894b00039/bi0204894b00039_1) 1995; 245 Nilges M. (bi0204894b00041/bi0204894b00041_1) 1998 Cornilescu G. (bi0204894b00036/bi0204894b00036_1) 1999; 13 Beese L. S. (bi0204894b00019/bi0204894b00019_1) 1991; 10 Sarafianos S. G. (bi0204894b00011/bi0204894b00011_1) 1999 Evans D. B. (bi0204894b00007/bi0204894b00007_1) 1991; 266 Schatz O. (bi0204894b00001/bi0204894b00001_1) 1989; 257 Brunger A. T. (bi0204894b00043/bi0204894b00043_1) 1998; 54 bi0204894b00051/bi0204894b00051_1 Wilkie J. (bi0204894b00050/bi0204894b00050_1) 1995; 1 Delaglio F. (bi0204894b00026/bi0204894b00026_1) 1995; 6 Yamazaki T. (bi0204894b00033/bi0204894b00033_1) 1993; 115 Grubbs R. D. (bi0204894b00047/bi0204894b00047_1) 1987 Katayanagi K. (bi0204894b00023/bi0204894b00023_1) 1993 Cowan J. A. (bi0204894b00021/bi0204894b00021_1) 2000; 5 Muhandiram D. R. (bi0204894b00029/bi0204894b00029_1) 1994; 103 Powers R. (bi0204894b00014/bi0204894b00014_1) 1992 Schatz O. (bi0204894b00002/bi0204894b00002_1) 1990; 9 Logan T. M. (bi0204894b00032/bi0204894b00032_1) 1993; 3 Abbreviations (bi0204894n00001/bi0204894n00001_1) |
| References_xml | – volume: 1 year: 1991 ident: bi0204894b00017/bi0204894b00017_1 publication-title: J. Biomol. NMR – volume: 49 year: 1993 ident: bi0204894b00013/bi0204894b00013_1 publication-title: Acta Crystallogr., Sect. D doi: 10.1107/S0907444993002409 – volume: 276 year: 2001 ident: bi0204894b00024/bi0204894b00024_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009626200 – volume: 1 year: 1995 ident: bi0204894b00050/bi0204894b00050_1 publication-title: J. Chem. Soc., Perkin Trans. – volume-title: Proc. Natl. Acad. Sci. U.S.A. 88, 1148−1152 year: 1991 ident: bi0204894b00005/bi0204894b00005_1 – volume-title: Biochemistry 31, 9150−9157 year: 1992 ident: bi0204894b00014/bi0204894b00014_1 – volume-title: Proteins 17, 337−346 year: 1993 ident: bi0204894b00023/bi0204894b00023_1 – volume-title: Biochemistry 27, 4041−4048 year: 1988 ident: bi0204894b00045/bi0204894b00045_1 – volume: 221 year: 1991 ident: bi0204894b00015/bi0204894b00015_1 publication-title: J. Mol. Biol. – volume-title: Biochemistry 31, 1647−1651 year: 1992 ident: bi0204894b00038/bi0204894b00038_1 – volume-title: Curr. Opin. Struct. Biol. 8, 631−639 year: 1998 ident: bi0204894b00052/bi0204894b00052_1 – volume-title: S53−S57. year: 1997 ident: bi0204894b00040/bi0204894b00040_1 – volume: 252 start-page: 95 year: 1991 ident: bi0204894b00012/bi0204894b00012_1 publication-title: Science – volume: 9 year: 1990 ident: bi0204894b00002/bi0204894b00002_1 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb08224.x – volume-title: Science 282, 1669−1675 year: 1998 ident: bi0204894b00008/bi0204894b00008_1 – volume: 115 year: 1993 ident: bi0204894b00033/bi0204894b00033_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00076a099 – volume-title: Nat. Struct. Biol. 2, 293−302 year: 1995 ident: bi0204894b00010/bi0204894b00010_1 – ident: bi0204894b00051/bi0204894b00051_1 doi: 10.1021/bi0160056 – volume-title: Protein Sci. 7, 2164−2174 year: 1998 ident: bi0204894b00016/bi0204894b00016_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 88, 11535−11539 year: 1991 ident: bi0204894b00018/bi0204894b00018_1 – volume: 72 start-page: 66 year: 1991 ident: bi0204894b00003/bi0204894b00003_1 publication-title: J. Gen. Virol. – volume: 3 year: 1993 ident: bi0204894b00032/bi0204894b00032_1 publication-title: J. Biomol. NMR doi: 10.1007/BF00178264 – volume: 14 start-page: 55 year: 1996 ident: bi0204894b00028/bi0204894b00028_1 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00009-4 – volume-title: Prog. Nucleic Acid Res. Mol. Biol. 58, 339−393 year: 1998 ident: bi0204894b00025/bi0204894b00025_1 – volume-title: R137−R146. year: 1999 ident: bi0204894b00011/bi0204894b00011_1 – volume-title: Biochemistry 34, 9936−9943 year: 1995 ident: bi0204894b00022/bi0204894b00022_1 – volume: 4 year: 1994 ident: bi0204894b00037/bi0204894b00037_1 publication-title: J. Biomol. NMR doi: 10.1007/BF00175245 – volume: 103 year: 1994 ident: bi0204894b00029/bi0204894b00029_1 publication-title: J. Magn. Reson., Ser. B doi: 10.1006/jmrb.1994.1032 – volume: 266 year: 1991 ident: bi0204894b00007/bi0204894b00007_1 publication-title: J. Biol. Chem. – volume: 101 year: 1993 ident: bi0204894b00035/bi0204894b00035_1 publication-title: J. Magn. Reson., Ser. B doi: 10.1006/jmrb.1993.1035 – volume: 898 year: 1987 ident: bi0204894b00046/bi0204894b00046_1 publication-title: Biochim. Biophys. Acta – volume: 103 year: 1994 ident: bi0204894b00030/bi0204894b00030_1 publication-title: J. Magn. Reson., Ser. B doi: 10.1006/jmrb.1994.1031 – volume: 283 year: 1991 ident: bi0204894b00006/bi0204894b00006_1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(91)80613-8 – volume: 13 year: 1999 ident: bi0204894b00036/bi0204894b00036_1 publication-title: J. Biomol. NMR doi: 10.1023/A:1008392405740 – volume: 101 year: 1993 ident: bi0204894b00031/bi0204894b00031_1 publication-title: J. Magn. Reson., Ser. B doi: 10.1006/jmrb.1993.1019 – volume: 98 year: 1985 ident: bi0204894b00048/bi0204894b00048_1 publication-title: J. Biochem. (Tokyo) doi: 10.1093/oxfordjournals.jbchem.a135290 – volume-title: human immunodeficiency virus type 1 ident: bi0204894n00001/bi0204894n00001_1 – volume-title: Magnesium 6, 113−127 year: 1987 ident: bi0204894b00047/bi0204894b00047_1 – volume: 109 year: 1994 ident: bi0204894b00034/bi0204894b00034_1 publication-title: J. Magn. Reson., Ser. A – volume: 245 year: 1995 ident: bi0204894b00039/bi0204894b00039_1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.0053 – volume: 6 year: 1995 ident: bi0204894b00026/bi0204894b00026_1 publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume-title: Biochemistry 41, 10968−10975 year: 2002 ident: bi0204894b00044/bi0204894b00044_1 – volume: 4 year: 1994 ident: bi0204894b00027/bi0204894b00027_1 publication-title: J. Biomol. NMR doi: 10.1007/BF00404272 – volume: 5 start-page: 74 year: 2000 ident: bi0204894b00021/bi0204894b00021_1 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s007750050009 – volume-title: Structure 3, 915−926 year: 1995 ident: bi0204894b00009/bi0204894b00009_1 – volume: 257 year: 1989 ident: bi0204894b00001/bi0204894b00001_1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(89)81559-5 – volume: 13 start-page: 59 year: 1999 ident: bi0204894b00042/bi0204894b00042_1 publication-title: J. Biomol. NMR doi: 10.1023/A:1008365802830 – volume-title: Structure 3, 131−134 year: 1995 ident: bi0204894b00020/bi0204894b00020_1 – volume: 212 year: 1993 ident: bi0204894b00049/bi0204894b00049_1 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb17707.x – volume: 54 year: 1998 ident: bi0204894b00043/bi0204894b00043_1 publication-title: Acta Crystallogr., Sect. D doi: 10.1107/S0907444998003254 – volume-title: Prog. NMR Spectrosc. 32, 107−139 year: 1998 ident: bi0204894b00041/bi0204894b00041_1 – volume: 270 start-page: 80 year: 1990 ident: bi0204894b00004/bi0204894b00004_1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)81238-J – volume: 10 start-page: 33 year: 1991 ident: bi0204894b00019/bi0204894b00019_1 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07917.x |
| SSID | ssj0004074 |
| Score | 1.960024 |
| Snippet | This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions... |
| SourceID | proquest pubmed crossref istex acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 639 |
| SubjectTerms | Binding Sites Cations, Divalent - chemistry HIV Reverse Transcriptase - chemistry Magnesium - chemistry Models, Chemical Nuclear Magnetic Resonance, Biomolecular - methods Peptide Fragments - chemistry Protein Conformation Protein Structure, Tertiary Ribonuclease H - chemistry Solutions Titrimetry |
| Title | Solution Structure of the RNase H Domain of the HIV-1 Reverse Transcriptase in the Presence of Magnesium |
| URI | http://dx.doi.org/10.1021/bi0204894 https://api.istex.fr/ark:/67375/TPS-JWQB4XK8-G/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/12534276 https://www.proquest.com/docview/18813676 https://www.proquest.com/docview/72961329 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Publications customDbUrl: eissn: 1520-4995 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004074 issn: 0006-2960 databaseCode: ACS dateStart: 19620101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7QFeBmx8lI9hAZp48UhsJ3YeS8coQ5vGukHfItuxRzWaoq2VgL-es5t0IFZ4jX6JHN_Zd-e7-xngpZNaSJ8lVGY-o8J5QwumU6qZ0t5bjKBjV9rBYd4_FfvDbLgCL5Zk8Fn62oxC_6YqxA1YY7mUoW6v2xtcNT8mDdUyhsYM_fGWPuj3V4PpsZd_mJ61MIvfl_uV0b7s3YbdtktnXlZyvjObmh3782_Sxn8N_Q6sN_4l6c4V4i6suHoDNrs1xtbjH2SbxIrPeJS-ATd77W1vm_ClPR8jg8goO7twZOIJuofk-BAtHemT3clYj-r2af_9J5qSYxfKOhyJJi9uQAGLqAA5iq1NNn7oQJ_hpjqaje_B6d7bk16fNrcwUM1VMqWpd5aFPpLCVpzbylapFxqjNC8SLzKTV0UlFK7ewnOXS8cSbyQXTvmUo-Hz_D6s1pPaPQQStEJwUykptMiTAl3mkKbjxnBWaCY6sIViKptVdFnGBDlLy8U8duBVK8HSNhzm4SqNr9dBny-g3-bEHdeBtqMaLBD64jxUusmsPDkalPufP74Rww-qfNeBZ62elCiYkFTRtZvMcIxKRda75QgMX9BnYkUHHswV7Go8LOOCyfzR__77MdyKRYRJSpl6AquoCO4pOkNTsxUXwy9xf_8c |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagPZQLj5ZHeLQWQhUXl_Vjd73HECjbR6LSpDQ3y96126hkg5pEAn49Y2c3AdQKrqtZa2yPPTOemW8QemNTLVIXRySNXUyEdYZkTFOimdTOFeBBh6q0bi_Jz8ThMB7WMDm-FgaYmMJI0xDEX6EL0Hdm5Ms4ZSbuovU4EdQ7Wu1Of1UDGdWIy-AhMzDLGxSh33_1GqiY_qGB1v1ifr_dvAxqZv_Bol9RYDBkl1ztzWdmr_j5F3bj_83gIbpfW5u4vRCPR-iOrTbRVrsCT3v8A-_ikP8ZHtY30Uan6f22hS6b1zLcD_iy82uLJw6DsYhPe6D3cI4_TMZ6VDVf84MvhOJT65M8LA4KMFxHnhaoPMlJKHQqwkBdfQFX7Gg-fozO9j8OOjmpezIQzWU0I9TZgvmqkqwoOS_KoqROaPDZnIiciE1SZqWQcJYzx22SWhY5k3JhpaMc1KDjT9BaNansM4S9jAhuSpkKLZIoAwPaB-24MZxlmokW2oZlVPWZmqoQLmdULdexhd42G6mKGtHcN9b4ehPp6yXptwWMx01Eu0EalhT6-srnvaWxGpz01eH55_dieCTVpxbaacRFwcb4EIuu7GQOPEoZMPBupwBnBiwolrXQ04WcrfhhMRcsTZ7_a947aCMfdI_V8UHv6AW6F9ILI0qYfInWQCjsKzCTZmY7nI9fqfYHjQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEvfGx8lI_NQmjixSOxncR5HB2l21gp6zb6FtmODdVoOq2tBPz1nN2kA7QJXqNfrLN957vzfRjglc2UyFwS0SxxCRXWaZozFVPFpHLOoAcdqtIOe2n3ROwPk2HtKPpaGCRiiiNNQxDfS_V56eoOA_EbPfKlnDIXN2E1SVHEvSnUHlzWQUZ112X0khma5k0nod9_9VrITP_QQqt-Qb9fb2IGVdO5Bx-XRIYMk7Pt-Uxvm59_9W_8_1nch7u11Ul2FmzyAG7Yag3Wdyr0uMc_yBYJeaDhgn0NbrebN-DW4Wtza0YGoc_s_MKSiSNoNJKjHuo_0iW7k7EaVc3X7t4pjcmR9ckelgRFGI4lj0WUh_RDwZMJAx2qL3jUjubjh3DSeXfc7tL6bQaquIxmNHbWMF9dkpuSc1OaMnZCoe_mROREotMyL4VEmc4dt2lmWeR0xoWVLuaoDh1_BCvVpLJPgHheEVyXMhNKpFGOhrQP3nGtOcsVEy3YwKUsatmaFiFszuJiuY4teN1sZmHqzub-gY1vV0FfLqHni3YeV4G2AkcsEerizOe_ZUlx3B8U-58_vRXDA1m8b8FmwzIFbowPtajKTuZIo5ShF971CHRq0JJieQseL3jtkh6WcMGy9Om_5r0Jt_q7neLDXu_gGdwJWYZRTJl8DivIE_YFWkszvRFE5BdbVgoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+Structure+of+the+RNase+H+Domain+of+the+HIV-1+Reverse+Transcriptase+in+the+Presence+of+Magnesium&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Pari%2C+K&rft.au=Mueller%2C+G+A&rft.au=DeRose%2C+E+F&rft.au=Kirby%2C+T+W&rft.date=2003-01-28&rft.issn=0006-2960&rft.volume=42&rft.issue=3&rft.spage=639&rft.epage=650&rft_id=info:doi/10.1021%2Fbi0204894&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |