Solution Structure of the RNase H Domain of the HIV-1 Reverse Transcriptase in the Presence of Magnesium

This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg2+. An investigation of the dependence of the 1H−15N HSQC spectrum of the RNase H...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 42; no. 3; pp. 639 - 650
Main Authors Pari, Koteppa, Mueller, Geoffrey A, DeRose, Eugene F, Kirby, Thomas W, London, Robert E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.01.2003
Subjects
Online AccessGet full text
ISSN0006-2960
1520-4995
DOI10.1021/bi0204894

Cover

Abstract This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg2+. An investigation of the dependence of the 1H−15N HSQC spectrum of the RNase H domain on [Mg2+] indicates that Mg2+ produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl2 concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K D for site A = 2.7−3.2 mM and K D for site B ∼ 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-13C,15N]RNase H domain, measured at pH 6.8, in 80 mM MgCl2, were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6−114 which was similar to the crystal structure of the isolated domain, 1HRH. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134−L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P212121 space group, while these residues adopt an α-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg2+ binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.
AbstractList This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg(2+). An investigation of the dependence of the (1)H-(15)N HSQC spectrum of the RNase H domain on [Mg(2+)] indicates that Mg(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K(D) for site A = 2.7-3.2 mM and K(D) for site B approximately 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-(13)C,(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain,. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2(1)2(1)2(1) space group, while these residues adopt an alpha-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg(2+). An investigation of the dependence of the (1)H-(15)N HSQC spectrum of the RNase H domain on [Mg(2+)] indicates that Mg(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K(D) for site A = 2.7-3.2 mM and K(D) for site B approximately 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-(13)C,(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain,. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2(1)2(1)2(1) space group, while these residues adopt an alpha-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.
This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg(2+). An investigation of the dependence of the (1)H-(15)N HSQC spectrum of the RNase H domain on [Mg(2+)] indicates that Mg(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K(D) for site A = 2.7-3.2 mM and K(D) for site B approximately 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-(13)C,(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain,. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2(1)2(1)2(1) space group, while these residues adopt an alpha-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.
This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg2+. An investigation of the dependence of the 1H−15N HSQC spectrum of the RNase H domain on [Mg2+] indicates that Mg2+ produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl2 concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K D for site A = 2.7−3.2 mM and K D for site B ∼ 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U-13C,15N]RNase H domain, measured at pH 6.8, in 80 mM MgCl2, were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6−114 which was similar to the crystal structure of the isolated domain, 1HRH. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134−L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P212121 space group, while these residues adopt an α-helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg2+ binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.
This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions in this study were at physiological pH in the presence of Mg super(2+). An investigation of the dependence of the super(1)H- super(15)N HSQC spectrum of the RNase H domain on [Mg super(2+)] indicates that Mg super(2+) produces significant, global effects on the amide chemical shifts, implying that divalent metal ion binding is important for stabilizing the structure of the isolated domain in solution. Analysis of amide shift data as a function of MgCl sub(2) concentration using either a single- or two-site binding model indicated that the latter provided a significantly improved fit, with the K sub(D) for site A = 2.7-3.2 mM and K sub(D) for site B similar to 35 mM, calculated on the assumption that site A is already occupied. Resonances of the [U- super(13)C, super(15)N]RNase H domain, measured at pH 6.8, in 80 mM MgCl sub(2), were assigned and NOESY data collected in order to determine the structure. Assignment of the NOESY spectra using the ARIA program resulted in a high-resolution structure for residues 6-114 which was similar to the crystal structure of the isolated domain, 1HRH. The data were insufficient to define a compact structure for the C-terminal residues after 114. Residues I134-L138 located at the C-terminus are highly disordered and give rise to relatively sharp and intense amide resonances, while the amide resonances for the segment from E124 to A132 appear to be largely absent and are presumably subject to significant exchange broadening between different conformational states. Comparisons with crystal structure data for the full reverse transcriptase molecule indicate that the corresponding region is absent in nearly all of the crystal structures determined for the P2 sub(1)2 sub(1)2 sub(1) space group, while these residues adopt an alpha -helix in structures determined for other symmetry groups. This structural heterogeneity indicates that significant conformational variability exists for this segment of the full reverse transcriptase enzyme as well, and the structure of the C-terminal peptide can be selected or deselected, depending on crystallization conditions. This analysis, along with the structural characterization contained herein, challenges the previous paradigm that the dynamic behavior of the isolated RNase H domain differs substantially from the behavior in the intact enzyme. The poor Mg super(2+) binding and conformational flexibility of residues located near the active site indicate that substrate binding is a precondition for metal ion binding and for selecting the active site conformation of the RNase H domain.
Author Pari, Koteppa
DeRose, Eugene F
Kirby, Thomas W
London, Robert E
Mueller, Geoffrey A
Author_xml – sequence: 1
  givenname: Koteppa
  surname: Pari
  fullname: Pari, Koteppa
– sequence: 2
  givenname: Geoffrey A
  surname: Mueller
  fullname: Mueller, Geoffrey A
– sequence: 3
  givenname: Eugene F
  surname: DeRose
  fullname: DeRose, Eugene F
– sequence: 4
  givenname: Thomas W
  surname: Kirby
  fullname: Kirby, Thomas W
– sequence: 5
  givenname: Robert E
  surname: London
  fullname: London, Robert E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12534276$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtPFTEYBuDGYOSALvwDZjaauBjpbXpZCioHREXO8bJrOp2vUpzLse0Y-PfM8QAmhsRV0_b53sX77aCtfugBoacEvyKYkr06YIq50vwBmpGK4pJrXW2hGcZYlFQLvI12UrqYrhxL_ghtE1oxTqWYofPF0I45DH2xyHF0eYxQDL7I51CcfbQJinnxZuhs6G9f50dfS1KcwW-I0-8y2j65GFZ5bSe1JqcREvTuT9AH-6OHFMbuMXrobZvgyc25i768e7s8mJcnnw6PDl6flJYpnEviwVGhBNWuYcw1riGeW62V59jzqhaNbriqMdaegZBAsa8l46A8YZIoz3bRi03uKg6_RkjZdCE5aFvbwzAmI6c-CKP6v5AoRZiQYoLPbuBYd9CYVQydjVfmtsQJvNwAF4eUIvi_BJv1gszdgia79491Idv1AnK0ob13otxMhJTh8i7axp9GSCYrszxdmONvn_f59_fKHE7--cZbl8zFMMZ-qvue3GtLjatP
CitedBy_id crossref_primary_10_1021_jm0408464
crossref_primary_10_1021_bi902116z
crossref_primary_10_1021_ja101494m
crossref_primary_10_1021_ja4006095
crossref_primary_10_1016_j_bbrc_2004_03_061
crossref_primary_10_1016_j_toxicon_2009_06_009
crossref_primary_10_1128_AAC_01594_10
crossref_primary_10_1007_s10973_018_7445_y
crossref_primary_10_1016_j_virusres_2008_01_001
crossref_primary_10_3390_v8100260
crossref_primary_10_1016_j_jmb_2018_02_027
crossref_primary_10_1093_nar_gku143
crossref_primary_10_1021_acs_chemrev_0c00967
crossref_primary_10_1016_j_jmb_2004_11_007
crossref_primary_10_1016_j_jmb_2008_10_071
crossref_primary_10_1007_s00018_011_0859_3
crossref_primary_10_1021_acs_jpcb_6b08323
crossref_primary_10_1073_pnas_2123092119
crossref_primary_10_1016_j_bbrc_2005_08_274
crossref_primary_10_1016_j_peptides_2012_10_001
crossref_primary_10_4236_ajac_2011_26073
crossref_primary_10_1080_15257770802088902
crossref_primary_10_1016_j_compbiomed_2009_01_011
crossref_primary_10_1111_j_1747_0285_2010_01052_x
crossref_primary_10_1021_acsinfecdis_9b00300
crossref_primary_10_1002_prot_24843
crossref_primary_10_1111_cbdd_12010
crossref_primary_10_1128_JVI_00353_10
crossref_primary_10_1016_j_bpj_2010_11_004
crossref_primary_10_1021_bi900790x
crossref_primary_10_1021_bi901668y
crossref_primary_10_1016_j_ccr_2012_07_006
crossref_primary_10_1016_j_pep_2010_01_001
crossref_primary_10_2217_17584310_3_1_39
crossref_primary_10_1093_nar_gks791
crossref_primary_10_1039_c001097a
crossref_primary_10_1128_AAC_00056_14
crossref_primary_10_1021_jm1014692
crossref_primary_10_1042_BCJ20170480
crossref_primary_10_1016_j_virusres_2007_12_007
crossref_primary_10_1016_j_regpep_2008_06_004
crossref_primary_10_1002_prot_24594
crossref_primary_10_1093_nar_gkv1538
crossref_primary_10_1128_AAC_00658_11
Cites_doi 10.1107/S0907444993002409
10.1074/jbc.M009626200
10.1002/j.1460-2075.1990.tb08224.x
10.1021/ja00076a099
10.1021/bi0160056
10.1007/BF00178264
10.1016/0263-7855(96)00009-4
10.1007/BF00175245
10.1006/jmrb.1994.1032
10.1006/jmrb.1993.1035
10.1006/jmrb.1994.1031
10.1016/0014-5793(91)80613-8
10.1023/A:1008392405740
10.1006/jmrb.1993.1019
10.1093/oxfordjournals.jbchem.a135290
10.1006/jmbi.1994.0053
10.1007/BF00197809
10.1007/BF00404272
10.1007/s007750050009
10.1016/0014-5793(89)81559-5
10.1023/A:1008365802830
10.1111/j.1432-1033.1993.tb17707.x
10.1107/S0907444998003254
10.1016/0014-5793(90)81238-J
10.1002/j.1460-2075.1991.tb07917.x
ContentType Journal Article
Copyright Copyright © 2003 American Chemical Society
Copyright_xml – notice: Copyright © 2003 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7U9
H94
7X8
DOI 10.1021/bi0204894
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 650
ExternalDocumentID 12534276
10_1021_bi0204894
ark_67375_TPS_JWQB4XK8_G
b674816594
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TM
7U9
H94
7X8
ID FETCH-LOGICAL-a380t-1fec268629cd33cdcd1f4a998f40f45b6d9d48b009f3e67e20fb734e8f13718f3
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Thu Oct 02 11:31:00 EDT 2025
Thu Oct 02 12:10:44 EDT 2025
Wed Feb 19 01:35:38 EST 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Oct 01 02:37:46 EDT 2025
Wed Oct 30 09:48:49 EDT 2024
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-1fec268629cd33cdcd1f4a998f40f45b6d9d48b009f3e67e20fb734e8f13718f3
Notes ark:/67375/TPS-JWQB4XK8-G
The authors gratefully acknowledge support from the NIEHS intramural AIDS program. K.P. is the recipient of the National Institutes of Health Visiting Fellowship.
istex:7A818AC96037FF2EC7D709396F22953934DD965C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 12534276
PQID 18813676
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_72961329
proquest_miscellaneous_18813676
pubmed_primary_12534276
crossref_primary_10_1021_bi0204894
crossref_citationtrail_10_1021_bi0204894
istex_primary_ark_67375_TPS_JWQB4XK8_G
acs_journals_10_1021_bi0204894
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-01-28
PublicationDateYYYYMMDD 2003-01-28
PublicationDate_xml – month: 01
  year: 2003
  text: 2003-01-28
  day: 28
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2003
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pascal S. M. (bi0204894b00030/bi0204894b00030_1) 1994; 103
Leech A. P. (bi0204894b00049/bi0204894b00049_1) 1993; 212
Huang H. (bi0204894b00008/bi0204894b00008_1) 1998
Chattopadhyay D. (bi0204894b00013/bi0204894b00013_1) 1993; 49
Kay L. E. (bi0204894b00034/bi0204894b00034_1) 1994; 109
Yang W. (bi0204894b00020/bi0204894b00020_1) 1995
Nakamura H. (bi0204894b00018/bi0204894b00018_1) 1991
Powers R. (bi0204894b00015/bi0204894b00015_1) 1991; 221
Becerra S. P. (bi0204894b00004/bi0204894b00004_1) 1990; 270
Goedken E. R. (bi0204894b00024/bi0204894b00024_1) 2001; 276
Davies J. F., II (bi0204894b00012/bi0204894b00012_1) 1991; 252
Levy L. A. (bi0204894b00045/bi0204894b00045_1) 1988
Wishart D. S. (bi0204894b00037/bi0204894b00037_1) 1994; 4
Koradi R. (bi0204894b00028/bi0204894b00028_1) 1996; 14
Johnson B. A. (bi0204894b00027/bi0204894b00027_1) 1994; 4
Hostomsky Z. H., Z. (bi0204894b00005/bi0204894b00005_1) 1991
Laskowski R. A. (bi0204894b00052/bi0204894b00052_1) 1998
Arts E. J. (bi0204894b00025/bi0204894b00025_1) 1998
Oda Y. (bi0204894b00017/bi0204894b00017_1) 1991; 1
Wishart D. S. (bi0204894b00038/bi0204894b00038_1) 1992
Cristofaro J. V. (bi0204894b00044/bi0204894b00044_1) 2002
Linge J. P. (bi0204894b00042/bi0204894b00042_1) 1999; 13
Cirino N. M. (bi0204894b00022/bi0204894b00022_1) 1995
Ren J. (bi0204894b00010/bi0204894b00010_1) 1995
Kern G. (bi0204894b00016/bi0204894b00016_1) 1998
Stammers D. K. (bi0204894b00006/bi0204894b00006_1) 1991; 283
Vuister G. W. (bi0204894b00035/bi0204894b00035_1) 1993; 101
Grzesiek S. (bi0204894b00031/bi0204894b00031_1) 1993; 101
Tisdale M. S., T. (bi0204894b00003/bi0204894b00003_1) 1991; 72
Ren J. (bi0204894b00009/bi0204894b00009_1) 1995
Takimoto K. (bi0204894b00048/bi0204894b00048_1) 1985; 98
Nilges M. (bi0204894b00040/bi0204894b00040_1) 1997
Heinonen E. (bi0204894b00046/bi0204894b00046_1) 1987; 898
Nilges M. (bi0204894b00039/bi0204894b00039_1) 1995; 245
Nilges M. (bi0204894b00041/bi0204894b00041_1) 1998
Cornilescu G. (bi0204894b00036/bi0204894b00036_1) 1999; 13
Beese L. S. (bi0204894b00019/bi0204894b00019_1) 1991; 10
Sarafianos S. G. (bi0204894b00011/bi0204894b00011_1) 1999
Evans D. B. (bi0204894b00007/bi0204894b00007_1) 1991; 266
Schatz O. (bi0204894b00001/bi0204894b00001_1) 1989; 257
Brunger A. T. (bi0204894b00043/bi0204894b00043_1) 1998; 54
bi0204894b00051/bi0204894b00051_1
Wilkie J. (bi0204894b00050/bi0204894b00050_1) 1995; 1
Delaglio F. (bi0204894b00026/bi0204894b00026_1) 1995; 6
Yamazaki T. (bi0204894b00033/bi0204894b00033_1) 1993; 115
Grubbs R. D. (bi0204894b00047/bi0204894b00047_1) 1987
Katayanagi K. (bi0204894b00023/bi0204894b00023_1) 1993
Cowan J. A. (bi0204894b00021/bi0204894b00021_1) 2000; 5
Muhandiram D. R. (bi0204894b00029/bi0204894b00029_1) 1994; 103
Powers R. (bi0204894b00014/bi0204894b00014_1) 1992
Schatz O. (bi0204894b00002/bi0204894b00002_1) 1990; 9
Logan T. M. (bi0204894b00032/bi0204894b00032_1) 1993; 3
Abbreviations (bi0204894n00001/bi0204894n00001_1)
References_xml – volume: 1
  year: 1991
  ident: bi0204894b00017/bi0204894b00017_1
  publication-title: J. Biomol. NMR
– volume: 49
  year: 1993
  ident: bi0204894b00013/bi0204894b00013_1
  publication-title: Acta Crystallogr., Sect. D
  doi: 10.1107/S0907444993002409
– volume: 276
  year: 2001
  ident: bi0204894b00024/bi0204894b00024_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M009626200
– volume: 1
  year: 1995
  ident: bi0204894b00050/bi0204894b00050_1
  publication-title: J. Chem. Soc., Perkin Trans.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 88, 1148−1152
  year: 1991
  ident: bi0204894b00005/bi0204894b00005_1
– volume-title: Biochemistry 31, 9150−9157
  year: 1992
  ident: bi0204894b00014/bi0204894b00014_1
– volume-title: Proteins 17, 337−346
  year: 1993
  ident: bi0204894b00023/bi0204894b00023_1
– volume-title: Biochemistry 27, 4041−4048
  year: 1988
  ident: bi0204894b00045/bi0204894b00045_1
– volume: 221
  year: 1991
  ident: bi0204894b00015/bi0204894b00015_1
  publication-title: J. Mol. Biol.
– volume-title: Biochemistry 31, 1647−1651
  year: 1992
  ident: bi0204894b00038/bi0204894b00038_1
– volume-title: Curr. Opin. Struct. Biol. 8, 631−639
  year: 1998
  ident: bi0204894b00052/bi0204894b00052_1
– volume-title: S53−S57.
  year: 1997
  ident: bi0204894b00040/bi0204894b00040_1
– volume: 252
  start-page: 95
  year: 1991
  ident: bi0204894b00012/bi0204894b00012_1
  publication-title: Science
– volume: 9
  year: 1990
  ident: bi0204894b00002/bi0204894b00002_1
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1990.tb08224.x
– volume-title: Science 282, 1669−1675
  year: 1998
  ident: bi0204894b00008/bi0204894b00008_1
– volume: 115
  year: 1993
  ident: bi0204894b00033/bi0204894b00033_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00076a099
– volume-title: Nat. Struct. Biol. 2, 293−302
  year: 1995
  ident: bi0204894b00010/bi0204894b00010_1
– ident: bi0204894b00051/bi0204894b00051_1
  doi: 10.1021/bi0160056
– volume-title: Protein Sci. 7, 2164−2174
  year: 1998
  ident: bi0204894b00016/bi0204894b00016_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 88, 11535−11539
  year: 1991
  ident: bi0204894b00018/bi0204894b00018_1
– volume: 72
  start-page: 66
  year: 1991
  ident: bi0204894b00003/bi0204894b00003_1
  publication-title: J. Gen. Virol.
– volume: 3
  year: 1993
  ident: bi0204894b00032/bi0204894b00032_1
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00178264
– volume: 14
  start-page: 55
  year: 1996
  ident: bi0204894b00028/bi0204894b00028_1
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00009-4
– volume-title: Prog. Nucleic Acid Res. Mol. Biol. 58, 339−393
  year: 1998
  ident: bi0204894b00025/bi0204894b00025_1
– volume-title: R137−R146.
  year: 1999
  ident: bi0204894b00011/bi0204894b00011_1
– volume-title: Biochemistry 34, 9936−9943
  year: 1995
  ident: bi0204894b00022/bi0204894b00022_1
– volume: 4
  year: 1994
  ident: bi0204894b00037/bi0204894b00037_1
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00175245
– volume: 103
  year: 1994
  ident: bi0204894b00029/bi0204894b00029_1
  publication-title: J. Magn. Reson., Ser. B
  doi: 10.1006/jmrb.1994.1032
– volume: 266
  year: 1991
  ident: bi0204894b00007/bi0204894b00007_1
  publication-title: J. Biol. Chem.
– volume: 101
  year: 1993
  ident: bi0204894b00035/bi0204894b00035_1
  publication-title: J. Magn. Reson., Ser. B
  doi: 10.1006/jmrb.1993.1035
– volume: 898
  year: 1987
  ident: bi0204894b00046/bi0204894b00046_1
  publication-title: Biochim. Biophys. Acta
– volume: 103
  year: 1994
  ident: bi0204894b00030/bi0204894b00030_1
  publication-title: J. Magn. Reson., Ser. B
  doi: 10.1006/jmrb.1994.1031
– volume: 283
  year: 1991
  ident: bi0204894b00006/bi0204894b00006_1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(91)80613-8
– volume: 13
  year: 1999
  ident: bi0204894b00036/bi0204894b00036_1
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008392405740
– volume: 101
  year: 1993
  ident: bi0204894b00031/bi0204894b00031_1
  publication-title: J. Magn. Reson., Ser. B
  doi: 10.1006/jmrb.1993.1019
– volume: 98
  year: 1985
  ident: bi0204894b00048/bi0204894b00048_1
  publication-title: J. Biochem. (Tokyo)
  doi: 10.1093/oxfordjournals.jbchem.a135290
– volume-title: human immunodeficiency virus type 1
  ident: bi0204894n00001/bi0204894n00001_1
– volume-title: Magnesium 6, 113−127
  year: 1987
  ident: bi0204894b00047/bi0204894b00047_1
– volume: 109
  year: 1994
  ident: bi0204894b00034/bi0204894b00034_1
  publication-title: J. Magn. Reson., Ser. A
– volume: 245
  year: 1995
  ident: bi0204894b00039/bi0204894b00039_1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.0053
– volume: 6
  year: 1995
  ident: bi0204894b00026/bi0204894b00026_1
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00197809
– volume-title: Biochemistry 41, 10968−10975
  year: 2002
  ident: bi0204894b00044/bi0204894b00044_1
– volume: 4
  year: 1994
  ident: bi0204894b00027/bi0204894b00027_1
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00404272
– volume: 5
  start-page: 74
  year: 2000
  ident: bi0204894b00021/bi0204894b00021_1
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s007750050009
– volume-title: Structure 3, 915−926
  year: 1995
  ident: bi0204894b00009/bi0204894b00009_1
– volume: 257
  year: 1989
  ident: bi0204894b00001/bi0204894b00001_1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(89)81559-5
– volume: 13
  start-page: 59
  year: 1999
  ident: bi0204894b00042/bi0204894b00042_1
  publication-title: J. Biomol. NMR
  doi: 10.1023/A:1008365802830
– volume-title: Structure 3, 131−134
  year: 1995
  ident: bi0204894b00020/bi0204894b00020_1
– volume: 212
  year: 1993
  ident: bi0204894b00049/bi0204894b00049_1
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1993.tb17707.x
– volume: 54
  year: 1998
  ident: bi0204894b00043/bi0204894b00043_1
  publication-title: Acta Crystallogr., Sect. D
  doi: 10.1107/S0907444998003254
– volume-title: Prog. NMR Spectrosc. 32, 107−139
  year: 1998
  ident: bi0204894b00041/bi0204894b00041_1
– volume: 270
  start-page: 80
  year: 1990
  ident: bi0204894b00004/bi0204894b00004_1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)81238-J
– volume: 10
  start-page: 33
  year: 1991
  ident: bi0204894b00019/bi0204894b00019_1
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07917.x
SSID ssj0004074
Score 1.960024
Snippet This paper presents the first solution structure of the RNase H domain of HIV-1 reverse transcriptase (RT) determined by NMR methods. The solution conditions...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 639
SubjectTerms Binding Sites
Cations, Divalent - chemistry
HIV Reverse Transcriptase - chemistry
Magnesium - chemistry
Models, Chemical
Nuclear Magnetic Resonance, Biomolecular - methods
Peptide Fragments - chemistry
Protein Conformation
Protein Structure, Tertiary
Ribonuclease H - chemistry
Solutions
Titrimetry
Title Solution Structure of the RNase H Domain of the HIV-1 Reverse Transcriptase in the Presence of Magnesium
URI http://dx.doi.org/10.1021/bi0204894
https://api.istex.fr/ark:/67375/TPS-JWQB4XK8-G/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/12534276
https://www.proquest.com/docview/18813676
https://www.proquest.com/docview/72961329
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Publications
  customDbUrl:
  eissn: 1520-4995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004074
  issn: 0006-2960
  databaseCode: ACS
  dateStart: 19620101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7QFeBmx8lI9hAZp48UhsJ3YeS8coQ5vGukHfItuxRzWaoq2VgL-es5t0IFZ4jX6JHN_Zd-e7-xngpZNaSJ8lVGY-o8J5QwumU6qZ0t5bjKBjV9rBYd4_FfvDbLgCL5Zk8Fn62oxC_6YqxA1YY7mUoW6v2xtcNT8mDdUyhsYM_fGWPuj3V4PpsZd_mJ61MIvfl_uV0b7s3YbdtktnXlZyvjObmh3782_Sxn8N_Q6sN_4l6c4V4i6suHoDNrs1xtbjH2SbxIrPeJS-ATd77W1vm_ClPR8jg8goO7twZOIJuofk-BAtHemT3clYj-r2af_9J5qSYxfKOhyJJi9uQAGLqAA5iq1NNn7oQJ_hpjqaje_B6d7bk16fNrcwUM1VMqWpd5aFPpLCVpzbylapFxqjNC8SLzKTV0UlFK7ewnOXS8cSbyQXTvmUo-Hz_D6s1pPaPQQStEJwUykptMiTAl3mkKbjxnBWaCY6sIViKptVdFnGBDlLy8U8duBVK8HSNhzm4SqNr9dBny-g3-bEHdeBtqMaLBD64jxUusmsPDkalPufP74Rww-qfNeBZ62elCiYkFTRtZvMcIxKRda75QgMX9BnYkUHHswV7Go8LOOCyfzR__77MdyKRYRJSpl6AquoCO4pOkNTsxUXwy9xf_8c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagPZQLj5ZHeLQWQhUXl_Vjd73HECjbR6LSpDQ3y96126hkg5pEAn49Y2c3AdQKrqtZa2yPPTOemW8QemNTLVIXRySNXUyEdYZkTFOimdTOFeBBh6q0bi_Jz8ThMB7WMDm-FgaYmMJI0xDEX6EL0Hdm5Ms4ZSbuovU4EdQ7Wu1Of1UDGdWIy-AhMzDLGxSh33_1GqiY_qGB1v1ifr_dvAxqZv_Bol9RYDBkl1ztzWdmr_j5F3bj_83gIbpfW5u4vRCPR-iOrTbRVrsCT3v8A-_ikP8ZHtY30Uan6f22hS6b1zLcD_iy82uLJw6DsYhPe6D3cI4_TMZ6VDVf84MvhOJT65M8LA4KMFxHnhaoPMlJKHQqwkBdfQFX7Gg-fozO9j8OOjmpezIQzWU0I9TZgvmqkqwoOS_KoqROaPDZnIiciE1SZqWQcJYzx22SWhY5k3JhpaMc1KDjT9BaNansM4S9jAhuSpkKLZIoAwPaB-24MZxlmokW2oZlVPWZmqoQLmdULdexhd42G6mKGtHcN9b4ehPp6yXptwWMx01Eu0EalhT6-srnvaWxGpz01eH55_dieCTVpxbaacRFwcb4EIuu7GQOPEoZMPBupwBnBiwolrXQ04WcrfhhMRcsTZ7_a947aCMfdI_V8UHv6AW6F9ILI0qYfInWQCjsKzCTZmY7nI9fqfYHjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEvfGx8lI_NQmjixSOxncR5HB2l21gp6zb6FtmODdVoOq2tBPz1nN2kA7QJXqNfrLN957vzfRjglc2UyFwS0SxxCRXWaZozFVPFpHLOoAcdqtIOe2n3ROwPk2HtKPpaGCRiiiNNQxDfS_V56eoOA_EbPfKlnDIXN2E1SVHEvSnUHlzWQUZ112X0khma5k0nod9_9VrITP_QQqt-Qb9fb2IGVdO5Bx-XRIYMk7Pt-Uxvm59_9W_8_1nch7u11Ul2FmzyAG7Yag3Wdyr0uMc_yBYJeaDhgn0NbrebN-DW4Wtza0YGoc_s_MKSiSNoNJKjHuo_0iW7k7EaVc3X7t4pjcmR9ckelgRFGI4lj0WUh_RDwZMJAx2qL3jUjubjh3DSeXfc7tL6bQaquIxmNHbWMF9dkpuSc1OaMnZCoe_mROREotMyL4VEmc4dt2lmWeR0xoWVLuaoDh1_BCvVpLJPgHheEVyXMhNKpFGOhrQP3nGtOcsVEy3YwKUsatmaFiFszuJiuY4teN1sZmHqzub-gY1vV0FfLqHni3YeV4G2AkcsEerizOe_ZUlx3B8U-58_vRXDA1m8b8FmwzIFbowPtajKTuZIo5ShF971CHRq0JJieQseL3jtkh6WcMGy9Om_5r0Jt_q7neLDXu_gGdwJWYZRTJl8DivIE_YFWkszvRFE5BdbVgoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+Structure+of+the+RNase+H+Domain+of+the+HIV-1+Reverse+Transcriptase+in+the+Presence+of+Magnesium&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Pari%2C+K&rft.au=Mueller%2C+G+A&rft.au=DeRose%2C+E+F&rft.au=Kirby%2C+T+W&rft.date=2003-01-28&rft.issn=0006-2960&rft.volume=42&rft.issue=3&rft.spage=639&rft.epage=650&rft_id=info:doi/10.1021%2Fbi0204894&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon