Modeling the Protonation States of the Catalytic Aspartates in β-Secretase
β-Secretase (BACE) is a critical enzyme in the production of β-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD). There are two aspartic acid residues (Asp 32 and Asp 228) present in the catalytic region of BACE that can adopt multiple protonation stat...
Saved in:
Published in | Journal of medicinal chemistry Vol. 47; no. 21; pp. 5159 - 5166 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
07.10.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2623 1520-4804 |
DOI | 10.1021/jm049817j |
Cover
Abstract | β-Secretase (BACE) is a critical enzyme in the production of β-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD). There are two aspartic acid residues (Asp 32 and Asp 228) present in the catalytic region of BACE that can adopt multiple protonation states. The protonation state and precise location of the protons for these two residues, particularly in the presence of an inhibitor, are subjects of great interest since they have a direct bearing on the mechanism of aspartyl proteases and efforts to model β-secretase. We have carried out full liner-scaling quantum mechanical (QM) calculations that include Poisson−Boltzmann solvation in order to identify the preferred protonation state and proton location in the presence and absence of an inhibitor. These calculations favor the monoprotonated state in the presence of ligand, and di-deprotonated state in the absence of ligand. Further the proton in the monoprotonated state is located on the inner oxygen of Asp 228. These results have implications for the catalytic mechanism of BACE and related aspartyl proteases. They also provide a reference state for the protein in structure-based modeling studies of this therapeutically important target. |
---|---|
AbstractList | β-Secretase (BACE) is a critical enzyme in the production of β-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD). There are two aspartic acid residues (Asp 32 and Asp 228) present in the catalytic region of BACE that can adopt multiple protonation states. The protonation state and precise location of the protons for these two residues, particularly in the presence of an inhibitor, are subjects of great interest since they have a direct bearing on the mechanism of aspartyl proteases and efforts to model β-secretase. We have carried out full liner-scaling quantum mechanical (QM) calculations that include Poisson−Boltzmann solvation in order to identify the preferred protonation state and proton location in the presence and absence of an inhibitor. These calculations favor the monoprotonated state in the presence of ligand, and di-deprotonated state in the absence of ligand. Further the proton in the monoprotonated state is located on the inner oxygen of Asp 228. These results have implications for the catalytic mechanism of BACE and related aspartyl proteases. They also provide a reference state for the protein in structure-based modeling studies of this therapeutically important target. Beta-secretase (BACE) is a critical enzyme in the production of beta-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD). There are two aspartic acid residues (Asp 32 and Asp 228) present in the catalytic region of BACE that can adopt multiple protonation states. The protonation state and precise location of the protons for these two residues, particularly in the presence of an inhibitor, are subjects of great interest since they have a direct bearing on the mechanism of aspartyl proteases and efforts to model beta-secretase. We have carried out full liner-scaling quantum mechanical (QM) calculations that include Poisson-Boltzmann solvation in order to identify the preferred protonation state and proton location in the presence and absence of an inhibitor. These calculations favor the monoprotonated state in the presence of ligand, and di-deprotonated state in the absence of ligand. Further the proton in the monoprotonated state is located on the inner oxygen of Asp 228. These results have implications for the catalytic mechanism of BACE and related aspartyl proteases. They also provide a reference state for the protein in structure-based modeling studies of this therapeutically important target.Beta-secretase (BACE) is a critical enzyme in the production of beta-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD). There are two aspartic acid residues (Asp 32 and Asp 228) present in the catalytic region of BACE that can adopt multiple protonation states. The protonation state and precise location of the protons for these two residues, particularly in the presence of an inhibitor, are subjects of great interest since they have a direct bearing on the mechanism of aspartyl proteases and efforts to model beta-secretase. We have carried out full liner-scaling quantum mechanical (QM) calculations that include Poisson-Boltzmann solvation in order to identify the preferred protonation state and proton location in the presence and absence of an inhibitor. These calculations favor the monoprotonated state in the presence of ligand, and di-deprotonated state in the absence of ligand. Further the proton in the monoprotonated state is located on the inner oxygen of Asp 228. These results have implications for the catalytic mechanism of BACE and related aspartyl proteases. They also provide a reference state for the protein in structure-based modeling studies of this therapeutically important target. Beta-secretase (BACE) is a critical enzyme in the production of beta-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD). There are two aspartic acid residues (Asp 32 and Asp 228) present in the catalytic region of BACE that can adopt multiple protonation states. The protonation state and precise location of the protons for these two residues, particularly in the presence of an inhibitor, are subjects of great interest since they have a direct bearing on the mechanism of aspartyl proteases and efforts to model beta-secretase. We have carried out full liner-scaling quantum mechanical (QM) calculations that include Poisson-Boltzmann solvation in order to identify the preferred protonation state and proton location in the presence and absence of an inhibitor. These calculations favor the monoprotonated state in the presence of ligand, and di-deprotonated state in the absence of ligand. Further the proton in the monoprotonated state is located on the inner oxygen of Asp 228. These results have implications for the catalytic mechanism of BACE and related aspartyl proteases. They also provide a reference state for the protein in structure-based modeling studies of this therapeutically important target. |
Author | Rajamani, Ramkumar Reynolds, Charles H |
Author_xml | – sequence: 1 givenname: Ramkumar surname: Rajamani fullname: Rajamani, Ramkumar – sequence: 2 givenname: Charles H surname: Reynolds fullname: Reynolds, Charles H |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16200650$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15456259$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFuEzEQhi3UiqaFAy-A9gISh6Vje9deH6uIQmkQQSniaE0cGxw2dmo7En0tHoRn6rZJGwn1MnOYb_6Z-eeYHIQYLCGvKLynwOjpcgWN6qhcPiMj2jKomw6aAzICYKxmgvEjcpzzEgA4Zfw5OaJt0wrWqhG5_BIXtvfhZ1V-2WqaYokBi4-hmhUsNlfR3VfGWLC_Kd5UZ3mNaVvzofr3t55Zk2zBbF-QQ4d9ti93-YR8P_9wNf5UT75-vBifTWrkUpVaMkMNM8j5HBCY6dA6hW4OClqmurZbyM5Kh9IoVENYOGEkc7bhTNC5A35C3m511yleb2wueuWzsX2PwcZN1kIoJgDoAL7egZv5yi70OvkVphv9cP4AvNkBmA32LmEwPu85wQBEezfx3ZYzKeacrNsjoO9eoB9fMLCn_7HGl3tLS0LfP9lRbzt8LvbPozSm31pILlt9NZ3pyaX6_O18CvrHfms0WS_jJoXB7Sd0bwGv26NX |
CODEN | JMCMAR |
CitedBy_id | crossref_primary_10_1039_D2RA06246A crossref_primary_10_1021_jm300598e crossref_primary_10_1002_ejoc_200801184 crossref_primary_10_1016_j_str_2005_06_015 crossref_primary_10_1038_s42003_023_05039_y crossref_primary_10_1021_jm901408p crossref_primary_10_1155_2014_598728 crossref_primary_10_1021_jm049133b crossref_primary_10_1016_j_jmgm_2012_12_010 crossref_primary_10_3390_ijms232113098 crossref_primary_10_1016_j_febslet_2006_09_057 crossref_primary_10_1016_j_compbiomed_2022_105422 crossref_primary_10_1021_acs_jcim_7b00207 crossref_primary_10_1016_j_jmgm_2016_10_013 crossref_primary_10_1186_1472_6807_12_21 crossref_primary_10_1371_journal_pcbi_1004341 crossref_primary_10_1002_jcc_23547 crossref_primary_10_1021_ci200366z crossref_primary_10_3109_14756366_2014_1003928 crossref_primary_10_1021_bi200081h crossref_primary_10_1021_jm048973n crossref_primary_10_1021_jm050138y crossref_primary_10_1016_j_jmgm_2016_07_005 crossref_primary_10_1021_ci700223p crossref_primary_10_1021_ct0600060 crossref_primary_10_1016_j_jmgm_2018_07_008 crossref_primary_10_1021_acs_jcim_4c01123 crossref_primary_10_1039_C6CP02097F crossref_primary_10_1021_jp104983a crossref_primary_10_1021_bi100637n crossref_primary_10_1007_s00894_016_2926_z crossref_primary_10_1016_j_jmgm_2016_10_006 crossref_primary_10_1016_j_febslet_2007_07_033 crossref_primary_10_1007_s10822_011_9443_z crossref_primary_10_1016_j_jmgm_2017_07_010 crossref_primary_10_1016_j_drudis_2007_07_006 crossref_primary_10_1016_j_jmgm_2005_10_002 crossref_primary_10_1135_cccc2011035 crossref_primary_10_1016_j_jmgm_2016_04_003 crossref_primary_10_1021_acs_jpcb_4c04085 crossref_primary_10_1007_s00894_013_1821_0 crossref_primary_10_1021_jp811154w crossref_primary_10_1021_acschemneuro_0c00813 crossref_primary_10_1007_s10059_009_0086_z crossref_primary_10_1080_07391102_2017_1393461 crossref_primary_10_1016_j_bmcl_2008_10_096 crossref_primary_10_1002_jcc_24839 crossref_primary_10_1021_ja0573108 crossref_primary_10_1016_j_bbrc_2013_09_081 crossref_primary_10_1021_ci200611t crossref_primary_10_1517_17460441_2_8_1129 crossref_primary_10_1002_ddr_20291 crossref_primary_10_1021_jm101568y crossref_primary_10_1080_07391102_2018_1430619 crossref_primary_10_1016_j_chphi_2024_100754 crossref_primary_10_1016_j_jmgm_2017_06_001 crossref_primary_10_2174_1386207323999200918151331 crossref_primary_10_1016_j_bmcl_2006_11_003 crossref_primary_10_1021_jm301659n |
Cites_doi | 10.1006/jmbi.2000.4057 10.1146/annurev.bb.19.060190.001505 10.1126/science.290.5489.150 10.1021/bi010626h 10.1021/jm990412m 10.1016/S0006-3495(02)75209-0 10.1103/PhysRevB.47.10891 10.1006/jmbi.1996.0026 10.1110/ps.0305203 10.1063/1.1323257 10.1002/pro.5560010303 10.1021/jp990266w 10.1021/ci00012a014 10.1073/pnas.84.20.7009 10.1063/1.473579 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z 10.1021/bi00098a025 10.1021/bi00269a052 10.1074/jbc.M210471200 10.1006/mcne.1999.0811 10.2174/1568026024607490 10.1016/0165-6147(91)90609-V 10.1126/science.7761829 10.1126/science.2548279 10.1021/ja003145e 10.1021/bi00220a023 10.1016/S0197-4580(02)00122-7 10.1103/PhysRevB.50.17611 10.1016/S0166-1280(97)00358-8 10.1016/S0166-1280(97)00050-X 10.1021/ja00214a002 10.1007/BF00117280 10.1021/ja00023a046 10.1073/pnas.79.20.6142 10.1016/S0896-6273(00)00051-9 10.1002/poc.579 10.1021/bi00064a015 10.1152/physrev.2001.81.2.741 10.1016/S0022-2836(02)00197-3 10.1063/1.474404 10.1002/j.1460-2075.1989.tb08340.x 10.1021/jm020513b 10.1021/ar000184m |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Chemical Society 2005 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2004 American Chemical Society – notice: 2005 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/jm049817j |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1520-4804 |
EndPage | 5166 |
ExternalDocumentID | 15456259 16200650 10_1021_jm049817j ark_67375_TPS_LK9JQFP0_W c000798597 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 53G 55A 5GY 5RE 5VS 7~N 9M8 AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GJ GNL IH9 IHE JG JG~ K2 L7B LG6 NHB P2P ROL TN5 UI2 VF5 VG9 W1F WH7 X XFK YZZ ZGI ZY4 --- -~X .GJ AAHBH AAYOK ABJNI ABQRX ABTAH ACGFO ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XSW YQT AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION .55 .HR 1KJ 1WB 3EH 3O- 4.4 6P2 6TJ ABHMW ADXHL IQODW MVM OHT RNS UBC X7M ZE2 CGR CUY CVF ECM EIF NPM VXZ YIN 7X8 |
ID | FETCH-LOGICAL-a379t-72c1c2ca33b0a02c8aef9afb090529858d78e7fa7c9a97c9df6c72fe43261bf03 |
IEDL.DBID | ACS |
ISSN | 0022-2623 |
IngestDate | Thu Sep 04 21:32:08 EDT 2025 Wed Feb 19 01:47:22 EST 2025 Mon Jul 21 09:15:03 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Tue Jul 01 04:11:14 EDT 2025 Wed Oct 30 09:30:49 EDT 2024 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Peptidases Structure activity relation Enzyme Active site Molecular model β-secretase Hydrolases Aspartate Protonation Mechanism of action Modeling Amyloid precursor protein |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a379t-72c1c2ca33b0a02c8aef9afb090529858d78e7fa7c9a97c9df6c72fe43261bf03 |
Notes | ark:/67375/TPS-LK9JQFP0-W istex:D73849ACC4C65DEC81C2664B505FD4EF243B17A5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15456259 |
PQID | 66926001 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66926001 pubmed_primary_15456259 pascalfrancis_primary_16200650 crossref_primary_10_1021_jm049817j crossref_citationtrail_10_1021_jm049817j istex_primary_ark_67375_TPS_LK9JQFP0_W acs_journals_10_1021_jm049817j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-10-07 |
PublicationDateYYYYMMDD | 2004-10-07 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of medicinal chemistry |
PublicationTitleAlternate | J. Med. Chem |
PublicationYear | 2004 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Selkoe D. (jm049817jb00002/jm049817jb00002_1) 2001; 81 Hardy J. (jm049817jb00004/jm049817jb00004_1) 1991; 12 Trylska J. (jm049817jb00036/jm049817jb00036_1) 2002; 83 Stewart J. J. P (jm049817jb00049/jm049817jb00049_1) 1997; 401 Dixon S. L. (jm049817jb00042/jm049817jb00042_1) 1999 Hyland L. J. (jm049817jb00009/jm049817jb00009_1) 1991; 30 Silva A. M. (jm049817jb00037/jm049817jb00037_1) 1996; 255 Vassar R. (jm049817jb00001/jm049817jb00001_1) 2000; 27 Hussain I. (jm049817jb00008/jm049817jb00008_1) 1999; 14 Hyland L. J. (jm049817jb00039/jm049817jb00039_1) 1991; 30 Yang W. (jm049817jb00043/jm049817jb00043_1) 1995; 103 Yamazaki T. (jm049817jb00038/jm049817jb00038_1) 1994; 116 Veerapandian B. (jm049817jb00018/jm049817jb00018_1) 1992; 1 Gogonea V. (jm049817jb00054/jm049817jb00054_1) 1999; 103 Lee H. (jm049817jb00029/jm049817jb00029_1) 1996; 118 Venturini A. (jm049817jb00032/jm049817jb00032_1) 1998; 120 Leung D. (jm049817jb00007/jm049817jb00007_1) 2000; 43 Sharp K. (jm049817jb00051/jm049817jb00051_1) 1990; 19 van Gunsteren W. F. (jm049817jb00031/jm049817jb00031_1) 1998; 432 James M. N. G. (jm049817jb00013/jm049817jb00013_1) 1982; 79 Sali A. (jm049817jb00016/jm049817jb00016_1) 1989; 8 First Discovery (jm049817jb00057/jm049817jb00057_1) Roggo A (jm049817jb00003/jm049817jb00003_1) 2002; 2 Cho Y. (jm049817jb00022/jm049817jb00022_1) 1994; 33 Piana S. (jm049817jb00033/jm049817jb00033_1) 2000 Coates L. (jm049817jb00019/jm049817jb00019_1) 2001; 40 Smith R. (jm049817jb00024/jm049817jb00024_1) 1996; 3 Jorgensen W. L. (jm049817jb00058/jm049817jb00058_1) 1988; 110 Beveridge A. J. (jm049817jb00025/jm049817jb00025_1) 1993; 32 Bott R. (jm049817jb00012/jm049817jb00012_1) 1982; 21 Schroeder S. (jm049817jb00059/jm049817jb00059_1) 1991; 113 Suguna K. (jm049817jb00015/jm049817jb00015_1) 1987; 84 Toulokhonova L. (jm049817jb00023/jm049817jb00023_1) 2003; 278 Foundling S. I. (jm049817jb00014/jm049817jb00014_1) 1987 Storer J. W. (jm049817jb00053/jm049817jb00053_1) 1995; 9 Harte W. E. (jm049817jb00026/jm049817jb00026_1) 1993; 115 Liu H. (jm049817jb00030/jm049817jb00030_1) 1996; 261 Li X. P. (jm049817jb00044/jm049817jb00044_1) 1993; 47 Li J. (jm049817jb00052/jm049817jb00052_1) 1998; 102 Citron M (jm049817jb00005/jm049817jb00005_1) 2002; 23 Diez (jm049817jb00060/jm049817jb00060_1) 2003; 16 Northrop D (jm049817jb00040/jm049817jb00040_1) 2001; 34 Goldblum A. (jm049817jb00028/jm049817jb00028_1) 1993; 33 Honig B. (jm049817jb00050/jm049817jb00050_1) 1995; 268 Wlodawer A. (jm049817jb00011/jm049817jb00011_1) 1989; 245 Park H. (jm049817jb00041/jm049817jb00041_1) 2003; 125 Piana S. (jm049817jb00034/jm049817jb00034_1) 2001; 123 Erskine P. T. (jm049817jb00021/jm049817jb00021_1) 2003; 12 Hong L. (jm049817jb00006/jm049817jb00006_1) 2000; 290 van der Vaart A. (jm049817jb00055/jm049817jb00055_1) 2000; 113 Yon J. (jm049817jb00056/jm049817jb00056_1) 2003 Cheng X. (jm049817jb00027/jm049817jb00027_1) 1995; 38 Nunes R. W. (jm049817jb00045/jm049817jb00045_1) 1994; 50 Millam J. M. (jm049817jb00047/jm049817jb00047_1) 1997; 106 Tounge B. A. (jm049817jb00061/jm049817jb00061_1) 2003; 46 Coates L. (jm049817jb00020/jm049817jb00020_1) 2002; 318 Ido E. (jm049817jb00010/jm049817jb00010_1) 1991; 266 Stewart J. J. P (jm049817jb00048/jm049817jb00048_1) 1996; 58 Jaskolski M. (jm049817jb00017/jm049817jb00017_1) 1991; 30 Wang W. (jm049817jb00035/jm049817jb00035_1) 2000; 303 Daniels A. D. (jm049817jb00046/jm049817jb00046_1) 1997; 107 |
References_xml | – volume: 33 start-page: 9642 year: 1994 ident: jm049817jb00022/jm049817jb00022_1 publication-title: Biochemistry – volume: 303 start-page: 582 year: 2000 ident: jm049817jb00035/jm049817jb00035_1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4057 – volume: 116 start-page: 10792 year: 1994 ident: jm049817jb00038/jm049817jb00038_1 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 332 year: 1990 ident: jm049817jb00051/jm049817jb00051_1 publication-title: Annu. Rev. Biophys. Biophys. Chem. doi: 10.1146/annurev.bb.19.060190.001505 – volume: 290 start-page: 153 year: 2000 ident: jm049817jb00006/jm049817jb00006_1 publication-title: Science doi: 10.1126/science.290.5489.150 – volume: 40 start-page: 13157 year: 2001 ident: jm049817jb00019/jm049817jb00019_1 publication-title: Biochemistry doi: 10.1021/bi010626h – volume: 3 start-page: 950 year: 1996 ident: jm049817jb00024/jm049817jb00024_1 publication-title: Nat. Struct. Biol. – volume: 261 start-page: 469 year: 1996 ident: jm049817jb00030/jm049817jb00030_1 publication-title: J. Mol. Biol. – volume: 43 start-page: 341 year: 2000 ident: jm049817jb00007/jm049817jb00007_1 publication-title: J. Med. Chem. doi: 10.1021/jm990412m – volume: 83 start-page: 807 year: 2002 ident: jm049817jb00036/jm049817jb00036_1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75209-0 – volume: 47 start-page: 10891 year: 1993 ident: jm049817jb00044/jm049817jb00044_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.10891 – volume: 125 start-page: 16422 year: 2003 ident: jm049817jb00041/jm049817jb00041_1 publication-title: J. Am. Chem. Soc. – volume: 255 start-page: 346 year: 1996 ident: jm049817jb00037/jm049817jb00037_1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0026 – volume: 12 start-page: 1749 year: 2003 ident: jm049817jb00021/jm049817jb00021_1 publication-title: Protein Sci. doi: 10.1110/ps.0305203 – volume: 113 start-page: 10523 year: 2000 ident: jm049817jb00055/jm049817jb00055_1 publication-title: J. Chem. Phys. doi: 10.1063/1.1323257 – volume: 1 start-page: 328 year: 1992 ident: jm049817jb00018/jm049817jb00018_1 publication-title: Protein Sci. doi: 10.1002/pro.5560010303 – volume: 103 start-page: 5188 year: 1999 ident: jm049817jb00054/jm049817jb00054_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp990266w – volume-title: Funct., Genet. year: 2000 ident: jm049817jb00033/jm049817jb00033_1 – volume: 33 start-page: 274 year: 1993 ident: jm049817jb00028/jm049817jb00028_1 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00012a014 – volume: 84 start-page: 7013 year: 1987 ident: jm049817jb00015/jm049817jb00015_1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.84.20.7009 – volume: 106 start-page: 5569 year: 1997 ident: jm049817jb00047/jm049817jb00047_1 publication-title: J. Chem. Phys. doi: 10.1063/1.473579 – volume: 58 start-page: 133 year: 1996 ident: jm049817jb00048/jm049817jb00048_1 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z – volume: 30 start-page: 8463 year: 1991 ident: jm049817jb00009/jm049817jb00009_1 publication-title: Biochemistry doi: 10.1021/bi00098a025 – volume: 21 start-page: 6962 year: 1982 ident: jm049817jb00012/jm049817jb00012_1 publication-title: Biochemistry doi: 10.1021/bi00269a052 – volume: 266 start-page: 24366 year: 1991 ident: jm049817jb00010/jm049817jb00010_1 publication-title: J. Biol. Chem. – volume: 278 start-page: 4589 year: 2003 ident: jm049817jb00023/jm049817jb00023_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210471200 – volume: 14 start-page: 427 year: 1999 ident: jm049817jb00008/jm049817jb00008_1 publication-title: Mol. Cell. Neurosci. doi: 10.1006/mcne.1999.0811 – volume: 2 start-page: 370 year: 2002 ident: jm049817jb00003/jm049817jb00003_1 publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026024607490 – volume: 38 start-page: 48 year: 1995 ident: jm049817jb00027/jm049817jb00027_1 publication-title: J. Med. Chem. – volume: 103 start-page: 5678 year: 1995 ident: jm049817jb00043/jm049817jb00043_1 publication-title: J. Chem. Phys. – start-page: 327 year: 1987 ident: jm049817jb00014/jm049817jb00014_1 publication-title: Nature – volume: 12 start-page: 388 year: 1991 ident: jm049817jb00004/jm049817jb00004_1 publication-title: Trends Pharmacol. doi: 10.1016/0165-6147(91)90609-V – volume-title: version 2.0 ident: jm049817jb00057/jm049817jb00057_1 – volume: 115 start-page: 3886 year: 1993 ident: jm049817jb00026/jm049817jb00026_1 publication-title: J. Am. Chem. Soc. – volume: 268 start-page: 1149 year: 1995 ident: jm049817jb00050/jm049817jb00050_1 publication-title: Science doi: 10.1126/science.7761829 – volume-title: PA year: 1999 ident: jm049817jb00042/jm049817jb00042_1 – volume: 245 start-page: 621 year: 1989 ident: jm049817jb00011/jm049817jb00011_1 publication-title: Science doi: 10.1126/science.2548279 – volume: 123 start-page: 8737 year: 2001 ident: jm049817jb00034/jm049817jb00034_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003145e – volume: 30 start-page: 1609 year: 1991 ident: jm049817jb00017/jm049817jb00017_1 publication-title: Biochemistry doi: 10.1021/bi00220a023 – volume: 23 start-page: 1022 year: 2002 ident: jm049817jb00005/jm049817jb00005_1 publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(02)00122-7 – start-page: 272 volume-title: PCT Int. Appl year: 2003 ident: jm049817jb00056/jm049817jb00056_1 – volume: 50 start-page: 17611 year: 1994 ident: jm049817jb00045/jm049817jb00045_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17611 – volume: 432 start-page: 14 year: 1998 ident: jm049817jb00031/jm049817jb00031_1 publication-title: J. Mol. Struct. doi: 10.1016/S0166-1280(97)00358-8 – volume: 401 start-page: 195 year: 1997 ident: jm049817jb00049/jm049817jb00049_1 publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/S0166-1280(97)00050-X – volume: 110 start-page: 1666 year: 1988 ident: jm049817jb00058/jm049817jb00058_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00214a002 – volume: 30 start-page: 8453 year: 1991 ident: jm049817jb00039/jm049817jb00039_1 publication-title: Biochemistry – volume: 9 start-page: 110 year: 1995 ident: jm049817jb00053/jm049817jb00053_1 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/BF00117280 – volume: 113 start-page: 8925 year: 1991 ident: jm049817jb00059/jm049817jb00059_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00023a046 – volume: 118 start-page: 3950 year: 1996 ident: jm049817jb00029/jm049817jb00029_1 publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 1831 year: 1998 ident: jm049817jb00052/jm049817jb00052_1 publication-title: J. Phys. Chem. – volume: 79 start-page: 6142 year: 1982 ident: jm049817jb00013/jm049817jb00013_1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.79.20.6142 – volume: 27 start-page: 422 year: 2000 ident: jm049817jb00001/jm049817jb00001_1 publication-title: Neuron doi: 10.1016/S0896-6273(00)00051-9 – volume: 16 start-page: 107 year: 2003 ident: jm049817jb00060/jm049817jb00060_1 publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.579 – volume: 32 start-page: 3333 year: 1993 ident: jm049817jb00025/jm049817jb00025_1 publication-title: Biochemistry doi: 10.1021/bi00064a015 – volume: 81 start-page: 766 year: 2001 ident: jm049817jb00002/jm049817jb00002_1 publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.2.741 – volume: 318 start-page: 1415 year: 2002 ident: jm049817jb00020/jm049817jb00020_1 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00197-3 – volume: 107 start-page: 425 year: 1997 ident: jm049817jb00046/jm049817jb00046_1 publication-title: J. Chem. Phys. doi: 10.1063/1.474404 – volume: 8 start-page: 2188 year: 1989 ident: jm049817jb00016/jm049817jb00016_1 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb08340.x – volume: 46 start-page: 2082 year: 2003 ident: jm049817jb00061/jm049817jb00061_1 publication-title: J. Med. Chem. doi: 10.1021/jm020513b – volume: 120 start-page: 1111 year: 1998 ident: jm049817jb00032/jm049817jb00032_1 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 797 year: 2001 ident: jm049817jb00040/jm049817jb00040_1 publication-title: Acc. Chem. Res. doi: 10.1021/ar000184m |
SSID | ssj0003123 |
Score | 2.09425 |
Snippet | β-Secretase (BACE) is a critical enzyme in the production of β-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease (AD).... Beta-secretase (BACE) is a critical enzyme in the production of beta-amyloid, a protein that has been implicated as a potential cause of Alzheimer's disease... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5159 |
SubjectTerms | Amyloid Precursor Protein Secretases Analytical, structural and metabolic biochemistry Aspartic Acid - chemistry Biological and medical sciences Catalysis Catalytic Domain Endopeptidases - chemistry Enzyme Inhibitors - chemistry Enzymes and enzyme inhibitors Fundamental and applied biological sciences. Psychology Hydrolases Medical sciences Miscellaneous Models, Molecular Pharmacology. Drug treatments Propionates - chemistry Protons Quantum Theory |
Title | Modeling the Protonation States of the Catalytic Aspartates in β-Secretase |
URI | http://dx.doi.org/10.1021/jm049817j https://api.istex.fr/ark:/67375/TPS-LK9JQFP0-W/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15456259 https://www.proquest.com/docview/66926001 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-4804 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003123 issn: 0022-2623 databaseCode: ACS dateStart: 19630101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwED-N7QFeGAwY3WBYgCoeluHYif88ToVq2hAKaif2FjmuLbFBMjWptO5j8UH4TNhx0zKxwUsUKWcrts--n33n3wG8VYkShRE4MtKfViUqjaSVJpqYRFPGrGco9NEWn9nRaXJ8lp6twZs7PPgkfn_-w4FYEfPze7BBmHvx-GcwWi63NCa0owQnzph39EF_FvWmR9c3TM-G78UrHwqpatcbNqSxuBtntvZmuAkfuls7Iczk4mDWFAf6-m8Sx3815RE8XOBNdBgU5DGsmXIL7g-6NG9b0M8CefV8H41Xd7HqfdRH2YrWev4ETnzaNH95HTnMiLJp1VThJBEFwIoq234Z-AOhuasDHbrVahq-fSvRr5_RyGPUxtnNp3A6_DgeHEWLVAyRolw2ESc61kQrSgusMNFCGSuVLbD0nkKRigkXhlvFtVTSPSaWaU6sSRw6jAuL6TNYL6vSPAekpODGCmcGDU2MpAJT7irShNmJiou0B3turPLFVKrz1ktO3C6l67wevOuGMdcLInOfT-P7baKvl6KXgb3jNqF-qwtLCTW98OFuPM3H2Sj_dCKPvwwznH91f3ZDWVZVMtJC3R686rQnd6PoXS-qNNWszhmTPhNA3IPtoFSrsmnYg-78r9m78CCQTOII8xew3kxn5qUDRE2x106I3_5CBKs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgexgvDMatDDYLoYqHZXPiJLYfp4qqrGUKaif2ZjmuLbFLgppUWvez-CH8JnxJGoaG4CUvPrac42Ofzz72dwB4L2JBc0VRoJg9rYpFEjDNVDBXscRpqi1Dob1tcZqOzuKT8-S8ocmxb2FMJyrTUuWC-B27QHh0cW2wLA3JxUOw6RhQLAwaTNerLg4j3DKDR8antyxCv1e1HkhWdzzQplXmjb0RKSqjFO2zWfwdbjq3M9z2-Ytch91tk8vDZZ0fyts_uBz_74-egMcN-oTH3lyeggeq2AFbgzbp2w7oZ57KenUAZ93LrOoA9mHWkVyvnoGxTaJmn7JDgyBhtijr0p8rQg9fYaldycAeD61MG_DYrF0LX_atgD9_BFOLWGvjRZ-Ds-HH2WAUNIkZAoEJqwMSyVBGUmCcI4EiSYXSTOgcMRs3pAmdE6qIFkQywcxnrlNJIq1igxXDXCP8AmwUZaFeASgYJUpT4xQVjhXDFGFiGpJRqucizJMe2DO6483EqriLmUdmz9Iqrwc-tKPJZUNrbrNrXN0n-m4t-t1zedwn1HcmsZYQi0t7-Y0kfJZN-WTMTr4MM8S_mp7dsZmuyTRywLcH9lsj4mYUbSBGFKpcVjxNmc0LEPbAS29bXd3E70hf_-u398HWaPZ5wiefTse74JGnn0QBIm_ARr1YqrcGKtX5npsjvwCm_A0W |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB5BKwEXfgqF5ae1EFpxaEoSJ7F9rBZWpVuVoN2K3iLHsSVaSKpNVmJ5LB6EZ8ITJ7sUFcElF48tZzz2fPbY3wC8kpHkuea-pwWeVkUy9oQR2it0pGiSGGQoxNsWJ8nhaXR0Fp91G0V8C2M7UduW6jaIj7P6sjAdw0Dw5vyrxbM8YOc3YTNG6jeEQqPpauWlQUh7dvDQ-vWeSej3quiFVH3FC22iQr_hrUhZW8UYl9Hi75CzdT3je_Bh1en2xsnF_qLJ99X3P_gc__-v7sPdDoWSA2c2D-CGLrfg9qhP_rYFw9RRWi_3yGz9QqveI0OSrsmulw9hgsnU8Ek7sUiSpPOqqdz5InEwllSmLRnhMdHStkEO7Bo2d2WfS_LzhzdF5NpYb_oITsfvZqNDr0vQ4EnKROOxUAUqVJLS3Jd-qLjURkiT-wLjhzzmBeOaGcmUkMJ-CpMoFhodWcwY5Man27BRVqV-AkQKzrTh1jlqGmlBuU-ZbUiFiSlkkMcD2LH6y7oJVmdt7Dy0e5deeQN43Y9opjp6c8yy8eU60Zcr0UvH6XGd0LA1i5WEnF_gJTgWZ7N0mh1PxNHHcepnn2zPrtjNuskkbAHwAHZ7Q8rsKGJARpa6WtRZkgjMDxAM4LGzr3Xd2O1Mn_7rt3fhVvp2nB2_P5k8gzuOhdL3fPYcNpr5Qr-wiKnJd9pp8gtBlw-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+protonation+states+of+the+catalytic+aspartates+in+%CE%B2-secretase&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=RAJAMANI%2C+Ramkumar&rft.au=REYNOLDS%2C+Charles+H&rft.date=2004-10-07&rft.pub=American+Chemical+Society&rft.issn=0022-2623&rft.volume=47&rft.issue=21&rft.spage=5159&rft.epage=5166&rft_id=info:doi/10.1021%2Fjm049817j&rft.externalDBID=n%2Fa&rft.externalDocID=16200650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2623&client=summon |