Program Synthesis of Sparse Algorithms for Wave Function and Energy Prediction in Grid-Based Quantum Simulations

We have recently shown how program synthesis (PS), or the concept of “self-writing code”, can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resu...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 18; no. 4; pp. 2462 - 2478
Main Author Habershon, Scott
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.04.2022
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.2c00035

Cover

Abstract We have recently shown how program synthesis (PS), or the concept of “self-writing code”, can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ­(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
AbstractList We have recently shown how program synthesis (PS), or the concept of “self-writing code”, can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ­(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
We have recently shown how program synthesis (PS), or the concept of "self-writing code", can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ( ) and PES ( ), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
We have recently shown how program synthesis (PS), or the concept of "self-writing code", can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.We have recently shown how program synthesis (PS), or the concept of "self-writing code", can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
We have recently shown how program synthesis (PS), or the concept of "self-writing code", can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
We have recently shown how program synthesis (PS), or the concept of “self-writing code”, can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
Author Habershon, Scott
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Scott
  orcidid: 0000-0001-5932-6011
  surname: Habershon
  fullname: Habershon, Scott
  email: S.Habershon@warwick.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35293216$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNURB-wZ4UssWFBBr-TbJBK1QdSJYoKYmndOM6MR4md2knR_Pt6mmmBSiBWtuzvHJ177mG257wzWfaa4AXBlHwAHRdrPeoF1RhjJp5lB0TwKq8klXuPd1LuZ4cxrhPBOGUvsn0maMUokQfZcBX8MkCPrjduXJloI_Ituh4gRIOOu6UPdlz1EbU-oB9wa9DZ5PRovUPgGnTqTFhu0FUwjZ1frUPnwTb5J4imQV8ncOOUzG0_dbAF4svseQtdNK9251H2_ez028lFfvnl_PPJ8WUOrJAir6CmQhghSsK44ZyUNWgsCspIUeFacBCsrRuexihEU4BhTBIjW46hMLJs2FFGZt_JDbD5CV2nhmB7CBtFsNq2p1J7atue2rWXNB9nzTDVvWm0cWOAXzoPVv354-xKLf2tqjCucMmSwbudQfA3k4mj6m3UpuvAGT9FRSXHmMu0h4S-fYKu_RRcqiRRgpKSYLJN9Ob3RI9RHhaYADwDOvgYg2n_Z0r5RKLteL-cNJPt_iV8Pwvvfx7S_hW_Axwg0W0
CitedBy_id crossref_primary_10_1021_acs_jctc_4c01312
Cites_doi 10.1063/1.5024869
10.1088/0953-8984/26/18/183001
10.3390/math6010013
10.7551/mitpress/3242.001.0001
10.1038/s41586-020-2649-2
10.1016/j.cplett.2017.01.063
10.3390/molecules26247418
10.1016/S0010-4655(97)00054-4
10.1039/C8SC04228D
10.1088/2632-2153/ab7d30
10.1007/978-3-642-17310-3
10.1002/jcc.24764
10.1038/s41598-021-91035-3
10.1016/0009-2614(92)85330-D
10.1063/1.1560636
10.1002/9783527627400
10.1103/PhysRevLett.108.253002
10.1103/PhysRevB.88.054104
10.1038/s41586-018-0337-2
10.1002/anie.201709686
10.1063/1.462100
10.1038/s41592-020-0772-5
10.1016/0041-5553(67)90144-9
10.1063/5.0062497
10.1103/PhysRevLett.108.058301
10.1016/j.coisb.2017.07.006
10.1039/C9SC02834J
10.1007/BF00175355
10.1063/1.445574
10.1063/1.465576
10.1021/acs.jpca.0c06125
10.1098/rsta.2015.0403
10.1145/2863701
10.1063/1.3617249
10.1021/acs.jctc.7b00507
10.1063/5.0032362
10.1007/s10462-009-9108-7
10.1063/1.4964902
10.1021/acs.jctc.7b00021
10.1063/1.3140272
10.1039/C6CP00415F
10.1016/S0747-7171(85)80010-9
10.1146/annurev-physchem-042018-052331
10.1021/acs.accounts.1c00665
10.1021/acs.jctc.8b00819
10.1038/s41929-018-0056-y
10.1063/1.3077130
10.1063/1.1863935
10.1039/D0SC05765G
10.1063/5.0006498
10.1016/S0370-1573(99)00047-2
10.1021/acs.jpclett.9b03664
10.1063/1.448462
10.1063/1.451245
10.1038/s41597-020-0460-4
10.1007/3-540-45307-5_21
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright American Chemical Society Apr 12, 2022
2022 American Chemical Society 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
– notice: Copyright American Chemical Society Apr 12, 2022
– notice: 2022 American Chemical Society 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acs.jctc.2c00035
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 2478
ExternalDocumentID 10.1021/acs.jctc.2c00035
PMC9009083
35293216
10_1021_acs_jctc_2c00035
a815908256
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
F5P
GGK
GNL
IH9
J9A
JG
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
EJD
IHE
LG6
UNPAY
ID FETCH-LOGICAL-a3765-9ab255e558134e4418bac057231790b54a53fbd493275d7ae3361e6f40a7e68d3
IEDL.DBID UNPAY
ISSN 1549-9618
1549-9626
IngestDate Sun Oct 26 04:14:56 EDT 2025
Tue Sep 30 16:07:14 EDT 2025
Wed Oct 01 14:08:21 EDT 2025
Mon Jun 30 13:08:11 EDT 2025
Thu Jan 02 22:54:08 EST 2025
Tue Jul 01 02:03:24 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
Fri Apr 15 03:57:32 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3765-9ab255e558134e4418bac057231790b54a53fbd493275d7ae3361e6f40a7e68d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5932-6011
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00035
PMID 35293216
PQID 2652181015
PQPubID 2048741
PageCount 17
ParticipantIDs unpaywall_primary_10_1021_acs_jctc_2c00035
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9009083
proquest_miscellaneous_2640046033
proquest_journals_2652181015
pubmed_primary_35293216
crossref_primary_10_1021_acs_jctc_2c00035
crossref_citationtrail_10_1021_acs_jctc_2c00035
acs_journals_10_1021_acs_jctc_2c00035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-12
PublicationDateYYYYMMDD 2022-04-12
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Poli R. (ref44/cit44) 2008
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
Press W. H. (ref42/cit42) 1992
ref16/cit16
Tannor D. J. (ref35/cit35) 2007
ref52/cit52
Miller J. F. (ref7/cit7) 2011
ref23/cit23
ref8/cit8
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
Koza J. R. (ref6/cit6) 1992
ref24/cit24
ref38/cit38
Meyer H.-D. (ref61/cit61) 2009
ref50/cit50
ref54/cit54
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Koza J. R. (ref43/cit43) 1996
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
Koza J. R. (ref31/cit31) 1994; 17
References_xml – ident: ref52/cit52
  doi: 10.1063/1.5024869
– ident: ref10/cit10
  doi: 10.1088/0953-8984/26/18/183001
– ident: ref46/cit46
  doi: 10.3390/math6010013
– start-page: 132
  volume-title: Genetic Programming 1996: Proceedings of the First Annual Conference
  year: 1996
  ident: ref43/cit43
  doi: 10.7551/mitpress/3242.001.0001
– ident: ref45/cit45
  doi: 10.1038/s41586-020-2649-2
– ident: ref51/cit51
  doi: 10.1016/j.cplett.2017.01.063
– ident: ref56/cit56
  doi: 10.3390/molecules26247418
– volume-title: A Field Guide to Genetic Programming
  year: 2008
  ident: ref44/cit44
– ident: ref14/cit14
  doi: 10.1016/S0010-4655(97)00054-4
– ident: ref17/cit17
  doi: 10.1039/C8SC04228D
– ident: ref58/cit58
– ident: ref26/cit26
  doi: 10.1088/2632-2153/ab7d30
– volume: 17
  volume-title: Genetic Programming II
  year: 1994
  ident: ref31/cit31
– volume-title: Cartesian Genetic Programming
  year: 2011
  ident: ref7/cit7
  doi: 10.1007/978-3-642-17310-3
– ident: ref13/cit13
  doi: 10.1002/jcc.24764
– ident: ref8/cit8
  doi: 10.1038/s41598-021-91035-3
– ident: ref41/cit41
  doi: 10.1016/0009-2614(92)85330-D
– ident: ref60/cit60
  doi: 10.1063/1.1560636
– volume-title: Multidimensional quantum dynamics: MCTDH theory and applications
  year: 2009
  ident: ref61/cit61
  doi: 10.1002/9783527627400
– ident: ref29/cit29
  doi: 10.1103/PhysRevLett.108.253002
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.88.054104
– ident: ref11/cit11
  doi: 10.1038/s41586-018-0337-2
– ident: ref12/cit12
  doi: 10.1002/anie.201709686
– ident: ref34/cit34
  doi: 10.1063/1.462100
– ident: ref57/cit57
  doi: 10.1038/s41592-020-0772-5
– ident: ref63/cit63
  doi: 10.1016/0041-5553(67)90144-9
– ident: ref33/cit33
  doi: 10.1063/5.0062497
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.108.058301
– ident: ref4/cit4
  doi: 10.1016/j.coisb.2017.07.006
– ident: ref16/cit16
  doi: 10.1039/C9SC02834J
– ident: ref30/cit30
  doi: 10.1007/BF00175355
– ident: ref36/cit36
  doi: 10.1063/1.445574
– ident: ref39/cit39
  doi: 10.1063/1.465576
– volume-title: SIntroduction to Quantum Mechanics: A Time-Dependent Perspective
  year: 2007
  ident: ref35/cit35
– ident: ref54/cit54
  doi: 10.1021/acs.jpca.0c06125
– ident: ref3/cit3
  doi: 10.1098/rsta.2015.0403
– ident: ref9/cit9
  doi: 10.1145/2863701
– ident: ref49/cit49
  doi: 10.1063/1.3617249
– ident: ref32/cit32
– ident: ref19/cit19
  doi: 10.1021/acs.jctc.7b00507
– ident: ref21/cit21
  doi: 10.1063/5.0032362
– ident: ref5/cit5
  doi: 10.1007/s10462-009-9108-7
– ident: ref50/cit50
  doi: 10.1063/1.4964902
– ident: ref59/cit59
  doi: 10.1021/acs.jctc.7b00021
– ident: ref48/cit48
  doi: 10.1063/1.3140272
– ident: ref15/cit15
  doi: 10.1039/C6CP00415F
– ident: ref2/cit2
  doi: 10.1016/S0747-7171(85)80010-9
– ident: ref22/cit22
  doi: 10.1146/annurev-physchem-042018-052331
– ident: ref55/cit55
  doi: 10.1021/acs.accounts.1c00665
– ident: ref53/cit53
  doi: 10.1021/acs.jctc.8b00819
– volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: ref6/cit6
– volume-title: Numerical Recipes in Fortran 77: The Art of Scientific Computing
  year: 1992
  ident: ref42/cit42
– ident: ref25/cit25
  doi: 10.1038/s41929-018-0056-y
– ident: ref40/cit40
  doi: 10.1063/1.3077130
– ident: ref47/cit47
  doi: 10.1063/1.1863935
– ident: ref18/cit18
  doi: 10.1039/D0SC05765G
– ident: ref20/cit20
  doi: 10.1063/5.0006498
– ident: ref62/cit62
  doi: 10.1016/S0370-1573(99)00047-2
– ident: ref23/cit23
  doi: 10.1021/acs.jpclett.9b03664
– ident: ref37/cit37
  doi: 10.1063/1.448462
– ident: ref38/cit38
  doi: 10.1063/1.451245
– ident: ref24/cit24
  doi: 10.1038/s41597-020-0460-4
– ident: ref1/cit1
  doi: 10.1007/3-540-45307-5_21
SSID ssj0033423
Score 2.384113
Snippet We have recently shown how program synthesis (PS), or the concept of “self-writing code”, can generate novel algorithms that solve the vibrational Schrödinger...
We have recently shown how program synthesis (PS), or the concept of "self-writing code", can generate novel algorithms that solve the vibrational Schrödinger...
We have recently shown how program synthesis (PS), or the concept of “self-writing code”, can generate novel algorithms that solve the vibrational Schrödinger...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2462
SubjectTerms Algorithms
Approximation
Digital video recorders
Eigenvalues
Eigenvectors
Electronic structure
Mathematical analysis
Molecular structure
Numerical methods
Optimization
Potential energy
Representations
Schrodinger equation
Spectroscopy and Excited States
Synthesis
Wave functions
Wave propagation
SummonAdditionalLinks – databaseName: ACS Publications
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgPIwXGN-BgYwEDyClaxI7jh9LtTIhgYbKxN6i80dZti6tmgY0_vqdnTSjFI29RY7txOez72fd-XeEvEn6Co2SlKEGBiEDIcNMMRWaDB-ZElpH7oLz5y_pwRH7dMyPr2hy_vbgx9Ee6Kp3qh3doPZ-r9vkTpwK4cL3BsPxatdNHJOd50ZljnEyylqX5L96cIZIV-uGaANdbgZJbtflHC5-wXT6hwUa3W9SGVWeuNAFnpz16qXq6d-btI43GNwOudcCUTpoNOcBuWXLh2R7uMr_9ojMD5vQLTq-KBElVkVFZxM6nuNJ2NLB9MdsUSxPziuKqJd-h5-WjtBEummmUBq67-8U0sOFcwT50qKkHxeFCT-g3TT0a41TWmPnxXmbQKx6TI5G-9-GB2GbnyEE3JZ4KEHhgcRynkUJs4irMgUa8R9CRiH7ijPgyUQZhhBRcCPAJkka2XTC-iBsmpnkCdkqZ6V9RihPpZBYKowEtJAGDDMpi2LoZwBcy4C8RVHl7fqqcu86j6PcF6L88lZ-AdlbTWquW5Jzl2tjek2Ld12LeUPwcU3d3ZWeXP1KnHIHkxBWBeR19xrnynleoLSz2tVh_pZukgTkaaNW3ccQAaOAojQgYk3hugqOAHz9TVmceCJwiQAZIXRA3neq-d8xPL-hJF-Qu7G76eFpLXfJ1nJR25eIv5bqlV94l_j8K_s
  priority: 102
  providerName: American Chemical Society
Title Program Synthesis of Sparse Algorithms for Wave Function and Energy Prediction in Grid-Based Quantum Simulations
URI http://dx.doi.org/10.1021/acs.jctc.2c00035
https://www.ncbi.nlm.nih.gov/pubmed/35293216
https://www.proquest.com/docview/2652181015
https://www.proquest.com/docview/2640046033
https://pubmed.ncbi.nlm.nih.gov/PMC9009083
https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00035
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9626
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9FAuvCmGUi0SHEByG9u7tvcYooYKiSooBMrJ2leoIXWsOAaVX8_sxjaEoqLerNmH9zHr-daz8y3A86gv0Shx7itBhU9Fwv1UUunrFB-pTJQKbIDzu5P4eErfnrLTLWBtLAw2osKaKufEt6u61LOGYSA4tPKvyjIPKucCuwHbMUMI3oPt6cl48Nlxo1LLOOn-6zXPYeue_FcV1iipatMoXUKalw9M7tRFKS5-iPn8D2s0ug0fu364QyjfDuqVPFA__6J4vHZH78CtBp-SwVqh7sKWKe7BzrC9Fu4-lOP1iS4yuSgQPFZ5RRYzMilxg2zIYP5lscxXZ-cVQTBMPonvhozQctrZJ6LQ5MiFGpLx0vqHnDQvyJtlrv3XaE41eV_jTNdYeX7e3CtWPYDp6OjD8Nhvrm3wBX6tmM-FxH2KYSwNImoQbqVSKISFiCQT3peMChbNpKaIHBOmE2GiKA5MPKN9kZg41dFD6BWLwjwCwmKecJQmmgs0nFpoqmMahKKfCsEU9-AFDlXWLLsqcx71MMicEMcva8bPg8N2fjPVcJ_bKzjmV5R42ZUo17wfV-Tda1Xmd1PCmFn0hGjLg2ddMs6VdciIwixqm4e64N0o8mB3rWHdyxAY4wAFsQfJhu51GSwv-GZKkZ85fnCOuBmRtQevOi39bx8eXyfzE7gZ2igQR3m5B73VsjZPEZut5D7uTYaT_WY9_gLg7Tgh
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8VBexjcEBhgJHkDK1jR2Ej-WaqXANg26ib1F_uqWrUurpgFtf_3ObpJRhga8RY7t2Hfn3M86388Ab8K2RKfEua8EFT4VMfcTSaWvE3ykMlYqsAnOO7vR4IB-PmSHKxDUuTA4iAJ7KlwQ_4pdINi0ZSfKsg4qF_66BbdZRAO73-r2hvXPN7SEdo4ilVriySCpIpN_6sH6I1Us-6NrIPP6WclWmU_F-U8xHv_iiPp34VszBXf-5HSjnMsNdfEbu-N_zfEerFWwlHQXdnQfVkz-AFq9-ja4hzDdWxzkIsPzHDFjkRVkMiLDKe6LDemOjyazbH58VhDEwOS7-GFIHx2mVToRuSZbLsOQ7M1sWMiVZjn5OMu0_wG9qCZfS1RwiZ1nZ9V1YsUjOOhv7fcGfnVbgy_wJ8V8LiRuTwxjSRBSgygrkUIhGkQAGfO2ZFSwcCQ1RcAYMx0LE4ZRYKIRbYvYRIkOH8NqPsnNUyAs4jHH0lhzgf5SC0016roj2okQTHEP3qKo0mq1FakLpHeC1BWi_NJKfh5s1rpNVUV5bm_eGN_Q4l3TYrqg-7ih7nptLldD6UTMgiYEWR68bl6jrmwcRuRmUto61OXshqEHTxbW1XwM8TAKKIg8iJfsrqlg6cCX3-TZsaMF5wiXEVB78L6x0L_O4dk_SvIVtAb7O9vp9qfdL8_hTsfmgDjCy3VYnc9K8wKR2Vy-dGvxErrqNF0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aQ2K8cL8EBhgJHkDK1jS2Ez-OsjJuU1EZ7C3yrSzQpVHTgMav59hNAmVowFvkW-zjY5_POj6fAR7FPYVGSYhQSypDKhMRpoqq0KT4SVWideQCnN_u870D-uqQHa4Ba2NhsBMVtlR5J75b1aWZNAwD0bZL_6wd86D2LrBzcJ5xXOkOEQ3G7QYcO1I7T5NKHflklDbeyT-14GySrlZt0imgefq-5EZdlPLkm5xOfzFGw8vwoRuGv4PyZateqC39_TeGx_8e5xW41MBTsrPUp6uwZotrsDFoX4W7DuVoeaGLjE8KxI5VXpHZhIxLPB9bsjP9NJvni6PjiiAWJh_lV0uGaDjd5BNZGLLrIw3JaO7cQz41L8iLeW7CZ2hNDXlX40TX2Hh-3DwrVt2Ag-Hu-8Fe2LzaEErcrFgopMJjimUsjWJqEW2lSmpEhQgkE9FTjEoWT5ShCBwTZhJp45hHlk9oTyaWpya-CevFrLC3gTAuEoGpiRES7aaRhhpOo77spVIyLQJ4jKLKmlVXZd6h3o8yn4jyyxr5BbDdzm-mG-pz9wLH9IwaT7oa5ZL244yym63K_OxKnzMHnhBsBfCwy8a5cv4YWdhZ7cpQH7sbxwHcWmpY9zPExSigiAeQrOheV8DRgq_mFPmRpwcXCJsRWAfwtNPSv47hzj9K8gFcGD0fZm9e7r--Cxf7LhTE815uwvpiXtt7CNAW6r5fjj8AixY24A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFcypsGSmUkOICUdpPYSXxcqi4VEtWislBOkV9L026z0WYDKr-esTdJWYqKeovGj_gxznzOeD4DvIr6Eo0S574SVPhUJNxPJZW-TvGRykSpwAY4fzyKD8f0wwk7WQPWxsJgIyqsqXJOfLuqSz1pGAaCPSs_U5Z5UDkX2B1YjxlC8B6sj49Gg2-OG5Vaxkn3X695Dlv35L-qsEZJVatG6RrSvH5gcqMuSnH5U0ynf1ij4T340vXDHUI5360Xclf9-ovi8dYdvQ-bDT4lg6VCPYA1UzyEjf32WrhHUI6WJ7rI8WWB4LHKKzKbkOMSN8iGDKbfZ_N8cXpREQTD5Kv4YcgQLaedfSIKTQ5cqCEZza1_yEnzgryf59p_h-ZUk081znSNlecXzb1i1WMYDw8-7x_6zbUNvsCvFfO5kLhPMYylQUQNwq1UCoWwEJFkwvuSUcGiidQUkWPCdCJMFMWBiSe0LxITpzp6Ar1iVpgtICzmCUdporlAw6mFpjqmQSj6qRBMcQ9e41BlzbKrMudRD4PMCXH8smb8PNhr5zdTDfe5vYJjekOJN12Jcsn7cUPe7VZlrpoSxsyiJ0RbHrzsknGurENGFGZW2zzUBe9GkQdPlxrWvQyBMQ5QEHuQrOhel8Hygq-mFPmp4wfniJsRWXvwttPS__bh2W0yP4e7oY0CcZSX29BbzGvzArHZQu40K_E3lew3KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Program+Synthesis+of+Sparse+Algorithms+for+Wave+Function+and+Energy+Prediction+in+Grid-Based+Quantum+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Habershon%2C+Scott&rft.date=2022-04-12&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=18&rft.issue=4&rft.spage=2462&rft_id=info:doi/10.1021%2Facs.jctc.2c00035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon