Landslide susceptibility mapping: improvements in variable weights estimation through machine learning algorithms—a case study of upper Indus River Basin, Pakistan
The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the region have further boosted the importance of the area at national and international scales, yet detailed studies of landslide susceptibility...
Saved in:
| Published in | Environmental earth sciences Vol. 81; no. 4; p. 112 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-6280 1866-6299 |
| DOI | 10.1007/s12665-022-10233-y |
Cover
| Abstract | The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the region have further boosted the importance of the area at national and international scales, yet detailed studies of landslide susceptibility in upper Indus River Basin (UIRB) is still lacking. The aim of this study is to generate and compare landslide susceptibility maps from machine learning algorithms (MLAs) and a traditional geographic information system (GIS) based approach. Past landslide locations are used for model training and testing with data of eleven controlling factors in MLAs, including random forest (RF), support vector machine (SVM), and Naïve Bayes (NB) classifiers. Among the three MLAs, average accuracy of RF model is found between 89 and 90.5%, for SVM the range is between 88 and 90% and for NB the range is between 86 and 87%. The results show that the traditional GIS based weighted overlay technique overestimated vulnerable areas with most of the study area falling in moderate to high susceptible zones. The machine learning models performed much better than the traditional technique as only areas that were identified as most susceptible were locations where landslides had occurred in the past. Within the three ML techniques, RF model’s performance is marginally better than that of the SVM model, but RF and SVM performed significantly better compared to the NB model. The resultant susceptibility maps highlight the areas where safety measures should be taken before installing mega infrastructure projects. |
|---|---|
| AbstractList | The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the region have further boosted the importance of the area at national and international scales, yet detailed studies of landslide susceptibility in upper Indus River Basin (UIRB) is still lacking. The aim of this study is to generate and compare landslide susceptibility maps from machine learning algorithms (MLAs) and a traditional geographic information system (GIS) based approach. Past landslide locations are used for model training and testing with data of eleven controlling factors in MLAs, including random forest (RF), support vector machine (SVM), and Naïve Bayes (NB) classifiers. Among the three MLAs, average accuracy of RF model is found between 89 and 90.5%, for SVM the range is between 88 and 90% and for NB the range is between 86 and 87%. The results show that the traditional GIS based weighted overlay technique overestimated vulnerable areas with most of the study area falling in moderate to high susceptible zones. The machine learning models performed much better than the traditional technique as only areas that were identified as most susceptible were locations where landslides had occurred in the past. Within the three ML techniques, RF model’s performance is marginally better than that of the SVM model, but RF and SVM performed significantly better compared to the NB model. The resultant susceptibility maps highlight the areas where safety measures should be taken before installing mega infrastructure projects. |
| ArticleNumber | 112 |
| Author | Azam, Muhammad Imtiaz, Iqra Umar, Muhammad Latif, Muhammad Ahmed, Rehan |
| Author_xml | – sequence: 1 givenname: Iqra surname: Imtiaz fullname: Imtiaz, Iqra organization: Department of Meteorology, COMSATS University Islamabad (CUI) – sequence: 2 givenname: Muhammad surname: Umar fullname: Umar, Muhammad organization: Department of Meteorology, COMSATS University Islamabad (CUI) – sequence: 3 givenname: Muhammad orcidid: 0000-0002-5448-8465 surname: Latif fullname: Latif, Muhammad email: muhammad_latif@comsats.edu.pk organization: Department of Meteorology, COMSATS University Islamabad (CUI) – sequence: 4 givenname: Rehan surname: Ahmed fullname: Ahmed, Rehan organization: Department of Meteorology, COMSATS University Islamabad (CUI) – sequence: 5 givenname: Muhammad surname: Azam fullname: Azam, Muhammad organization: Faculty of Agricultural Engineering and Technology, PMAS Arid Agricultural University |
| BookMark | eNp9kU1u1TAUhSPUSpS2G2BkiQkDAraTOAkzqPip9CQQgrF149wktyROsJ1XZcYi2AIb60pq-hBIHdQTW9b57s85T5IjO1tMkqeCvxScl6-8kEoVKZcyFVxmWbo9Sk5EpVSqZF0f_XtX_HFy7v0VjycTWc3VSfJ7B7b1I7XI_OoNLoEaGilsbIJlIdu_ZjQtbt7jhDZ4RpbtwRE0I7JrpH6If-gDTRBotiwMbl77IcJmIItsRHA2VmEw9rOjMEz-5ucvYAZ8bBjWdmNzx9ZlQccubbt69oX28f0WPNkX7DN8Jx_AniXHHYwez__ep8m39---XnxMd58-XF682aWQlUVIO1HKSioQuRQtNwahkRmvK1N3edk10BUNNkWOJu9ElwtQDTdZ20rkbZ3zushOk-eHunHjH2vcS08UTRlHsDivXktVFoWq81xE6bN70qt5dTZOF1WyFNFgWUeVPKiMm7132OnFRa_cpgXXf8LTh_B0DE_fhae3CFX3IEPhzt_ggMaH0eyA-tjH9uj-T_UAdQv4qrZy |
| CitedBy_id | crossref_primary_10_1007_s12517_022_10608_2 crossref_primary_10_1007_s11069_022_05748_3 crossref_primary_10_3390_en16186530 crossref_primary_10_1016_j_asr_2023_03_026 crossref_primary_10_1007_s00477_022_02361_5 crossref_primary_10_1016_j_ecoinf_2024_102583 crossref_primary_10_3390_geosciences14060171 crossref_primary_10_1016_j_jhydrol_2024_132562 crossref_primary_10_3390_rs14133029 crossref_primary_10_3389_feart_2022_927102 crossref_primary_10_1007_s12665_024_11571_9 crossref_primary_10_1080_02723646_2023_2250174 |
| Cites_doi | 10.1007/s00704-016-2007-3 10.3390/su9010048 10.1007/s11069-021-05028-6 10.1007/s12040-013-0282-2 10.1080/20964471.2018.1472392 10.1016/j.geomorph.2015.01.029 10.1016/j.cageo.2015.04.007 10.1016/j.enggeo.2006.03.004 10.1016/j.geomorph.2008.02.011 10.1111/1467-9671.00035 10.1130/G33217.1 10.1016/j.geomorph.2009.09.025 10.1007/s12517-012-0807-z 10.1007/s12665-016-5919-4 10.1007/s11069-013-0770-3 10.1007/s10346-015-0614-1 10.1016/j.catena.2015.10.002 10.1007/s11069-012-0321-3 10.1007/BF02590167 10.1016/j.scitotenv.2019.01.329 10.3390/w10081019 10.1016/S0169-555X(98)00051-8 10.1016/j.catena.2011.01.014 10.1016/j.geomorph.2016.02.012 10.1038/srep09899 10.1007/s100640050066 10.5194/nhess-19-999-2019 10.1007/s40808-016-0141-7 10.1007/s11069-012-0361-8 10.1016/j.earscirev.2016.08.011 10.1007/s11069-016-2239-7 10.1007/978-1-4757-2440-0 10.1126/science.1237123 10.1007/s11069-009-9356-5 10.1007/s10346-008-0134-3 10.1007/s10346-013-0391-7 10.1080/19475705.2017.1289250 10.1016/j.cageo.2010.10.012 10.1016/j.scitotenv.2017.02.188 10.2113/gseegeosci.20.1.67 10.5194/nhessd-1-583-2013 10.1007/s10064-015-0773-2 10.1016/j.landusepol.2011.07.003 10.1175/BAMS-D-11-00122.1 10.1007/s12517-012-0610-x 10.1007/s11004-011-9379-9 10.1023/A:1010933404324 10.1007/BF02594720 10.1007/s12665-015-5233-6 10.1007/s40808-017-0361-5 10.1016/j.cageo.2017.11.019 10.1007/s12665-015-4866-9 10.1080/19475705.2016.1220023 10.5194/nhess-13-2815-2013 10.1016/j.ecolmodel.2004.07.012 10.1155/2012/974638 10.1007/s12517-016-2308-y 10.1016/j.scitotenv.2018.06.389 10.3334/ORNLDAAC/1388 10.5067/ASTER/ASTGTM.002 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s12665-022-10233-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-6299 |
| EndPage | 112 |
| ExternalDocumentID | 10_1007_s12665_022_10233_y |
| GeographicLocations | Indus River Pakistan |
| GeographicLocations_xml | – name: Indus River – name: Pakistan |
| GroupedDBID | -5A -5G -BR -DZ -EM -Y2 -~C .4S .DC 06D 0R~ 0VY 199 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40D 40E 4P2 5VS 67M 67Z 6NX 7XC 88I 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR J-C J0Z JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- ML. MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF- PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7V Z7W Z7Y Z7Z Z81 Z83 Z85 ZCG ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PUEGO 7ST 7TG 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a375t-f172826a1421d0cceab23098c9f47fbaf5beb54ec4f1f41a6b0c3dd2e0d940953 |
| IEDL.DBID | BENPR |
| ISSN | 1866-6280 |
| IngestDate | Fri Sep 05 14:15:54 EDT 2025 Fri Jul 25 21:45:57 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Wed Oct 01 01:36:16 EDT 2025 Fri Feb 21 02:47:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Landslides Naïve Bayes Random forest Pakistan Support vector machine Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a375t-f172826a1421d0cceab23098c9f47fbaf5beb54ec4f1f41a6b0c3dd2e0d940953 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5448-8465 |
| PQID | 2627131329 |
| PQPubID | 54063 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2675569441 proquest_journals_2627131329 crossref_primary_10_1007_s12665_022_10233_y crossref_citationtrail_10_1007_s12665_022_10233_y springer_journals_10_1007_s12665_022_10233_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental earth sciences |
| PublicationTitleAbbrev | Environ Earth Sci |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Ahmed, Rogers (CR2) 2014; 20 Kanungo, Arora, Gupta, Sarkar (CR30) 2008; 5 Cruden (CR16) 1991; 43 Naithani (CR40) 1999; 23 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (CR62) 2016; 13 CR36 Alexakis, Agapiou, Tzouvaras, Themistocleous, Neocleous, Michaelides, Hadjimitsis (CR4) 2014; 72 Kanungo, Arora, Sarkar, Gupta (CR29) 2006; 85 Oh, Pradhan (CR42) 2011; 37 Petley (CR44) 2012; 40 Breiman (CR9) 2001; 45 Aleotti, Chowdhury (CR3) 1999; 58 Basharat, Shah, Hameed (CR8) 2016; 9 Ciampalini, Raspini, Bianchini, Frodella, Bardi, Lagomarsino, Di Traglia, Moretti, Proietti, Pagliara, Onori (CR15) 2015; 249 Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (CR47) 2014; 7 Diffenbaugh, Field (CR19) 2013; 341 Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (CR53) 2016; 75 Farooq, David (CR21) 2016; 75 CR41 Pourghasemi, Jirandeh, Pradhan, Xu, Gokceoglu (CR46) 2013; 122 Michael, Samanta (CR39) 2016; 2 Kanungo, Arora, Sarkar, Gupta (CR31) 2009; 2 Shahabi, Hashim (CR49) 2015; 5 Goetz, Brenning, Petschko, Leopold (CR23) 2015; 81 Chen, Zhang, Li, Shahabi (CR14) 2018; 644 Ali, Biermanns, Haider, Reicherter (CR5) 2018 Wang, Bai, Wu, Yu, Hao, Hu (CR57) 2018; 10 Tien Bui, Pradhan, Lofman, Revhaug (CR52) 2012; 2012 He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen, Wang (CR25) 2019; 663 Lee, Hong, Jung (CR35) 2017; 9 Gariano, Guzzetti (CR22) 2016; 162 Pham, Bui, Prakash, Dholakia (CR45) 2016; 10 Varnes (CR56) 1984 Di Martire, Tessitore, Brancato, Ciminelli, Costabile, Costantini, Graziano, Minati, Ramondini, Calcaterra (CR18) 2016; 137 Kanwal, Atif, Shafiq (CR32) 2017; 8 Latif, Yaoming, Yaseen (CR34) 2018; 131 CR17 Menggenang, Samanta (CR38) 2017; 3 Yatagai, Kamiguchi, Arakawa, Hamada, Yasutomi, Kitoh (CR60) 2012; 93 Yao, Tham, Dai (CR59) 2008; 101 Aghdam, Varzandeh, Pradhan (CR1) 2016; 75 Chen, Xie, Peng, Wang, Duan, Hong (CR13) 2017; 8 Zare, Pourghasemi, Vafakhah, Pradhan (CR64) 2013; 6 Panagos, Van Liedekerke, Jones, Montanarella (CR43) 2012; 29 Shirzadi, Saro, Joo, Chapi (CR50) 2012; 64 Guo, Kelly, Graham (CR24) 2005; 182 Falaschi, Giacomelli, Federici, Puccinelli, Avanzi, Pochini, Ribolini (CR20) 2009; 50 Kavzoglu, Sahin, Colkesen (CR33) 2014; 11 Catani, Lagomarsino, Segoni, Tofani (CR11) 2013; 13 Young, Hewitt (CR61) 1990; 90 Chau, Sze, Fung, Wong, Fong, Chan (CR12) 2004; 30 Vapnik (CR54) 1995 Zhou, Yin, Cao, Ahmed, Li, Catani, Pourghasemi (CR66) 2018; 112 Ballabio, Sterlacchini (CR7) 2012; 44 Malczewski (CR37) 2000; 4 Youssef, Pourghasemi, El-Haddad, Dhahry (CR63) 2016; 75 Bai, Wang, Lü, Zhou, Hou, Xu (CR6) 2010; 115 Hewitt (CR26) 1998; 26 Sadiq, Muhammad, Fuchs (CR48) 2021 Taalab, Cheng, Zhang (CR51) 2018; 2 CR500 Yalcin, Reis, Aydinoglu, Yomralioglu (CR58) 2011; 85 Varnes (CR55) 1981; 23 Hong, Pradhan, Jebur, Bui, Xu, Akgun (CR28) 2016; 75 Zêzere, Pereira, Melo, Oliveira, Garcia (CR65) 2017; 589 Butt, Umar, Qamar (CR10) 2013; 65 Hong, Pourghasemi, Pourtaghi (CR27) 2016; 259 D Tien Bui (10233_CR53) 2016; 75 Y Latif (10233_CR34) 2018; 131 AD Regmi (10233_CR47) 2014; 7 DJ Varnes (10233_CR56) 1984 MJ Butt (10233_CR10) 2013; 65 DP Kanungo (10233_CR29) 2006; 85 A Ciampalini (10233_CR15) 2015; 249 Q He (10233_CR25) 2019; 663 X Yao (10233_CR59) 2008; 101 A Yalcin (10233_CR58) 2011; 85 JN Goetz (10233_CR23) 2015; 81 V Vapnik (10233_CR54) 1995 W Chen (10233_CR13) 2017; 8 AM Youssef (10233_CR63) 2016; 75 M Zare (10233_CR64) 2013; 6 10233_CR17 F Falaschi (10233_CR20) 2009; 50 AM Farooq (10233_CR21) 2016; 75 D Petley (10233_CR44) 2012; 40 P Panagos (10233_CR43) 2012; 29 AM Youssef (10233_CR62) 2016; 13 C Ballabio (10233_CR7) 2012; 44 DP Kanungo (10233_CR30) 2008; 5 10233_CR36 DD Alexakis (10233_CR4) 2014; 72 A Shirzadi (10233_CR50) 2012; 64 A Yatagai (10233_CR60) 2012; 93 HR Pourghasemi (10233_CR46) 2013; 122 S Kanwal (10233_CR32) 2017; 8 DJ Varnes (10233_CR55) 1981; 23 P Aleotti (10233_CR3) 1999; 58 M Basharat (10233_CR8) 2016; 9 H Hong (10233_CR27) 2016; 259 L Breiman (10233_CR9) 2001; 45 K Hewitt (10233_CR26) 1998; 26 GJ Young (10233_CR61) 1990; 90 10233_CR41 S Sadiq (10233_CR48) 2021 K Taalab (10233_CR51) 2018; 2 KT Chau (10233_CR12) 2004; 30 IN Aghdam (10233_CR1) 2016; 75 P Menggenang (10233_CR38) 2017; 3 AK Naithani (10233_CR40) 1999; 23 D Tien Bui (10233_CR52) 2012; 2012 BT Pham (10233_CR45) 2016; 10 P Wang (10233_CR57) 2018; 10 Q Guo (10233_CR24) 2005; 182 SL Gariano (10233_CR22) 2016; 162 H Shahabi (10233_CR49) 2015; 5 J Malczewski (10233_CR37) 2000; 4 D Di Martire (10233_CR18) 2016; 137 JL Zêzere (10233_CR65) 2017; 589 HJ Oh (10233_CR42) 2011; 37 H Hong (10233_CR28) 2016; 75 NS Diffenbaugh (10233_CR19) 2013; 341 T Kavzoglu (10233_CR33) 2014; 11 W Chen (10233_CR14) 2018; 644 S Ali (10233_CR5) 2018 DM Cruden (10233_CR16) 1991; 43 MF Ahmed (10233_CR2) 2014; 20 F Catani (10233_CR11) 2013; 13 10233_CR500 S Lee (10233_CR35) 2017; 9 EA Michael (10233_CR39) 2016; 2 C Zhou (10233_CR66) 2018; 112 SB Bai (10233_CR6) 2010; 115 DP Kanungo (10233_CR31) 2009; 2 |
| References_xml | – start-page: 63 year: 1984 ident: CR56 publication-title: Landslide hazard zonation: a review of principles and practice – volume: 131 start-page: 761 issue: 1–2 year: 2018 end-page: 775 ident: CR34 article-title: Spatial analysis of precipitation time series over the Upper Indus Basin publication-title: Theor Appl Climatol doi: 10.1007/s00704-016-2007-3 – volume: 9 start-page: 15 issue: 1 year: 2017 end-page: 19 ident: CR35 article-title: A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea publication-title: Sustainability doi: 10.3390/su9010048 – volume: 10 start-page: 71 issue: 1 year: 2016 end-page: 79 ident: CR45 article-title: Evaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS publication-title: J Geomat – year: 2021 ident: CR48 article-title: Investigation of landslides with natural lineaments derived from integrated manual and automatic techniques applied on geospatial data publication-title: Nat Hazards doi: 10.1007/s11069-021-05028-6 – volume: 122 start-page: 349 issue: 2 year: 2013 end-page: 369 ident: CR46 article-title: Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran publication-title: J Earth Syst Sci doi: 10.1007/s12040-013-0282-2 – volume: 2 start-page: 159 issue: 2 year: 2018 end-page: 178 ident: CR51 article-title: Mapping landslide susceptibility and types using Random Forest publication-title: Big Earth Data doi: 10.1080/20964471.2018.1472392 – volume: 249 start-page: 103 year: 2015 end-page: 118 ident: CR15 article-title: Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.01.029 – volume: 81 start-page: 1 year: 2015 end-page: 11 ident: CR23 article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.04.007 – volume: 85 start-page: 347 issue: 3–4 year: 2006 end-page: 366 ident: CR29 article-title: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas publication-title: Eng Geol doi: 10.1016/j.enggeo.2006.03.004 – volume: 101 start-page: 572 issue: 4 year: 2008 end-page: 582 ident: CR59 article-title: Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 4 start-page: 5 issue: 1 year: 2000 end-page: 22 ident: CR37 article-title: On the use of weighted linear combination method in GIS: Common and best practice approaches publication-title: Trans GIS doi: 10.1111/1467-9671.00035 – volume: 40 start-page: 927 issue: 10 year: 2012 end-page: 930 ident: CR44 article-title: Global patterns of loss of life from landslides publication-title: Geology doi: 10.1130/G33217.1 – volume: 115 start-page: 23 year: 2010 end-page: 31 ident: CR6 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – volume: 7 start-page: 725 issue: 2 year: 2014 end-page: 742 ident: CR47 article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya publication-title: Arab J Geosci doi: 10.1007/s12517-012-0807-z – volume: 75 start-page: 1 issue: 14 year: 2016 end-page: 22 ident: CR53 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5919-4 – volume: 72 start-page: 119 issue: 1 year: 2014 end-page: 141 ident: CR4 article-title: Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus publication-title: Nat Hazards doi: 10.1007/s11069-013-0770-3 – volume: 13 start-page: 839 issue: 5 year: 2016 end-page: 856 ident: CR62 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 137 start-page: 406 year: 2016 end-page: 421 ident: CR18 article-title: Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements publication-title: CATENA doi: 10.1016/j.catena.2015.10.002 – volume: 64 start-page: 1639 issue: 2 year: 2012 end-page: 1656 ident: CR50 article-title: A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran publication-title: Nat Hazards doi: 10.1007/s11069-012-0321-3 – volume: 43 start-page: 27 year: 1991 end-page: 29 ident: CR16 article-title: A simple definition of a landslide publication-title: Bull Int Assoc Eng Geol doi: 10.1007/BF02590167 – ident: CR500 – ident: CR36 – volume: 663 start-page: 1 year: 2019 end-page: 15 ident: CR25 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.329 – volume: 10 start-page: 1019 issue: 8 year: 2018 ident: CR57 article-title: GIS-based random forestweight for rainfall-induced landslide susceptibility assessment at a humid region in Southern China publication-title: Water doi: 10.3390/w10081019 – volume: 26 start-page: 47 issue: 1–3 year: 1998 end-page: 80 ident: CR26 article-title: Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan publication-title: Geomorphology doi: 10.1016/S0169-555X(98)00051-8 – volume: 85 start-page: 274 issue: 3 year: 2011 end-page: 287 ident: CR58 article-title: A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey publication-title: CATENA doi: 10.1016/j.catena.2011.01.014 – volume: 259 start-page: 105 year: 2016 end-page: 118 ident: CR27 article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 2 start-page: 81 issue: 1 year: 2009 end-page: 105 ident: CR31 article-title: Landslide susceptibility zonation (LSZ) mapping–a Review publication-title: J South Asia Disaster Stud – volume: 5 start-page: 1 year: 2015 end-page: 15 ident: CR49 article-title: Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment publication-title: Sci Rep doi: 10.1038/srep09899 – volume: 90 start-page: 139 year: 1990 end-page: 152 ident: CR61 article-title: Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan publication-title: Hydrol Mt Areas – volume: 58 start-page: 21 issue: 1 year: 1999 end-page: 44 ident: CR3 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull Eng Geol Environ doi: 10.1007/s100640050066 – year: 2018 ident: CR5 article-title: Landslide susceptibility mapping by using GIS along the China-Pakistan economic corridor (Karakoram Highway), Pakistan publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-19-999-2019 – volume: 2 start-page: 88 issue: 2 year: 2016 ident: CR39 article-title: Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques publication-title: Modeling Earth Syst Environ doi: 10.1007/s40808-016-0141-7 – volume: 65 start-page: 241 issue: 1 year: 2013 end-page: 254 ident: CR10 article-title: Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan publication-title: Nat Hazards doi: 10.1007/s11069-012-0361-8 – volume: 162 start-page: 227 year: 2016 end-page: 252 ident: CR22 article-title: Landslides in a changing climate publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2016.08.011 – volume: 75 start-page: 63 issue: 1 year: 2016 end-page: 87 ident: CR63 article-title: Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia publication-title: Bull Eng Geol Environ doi: 10.1007/s11069-016-2239-7 – year: 1995 ident: CR54 publication-title: Nature of statistical learning theory doi: 10.1007/978-1-4757-2440-0 – volume: 341 start-page: 486 issue: 6145 year: 2013 end-page: 492 ident: CR19 article-title: Changes in ecologically critical terrestrial climate conditions publication-title: Science doi: 10.1126/science.1237123 – volume: 50 start-page: 551 issue: 3 year: 2009 end-page: 569 ident: CR20 article-title: Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy publication-title: Nat Hazards doi: 10.1007/s11069-009-9356-5 – volume: 5 start-page: 407 issue: 4 year: 2008 end-page: 416 ident: CR30 article-title: Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas publication-title: Landslides doi: 10.1007/s10346-008-0134-3 – volume: 11 start-page: 425 issue: 3 year: 2014 end-page: 439 ident: CR33 article-title: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression publication-title: Landslides doi: 10.1007/s10346-013-0391-7 – volume: 8 start-page: 950 issue: 2 year: 2017 end-page: 973 ident: CR13 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomat Nat Hazards Risk doi: 10.1080/19475705.2017.1289250 – volume: 37 start-page: 1264 issue: 9 year: 2011 end-page: 1276 ident: CR42 article-title: Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area publication-title: Comput Geosci doi: 10.1016/j.cageo.2010.10.012 – volume: 589 start-page: 250 year: 2017 end-page: 267 ident: CR65 article-title: Mapping landslide susceptibility using data-driven methods publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.02.188 – volume: 20 start-page: 67 issue: 1 year: 2014 end-page: 83 ident: CR2 article-title: First-approximation landslide inventory maps for northern Pakistan, using ASTER DEM data and geomorphic indicators publication-title: Environ Eng Geosci doi: 10.2113/gseegeosci.20.1.67 – volume: 30 start-page: 429 issue: 4 year: 2004 end-page: 443 ident: CR12 article-title: Landslide hazard analysis for Hong Kong using landslide inventory and GIS publication-title: Comput Geosci doi: 10.5194/nhessd-1-583-2013 – volume: 75 start-page: 563 issue: 2 year: 2016 end-page: 574 ident: CR21 article-title: Regional level landslide inventory maps of the Shyok River watershed, Northern Pakistan publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0773-2 – volume: 29 start-page: 329 issue: 2 year: 2012 end-page: 338 ident: CR43 article-title: European Soil Data Centre: response to European policy support and public data requirements publication-title: Land Use Policy doi: 10.1016/j.landusepol.2011.07.003 – volume: 93 start-page: 1401 issue: 9 year: 2012 end-page: 1415 ident: CR60 article-title: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-11-00122.1 – volume: 6 start-page: 2873 issue: 8 year: 2013 end-page: 2888 ident: CR64 article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms publication-title: Arab J Geosci doi: 10.1007/s12517-012-0610-x – volume: 44 start-page: 47 issue: 1 year: 2012 end-page: 70 ident: CR7 article-title: Support vector machines for landslide susceptibility mapping: the Staffora River Basin Case Study, Italy publication-title: Math Geosci doi: 10.1007/s11004-011-9379-9 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR9 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 23 start-page: 13 issue: 1 year: 1981 end-page: 14 ident: CR55 article-title: The principles and practice of landslide hazard zonation publication-title: Bull Int Assoc Eng Geol doi: 10.1007/BF02594720 – volume: 75 start-page: 1 issue: 7 year: 2016 end-page: 20 ident: CR1 article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) publication-title: Environ Earth Sci doi: 10.1007/s12665-015-5233-6 – volume: 3 start-page: 1 issue: 3 year: 2017 end-page: 10 ident: CR38 article-title: Modelling and mapping of landslide hazard using remote sensing and GIS techniques publication-title: Modeling Earth Syst Environ doi: 10.1007/s40808-017-0361-5 – volume: 112 start-page: 23 year: 2018 end-page: 37 ident: CR66 article-title: Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China publication-title: Comput Geosci doi: 10.1016/j.cageo.2017.11.019 – ident: CR17 – volume: 75 start-page: 1 issue: 1 year: 2016 end-page: 14 ident: CR28 article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4866-9 – volume: 8 start-page: 348 issue: 2 year: 2017 end-page: 366 ident: CR32 article-title: GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins publication-title: Geomat Nat Hazards Risk doi: 10.1080/19475705.2016.1220023 – volume: 13 start-page: 2815 issue: 11 year: 2013 end-page: 2831 ident: CR11 article-title: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues publication-title: Nat Hazard doi: 10.5194/nhess-13-2815-2013 – volume: 23 start-page: 20 issue: 47 year: 1999 end-page: 26 ident: CR40 article-title: The Himalayan landslides publication-title: Employ News – ident: CR41 – volume: 182 start-page: 75 issue: 1 year: 2005 end-page: 90 ident: CR24 article-title: Support vector machines for predicting distribution of Sudden Oak Death in California publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2004.07.012 – volume: 2012 start-page: 1 year: 2012 end-page: 26 ident: CR52 article-title: Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Nave Bayes models publication-title: Math Probl Eng doi: 10.1155/2012/974638 – volume: 9 start-page: 292 issue: 4 year: 2016 ident: CR8 article-title: Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan publication-title: Arab J Geosci doi: 10.1007/s12517-016-2308-y – volume: 644 start-page: 1006 year: 2018 end-page: 1018 ident: CR14 article-title: Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.389 – volume: 2 start-page: 159 issue: 2 year: 2018 ident: 10233_CR51 publication-title: Big Earth Data doi: 10.1080/20964471.2018.1472392 – volume: 75 start-page: 1 issue: 7 year: 2016 ident: 10233_CR1 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-5233-6 – volume: 75 start-page: 1 issue: 1 year: 2016 ident: 10233_CR28 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4866-9 – ident: 10233_CR17 doi: 10.3334/ORNLDAAC/1388 – volume: 122 start-page: 349 issue: 2 year: 2013 ident: 10233_CR46 publication-title: J Earth Syst Sci doi: 10.1007/s12040-013-0282-2 – volume: 37 start-page: 1264 issue: 9 year: 2011 ident: 10233_CR42 publication-title: Comput Geosci doi: 10.1016/j.cageo.2010.10.012 – volume: 182 start-page: 75 issue: 1 year: 2005 ident: 10233_CR24 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2004.07.012 – volume: 663 start-page: 1 year: 2019 ident: 10233_CR25 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.329 – ident: 10233_CR41 doi: 10.5067/ASTER/ASTGTM.002 – volume: 44 start-page: 47 issue: 1 year: 2012 ident: 10233_CR7 publication-title: Math Geosci doi: 10.1007/s11004-011-9379-9 – year: 2018 ident: 10233_CR5 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-19-999-2019 – volume: 64 start-page: 1639 issue: 2 year: 2012 ident: 10233_CR50 publication-title: Nat Hazards doi: 10.1007/s11069-012-0321-3 – volume: 40 start-page: 927 issue: 10 year: 2012 ident: 10233_CR44 publication-title: Geology doi: 10.1130/G33217.1 – volume: 341 start-page: 486 issue: 6145 year: 2013 ident: 10233_CR19 publication-title: Science doi: 10.1126/science.1237123 – start-page: 63 volume-title: Landslide hazard zonation: a review of principles and practice year: 1984 ident: 10233_CR56 – volume: 137 start-page: 406 year: 2016 ident: 10233_CR18 publication-title: CATENA doi: 10.1016/j.catena.2015.10.002 – volume: 75 start-page: 63 issue: 1 year: 2016 ident: 10233_CR63 publication-title: Bull Eng Geol Environ doi: 10.1007/s11069-016-2239-7 – year: 2021 ident: 10233_CR48 publication-title: Nat Hazards doi: 10.1007/s11069-021-05028-6 – volume: 30 start-page: 429 issue: 4 year: 2004 ident: 10233_CR12 publication-title: Comput Geosci doi: 10.5194/nhessd-1-583-2013 – volume: 259 start-page: 105 year: 2016 ident: 10233_CR27 publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 131 start-page: 761 issue: 1–2 year: 2018 ident: 10233_CR34 publication-title: Theor Appl Climatol doi: 10.1007/s00704-016-2007-3 – volume: 10 start-page: 71 issue: 1 year: 2016 ident: 10233_CR45 publication-title: J Geomat – volume: 2012 start-page: 1 year: 2012 ident: 10233_CR52 publication-title: Math Probl Eng doi: 10.1155/2012/974638 – volume: 85 start-page: 347 issue: 3–4 year: 2006 ident: 10233_CR29 publication-title: Eng Geol doi: 10.1016/j.enggeo.2006.03.004 – volume: 2 start-page: 88 issue: 2 year: 2016 ident: 10233_CR39 publication-title: Modeling Earth Syst Environ doi: 10.1007/s40808-016-0141-7 – volume: 13 start-page: 839 issue: 5 year: 2016 ident: 10233_CR62 publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 162 start-page: 227 year: 2016 ident: 10233_CR22 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2016.08.011 – volume: 5 start-page: 1 year: 2015 ident: 10233_CR49 publication-title: Sci Rep doi: 10.1038/srep09899 – volume: 13 start-page: 2815 issue: 11 year: 2013 ident: 10233_CR11 publication-title: Nat Hazard doi: 10.5194/nhess-13-2815-2013 – volume: 72 start-page: 119 issue: 1 year: 2014 ident: 10233_CR4 publication-title: Nat Hazards doi: 10.1007/s11069-013-0770-3 – volume: 50 start-page: 551 issue: 3 year: 2009 ident: 10233_CR20 publication-title: Nat Hazards doi: 10.1007/s11069-009-9356-5 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10233_CR9 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 11 start-page: 425 issue: 3 year: 2014 ident: 10233_CR33 publication-title: Landslides doi: 10.1007/s10346-013-0391-7 – volume-title: Nature of statistical learning theory year: 1995 ident: 10233_CR54 doi: 10.1007/978-1-4757-2440-0 – ident: 10233_CR36 – volume: 75 start-page: 563 issue: 2 year: 2016 ident: 10233_CR21 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0773-2 – volume: 5 start-page: 407 issue: 4 year: 2008 ident: 10233_CR30 publication-title: Landslides doi: 10.1007/s10346-008-0134-3 – volume: 10 start-page: 1019 issue: 8 year: 2018 ident: 10233_CR57 publication-title: Water doi: 10.3390/w10081019 – volume: 43 start-page: 27 year: 1991 ident: 10233_CR16 publication-title: Bull Int Assoc Eng Geol doi: 10.1007/BF02590167 – volume: 2 start-page: 81 issue: 1 year: 2009 ident: 10233_CR31 publication-title: J South Asia Disaster Stud – volume: 7 start-page: 725 issue: 2 year: 2014 ident: 10233_CR47 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0807-z – volume: 58 start-page: 21 issue: 1 year: 1999 ident: 10233_CR3 publication-title: Bull Eng Geol Environ doi: 10.1007/s100640050066 – volume: 101 start-page: 572 issue: 4 year: 2008 ident: 10233_CR59 publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.02.011 – volume: 9 start-page: 292 issue: 4 year: 2016 ident: 10233_CR8 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2308-y – volume: 644 start-page: 1006 year: 2018 ident: 10233_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.389 – volume: 4 start-page: 5 issue: 1 year: 2000 ident: 10233_CR37 publication-title: Trans GIS doi: 10.1111/1467-9671.00035 – volume: 3 start-page: 1 issue: 3 year: 2017 ident: 10233_CR38 publication-title: Modeling Earth Syst Environ doi: 10.1007/s40808-017-0361-5 – volume: 23 start-page: 13 issue: 1 year: 1981 ident: 10233_CR55 publication-title: Bull Int Assoc Eng Geol doi: 10.1007/BF02594720 – volume: 75 start-page: 1 issue: 14 year: 2016 ident: 10233_CR53 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5919-4 – volume: 29 start-page: 329 issue: 2 year: 2012 ident: 10233_CR43 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2011.07.003 – volume: 26 start-page: 47 issue: 1–3 year: 1998 ident: 10233_CR26 publication-title: Geomorphology doi: 10.1016/S0169-555X(98)00051-8 – volume: 23 start-page: 20 issue: 47 year: 1999 ident: 10233_CR40 publication-title: Employ News – volume: 115 start-page: 23 year: 2010 ident: 10233_CR6 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – volume: 6 start-page: 2873 issue: 8 year: 2013 ident: 10233_CR64 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0610-x – volume: 85 start-page: 274 issue: 3 year: 2011 ident: 10233_CR58 publication-title: CATENA doi: 10.1016/j.catena.2011.01.014 – volume: 112 start-page: 23 year: 2018 ident: 10233_CR66 publication-title: Comput Geosci doi: 10.1016/j.cageo.2017.11.019 – volume: 20 start-page: 67 issue: 1 year: 2014 ident: 10233_CR2 publication-title: Environ Eng Geosci doi: 10.2113/gseegeosci.20.1.67 – volume: 249 start-page: 103 year: 2015 ident: 10233_CR15 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.01.029 – volume: 9 start-page: 15 issue: 1 year: 2017 ident: 10233_CR35 publication-title: Sustainability doi: 10.3390/su9010048 – volume: 93 start-page: 1401 issue: 9 year: 2012 ident: 10233_CR60 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-11-00122.1 – volume: 65 start-page: 241 issue: 1 year: 2013 ident: 10233_CR10 publication-title: Nat Hazards doi: 10.1007/s11069-012-0361-8 – volume: 90 start-page: 139 year: 1990 ident: 10233_CR61 publication-title: Hydrol Mt Areas – volume: 8 start-page: 348 issue: 2 year: 2017 ident: 10233_CR32 publication-title: Geomat Nat Hazards Risk doi: 10.1080/19475705.2016.1220023 – ident: 10233_CR500 – volume: 589 start-page: 250 year: 2017 ident: 10233_CR65 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.02.188 – volume: 8 start-page: 950 issue: 2 year: 2017 ident: 10233_CR13 publication-title: Geomat Nat Hazards Risk doi: 10.1080/19475705.2017.1289250 – volume: 81 start-page: 1 year: 2015 ident: 10233_CR23 publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.04.007 |
| SSID | ssj0000313906 |
| Score | 2.4109108 |
| Snippet | The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112 |
| SubjectTerms | Algorithms Bayesian analysis Biogeosciences case studies Development projects Earth and Environmental Science Earth Sciences Environmental Science and Engineering Geochemistry Geographic information systems Geographical information systems Geology Hydrology/Water Resources Indus River Information systems Infrastructure Landslides Landslides & mudslides Learning algorithms Machine learning Model accuracy Modelling Original Article Pakistan Remote sensing River basins Rivers Safety measures Support vector machines Susceptibility Terrestrial Pollution tourists Training watersheds |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELagCIkLKn8ibUGDxI2utOvYuzG3gigVAg6ISL2t_BtWSjdRNqHKrQ_RV-DF-iTMON5EIEDivF6vtDP2zGfPfB9jL4X1CDtClRmH2ESISmUjo3AztAhZbD7yJkonfPpcno3Fh3N5nprCur7avb-SjDv1rtkNYwl1E_OM6AaG2fo2uyOJzgu9eMxPticrxEaooqgmkbllJR_lqVvmz9P8GpF2aeZvN6Mx4Jzus_spU4STjWkfsFu-fcjuvo9KvOtH7MdHatKdNs5Dt-picUqsc13DhSbOhclraOKBQTz_66Bp4TviYuqUgst4HtoBMWxsWhch6fXgy1Rc6SGpSUxATyezRbP8dtHdXF1rsBj1IHLSwizAaj73C4jyH_CFKjzgje6a9hhSYto-ZuPTd1_fnmVJcyHTw0ous0B6VbzUheCFy6312iBIUWi6IKpgdJDGGym8FaEIotClye3QOe5zpwRx1z1he-2s9U8ZeOukKZV1Q6lFcIhLtAqlwJllwCRIDljR__faJkJy0sWY1jsqZbJVjbaqo63q9YC92r4z39Bx_HP0UW_OOi3NruYlR2COIFwN2IvtY1xUdFOiWz9b0ZhKylJhqjhgx70b7Kb4-xcP_m_4IbvHyRNjFfgR21suVv4ZJjlL8zz69E_E1_fe priority: 102 providerName: Springer Nature |
| Title | Landslide susceptibility mapping: improvements in variable weights estimation through machine learning algorithms—a case study of upper Indus River Basin, Pakistan |
| URI | https://link.springer.com/article/10.1007/s12665-022-10233-y https://www.proquest.com/docview/2627131329 https://www.proquest.com/docview/2675569441 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-6299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: AFBBN dateStart: 20091101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-6299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-6299 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: U2A dateStart: 20091101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxNBFD60CYIv4hVjaziCb3ZxdzOzmy2IpJK2eAlSDNSnZa4xkG5iN1Hy5o_wL_jH_CXOmcwmKNjnnZ2BOWfmXOac7wN4zpRxYYfNI6ldbMJYXkR9WbjLULmQRcV9Iz11wodRdj5mby_55R6Mml4YKqts7kR_Ueu5ohz5yzRLXTxFtOivF18jYo2i19WGQkMEagX9ykOM7UM7JWSsFrRPhqOPF9usCyEVFp5wk4Deoiztx6GTZtNP58wVNSynESEa9KL139Zq54L-82rqjdHpXbgTvEgcbMR-D_ZMdR9unXmW3vUD-PWeGnhnU22wXtW-cMXXwK7xShAew-QYpz6Z4HODNU4r_OZiZuqiwu8-V1ojoW9s2hoxcPm4n6nw0mBgmpigmE3cFi2_XNW_f_wUqJxFRI9Xi3OLq8XCXKOnBsELqv7AE1FPqyMMTmv1EManw09vzqPAxxCJXs6XkSUuqzQTCUsTHStlhHQBTOHEallupbBcGsmZUcwmliUik7HqaZ2aWBeMcO0eQauaV-YxoFGay6xQuscFs9rFLKKwGXMzc-scJN6BpNn3UgWwcuLMmJU7mGWSVelkVXpZlesOvNj-s9hAddw4-rARZxmObV3ulKwDz7af3YGjVxRRmfmKxuScZ4VzIztw1KjBbor_r_jk5hUP4HZKmucrwg-htbxemafO4VnKLrQHZ5_fDbtBm7uwP04HfwC3-QOA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVgguFb8itMAgwYla2Ou1EyNViEJLStMIVa3Um7venxApdUKdUPnGQ_AKvAYPw5Mws1knAoneevZ61_LMzs7MznwfYy-EMhh22HZQaIxNhGhnQafI0BgqDFlU2DGFo0447KfdE_HpNDldYb-aXhgqq2xsojPUeqwoR_6apxzjKaJFfzv5GhBrFN2uNhQa0lMr6G0HMeYbOw5MfYkhXLW9_wHl_ZLzvd3j993AswwEMm4n08ASQxNPZSR4pEOljCzQLc_wY61o20LapDBFIowSNrIikmkRqlhrbkKdCUJrw3lvsDURiwyDv7Wd3f7no0WWh5ARM0fwScByQco7oe_cmffv4fFIDdI8IASFOKj_Ph2XLu8_t7Tu8Nu7w9a91wrv5mp2l62Y8h67-dGxAtf32c8eNQyPhtpANatcoYyrua3hXBL-w-ANDF3ywuUiKxiW8A1jdOragkuXm62A0D7mbZTguYPwZSr0NOCZLQYgRwMUyfTLefX7-w8JCk9gcPi4MLYwm0zMBTgqEjiiahPYkdWw3ALvJJcP2Mm1SOYhWy3HpXnEwCidFGmmdJxIYTXGSDKzqcCZE4sOWdJiUfPfc-XB0YmjY5QvYZ1JVjnKKneyyusWe7V4ZzKHBrly9GYjztybiSpfKnWLPV88xg1OtzayNOMZjWknSZqh29piW40aLKf4_4qPr17xGbvVPT7s5b39_sEGu81JC101-iZbnV7MzBN0tqbFU6_RwM6uexP9AVJUPxc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VViAuiF8RKDBIcKJW7c2uEyNViNKGlpaoqqjUm1nvT4iUOqFOqHzjIXgFXobH4EmY2awTgURvPXu9a3lmZ2dmZ76PsRdCWww7XCcqDMYmQnSyqFtkaAw1hiw67trCUyd87Kd7J-LDqTxdYb-aXhgqq2xsojfUZqwpR77JU47xFNGib7pQFnG003sz-RoRgxTdtDZ0GirQLJgtDzcWmjwObH2B4Vy1tb-Dsn_JeW_307u9KDAORKrdkdPIEVsTT1UieGJira0q0EXP8MOd6LhCOVnYQgqrhUucSFRaxLptDLexyQQht-G819gaXX6hkVjb3u0fHS8yPoSSmHmyTwKZi1LejUMXz7yXD49KapbmEaEptKP675Ny6f7-c2PrD8LebXYreLDwdq5yd9iKLe-y6-89Q3B9j_08pObh0dBYqGaVL5rx9bc1nCnCghi8hqFPZPi8ZAXDEr5hvE4dXHDh87QVEPLHvKUSAo8QvkxFnxYCy8UA1GiAIpl-Oat-f_-hQONpDB4rF8YOZpOJPQdPSwLHVHkC26oalhsQHObyPju5Esk8YKvluLQPGVhtZJFm2rSlEs5gvKQylwqcWTp0zmSLJc1_z3UASie-jlG-hHgmWeUoq9zLKq9b7NXinckcJuTS0euNOPNgMqp8qeAt9nzxGDc73eCo0o5nNKYjZZqhC9tiG40aLKf4_4qPLl_xGbuBmyk_3O8fPGY3OSmhL0xfZ6vT85l9gn7XtHgaFBrY56veQ38A469DRg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+susceptibility+mapping%3A+improvements+in+variable+weights+estimation+through+machine+learning+algorithms%E2%80%94a+case+study+of+upper+Indus+River+Basin%2C+Pakistan&rft.jtitle=Environmental+earth+sciences&rft.au=Imtiaz%2C+Iqra&rft.au=Umar%2C+Muhammad&rft.au=La%E1%B9%AD%C4%ABf%2C+Mu%E1%B8%A5ammad&rft.au=Ahmed%2C+Rehan&rft.date=2022-02-01&rft.issn=1866-6280&rft.volume=81&rft.issue=4+p.112-112&rft.spage=112&rft.epage=112&rft_id=info:doi/10.1007%2Fs12665-022-10233-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon |