Landslide susceptibility mapping: improvements in variable weights estimation through machine learning algorithms—a case study of upper Indus River Basin, Pakistan

The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the region have further boosted the importance of the area at national and international scales, yet detailed studies of landslide susceptibility...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 81; no. 4; p. 112
Main Authors Imtiaz, Iqra, Umar, Muhammad, Latif, Muhammad, Ahmed, Rehan, Azam, Muhammad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-6280
1866-6299
DOI10.1007/s12665-022-10233-y

Cover

Abstract The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the region have further boosted the importance of the area at national and international scales, yet detailed studies of landslide susceptibility in upper Indus River Basin (UIRB) is still lacking. The aim of this study is to generate and compare landslide susceptibility maps from machine learning algorithms (MLAs) and a traditional geographic information system (GIS) based approach. Past landslide locations are used for model training and testing with data of eleven controlling factors in MLAs, including random forest (RF), support vector machine (SVM), and Naïve Bayes (NB) classifiers. Among the three MLAs, average accuracy of RF model is found between 89 and 90.5%, for SVM the range is between 88 and 90% and for NB the range is between 86 and 87%. The results show that the traditional GIS based weighted overlay technique overestimated vulnerable areas with most of the study area falling in moderate to high susceptible zones. The machine learning models performed much better than the traditional technique as only areas that were identified as most susceptible were locations where landslides had occurred in the past. Within the three ML techniques, RF model’s performance is marginally better than that of the SVM model, but RF and SVM performed significantly better compared to the NB model. The resultant susceptibility maps highlight the areas where safety measures should be taken before installing mega infrastructure projects.
AbstractList The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the region have further boosted the importance of the area at national and international scales, yet detailed studies of landslide susceptibility in upper Indus River Basin (UIRB) is still lacking. The aim of this study is to generate and compare landslide susceptibility maps from machine learning algorithms (MLAs) and a traditional geographic information system (GIS) based approach. Past landslide locations are used for model training and testing with data of eleven controlling factors in MLAs, including random forest (RF), support vector machine (SVM), and Naïve Bayes (NB) classifiers. Among the three MLAs, average accuracy of RF model is found between 89 and 90.5%, for SVM the range is between 88 and 90% and for NB the range is between 86 and 87%. The results show that the traditional GIS based weighted overlay technique overestimated vulnerable areas with most of the study area falling in moderate to high susceptible zones. The machine learning models performed much better than the traditional technique as only areas that were identified as most susceptible were locations where landslides had occurred in the past. Within the three ML techniques, RF model’s performance is marginally better than that of the SVM model, but RF and SVM performed significantly better compared to the NB model. The resultant susceptibility maps highlight the areas where safety measures should be taken before installing mega infrastructure projects.
ArticleNumber 112
Author Azam, Muhammad
Imtiaz, Iqra
Umar, Muhammad
Latif, Muhammad
Ahmed, Rehan
Author_xml – sequence: 1
  givenname: Iqra
  surname: Imtiaz
  fullname: Imtiaz, Iqra
  organization: Department of Meteorology, COMSATS University Islamabad (CUI)
– sequence: 2
  givenname: Muhammad
  surname: Umar
  fullname: Umar, Muhammad
  organization: Department of Meteorology, COMSATS University Islamabad (CUI)
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0002-5448-8465
  surname: Latif
  fullname: Latif, Muhammad
  email: muhammad_latif@comsats.edu.pk
  organization: Department of Meteorology, COMSATS University Islamabad (CUI)
– sequence: 4
  givenname: Rehan
  surname: Ahmed
  fullname: Ahmed, Rehan
  organization: Department of Meteorology, COMSATS University Islamabad (CUI)
– sequence: 5
  givenname: Muhammad
  surname: Azam
  fullname: Azam, Muhammad
  organization: Faculty of Agricultural Engineering and Technology, PMAS Arid Agricultural University
BookMark eNp9kU1u1TAUhSPUSpS2G2BkiQkDAraTOAkzqPip9CQQgrF149wktyROsJ1XZcYi2AIb60pq-hBIHdQTW9b57s85T5IjO1tMkqeCvxScl6-8kEoVKZcyFVxmWbo9Sk5EpVSqZF0f_XtX_HFy7v0VjycTWc3VSfJ7B7b1I7XI_OoNLoEaGilsbIJlIdu_ZjQtbt7jhDZ4RpbtwRE0I7JrpH6If-gDTRBotiwMbl77IcJmIItsRHA2VmEw9rOjMEz-5ucvYAZ8bBjWdmNzx9ZlQccubbt69oX28f0WPNkX7DN8Jx_AniXHHYwez__ep8m39---XnxMd58-XF682aWQlUVIO1HKSioQuRQtNwahkRmvK1N3edk10BUNNkWOJu9ElwtQDTdZ20rkbZ3zushOk-eHunHjH2vcS08UTRlHsDivXktVFoWq81xE6bN70qt5dTZOF1WyFNFgWUeVPKiMm7132OnFRa_cpgXXf8LTh_B0DE_fhae3CFX3IEPhzt_ggMaH0eyA-tjH9uj-T_UAdQv4qrZy
CitedBy_id crossref_primary_10_1007_s12517_022_10608_2
crossref_primary_10_1007_s11069_022_05748_3
crossref_primary_10_3390_en16186530
crossref_primary_10_1016_j_asr_2023_03_026
crossref_primary_10_1007_s00477_022_02361_5
crossref_primary_10_1016_j_ecoinf_2024_102583
crossref_primary_10_3390_geosciences14060171
crossref_primary_10_1016_j_jhydrol_2024_132562
crossref_primary_10_3390_rs14133029
crossref_primary_10_3389_feart_2022_927102
crossref_primary_10_1007_s12665_024_11571_9
crossref_primary_10_1080_02723646_2023_2250174
Cites_doi 10.1007/s00704-016-2007-3
10.3390/su9010048
10.1007/s11069-021-05028-6
10.1007/s12040-013-0282-2
10.1080/20964471.2018.1472392
10.1016/j.geomorph.2015.01.029
10.1016/j.cageo.2015.04.007
10.1016/j.enggeo.2006.03.004
10.1016/j.geomorph.2008.02.011
10.1111/1467-9671.00035
10.1130/G33217.1
10.1016/j.geomorph.2009.09.025
10.1007/s12517-012-0807-z
10.1007/s12665-016-5919-4
10.1007/s11069-013-0770-3
10.1007/s10346-015-0614-1
10.1016/j.catena.2015.10.002
10.1007/s11069-012-0321-3
10.1007/BF02590167
10.1016/j.scitotenv.2019.01.329
10.3390/w10081019
10.1016/S0169-555X(98)00051-8
10.1016/j.catena.2011.01.014
10.1016/j.geomorph.2016.02.012
10.1038/srep09899
10.1007/s100640050066
10.5194/nhess-19-999-2019
10.1007/s40808-016-0141-7
10.1007/s11069-012-0361-8
10.1016/j.earscirev.2016.08.011
10.1007/s11069-016-2239-7
10.1007/978-1-4757-2440-0
10.1126/science.1237123
10.1007/s11069-009-9356-5
10.1007/s10346-008-0134-3
10.1007/s10346-013-0391-7
10.1080/19475705.2017.1289250
10.1016/j.cageo.2010.10.012
10.1016/j.scitotenv.2017.02.188
10.2113/gseegeosci.20.1.67
10.5194/nhessd-1-583-2013
10.1007/s10064-015-0773-2
10.1016/j.landusepol.2011.07.003
10.1175/BAMS-D-11-00122.1
10.1007/s12517-012-0610-x
10.1007/s11004-011-9379-9
10.1023/A:1010933404324
10.1007/BF02594720
10.1007/s12665-015-5233-6
10.1007/s40808-017-0361-5
10.1016/j.cageo.2017.11.019
10.1007/s12665-015-4866-9
10.1080/19475705.2016.1220023
10.5194/nhess-13-2815-2013
10.1016/j.ecolmodel.2004.07.012
10.1155/2012/974638
10.1007/s12517-016-2308-y
10.1016/j.scitotenv.2018.06.389
10.3334/ORNLDAAC/1388
10.5067/ASTER/ASTGTM.002
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s12665-022-10233-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-6299
EndPage 112
ExternalDocumentID 10_1007_s12665_022_10233_y
GeographicLocations Indus River
Pakistan
GeographicLocations_xml – name: Indus River
– name: Pakistan
GroupedDBID -5A
-5G
-BR
-DZ
-EM
-Y2
-~C
.4S
.DC
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8FE
8FH
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
ML.
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF-
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z85
ZCG
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7ST
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a375t-f172826a1421d0cceab23098c9f47fbaf5beb54ec4f1f41a6b0c3dd2e0d940953
IEDL.DBID BENPR
ISSN 1866-6280
IngestDate Fri Sep 05 14:15:54 EDT 2025
Fri Jul 25 21:45:57 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Wed Oct 01 01:36:16 EDT 2025
Fri Feb 21 02:47:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Landslides
Naïve Bayes
Random forest
Pakistan
Support vector machine
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-f172826a1421d0cceab23098c9f47fbaf5beb54ec4f1f41a6b0c3dd2e0d940953
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5448-8465
PQID 2627131329
PQPubID 54063
PageCount 1
ParticipantIDs proquest_miscellaneous_2675569441
proquest_journals_2627131329
crossref_primary_10_1007_s12665_022_10233_y
crossref_citationtrail_10_1007_s12665_022_10233_y
springer_journals_10_1007_s12665_022_10233_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental earth sciences
PublicationTitleAbbrev Environ Earth Sci
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ahmed, Rogers (CR2) 2014; 20
Kanungo, Arora, Gupta, Sarkar (CR30) 2008; 5
Cruden (CR16) 1991; 43
Naithani (CR40) 1999; 23
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (CR62) 2016; 13
CR36
Alexakis, Agapiou, Tzouvaras, Themistocleous, Neocleous, Michaelides, Hadjimitsis (CR4) 2014; 72
Kanungo, Arora, Sarkar, Gupta (CR29) 2006; 85
Oh, Pradhan (CR42) 2011; 37
Petley (CR44) 2012; 40
Breiman (CR9) 2001; 45
Aleotti, Chowdhury (CR3) 1999; 58
Basharat, Shah, Hameed (CR8) 2016; 9
Ciampalini, Raspini, Bianchini, Frodella, Bardi, Lagomarsino, Di Traglia, Moretti, Proietti, Pagliara, Onori (CR15) 2015; 249
Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (CR47) 2014; 7
Diffenbaugh, Field (CR19) 2013; 341
Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (CR53) 2016; 75
Farooq, David (CR21) 2016; 75
CR41
Pourghasemi, Jirandeh, Pradhan, Xu, Gokceoglu (CR46) 2013; 122
Michael, Samanta (CR39) 2016; 2
Kanungo, Arora, Sarkar, Gupta (CR31) 2009; 2
Shahabi, Hashim (CR49) 2015; 5
Goetz, Brenning, Petschko, Leopold (CR23) 2015; 81
Chen, Zhang, Li, Shahabi (CR14) 2018; 644
Ali, Biermanns, Haider, Reicherter (CR5) 2018
Wang, Bai, Wu, Yu, Hao, Hu (CR57) 2018; 10
Tien Bui, Pradhan, Lofman, Revhaug (CR52) 2012; 2012
He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen, Wang (CR25) 2019; 663
Lee, Hong, Jung (CR35) 2017; 9
Gariano, Guzzetti (CR22) 2016; 162
Pham, Bui, Prakash, Dholakia (CR45) 2016; 10
Varnes (CR56) 1984
Di Martire, Tessitore, Brancato, Ciminelli, Costabile, Costantini, Graziano, Minati, Ramondini, Calcaterra (CR18) 2016; 137
Kanwal, Atif, Shafiq (CR32) 2017; 8
Latif, Yaoming, Yaseen (CR34) 2018; 131
CR17
Menggenang, Samanta (CR38) 2017; 3
Yatagai, Kamiguchi, Arakawa, Hamada, Yasutomi, Kitoh (CR60) 2012; 93
Yao, Tham, Dai (CR59) 2008; 101
Aghdam, Varzandeh, Pradhan (CR1) 2016; 75
Chen, Xie, Peng, Wang, Duan, Hong (CR13) 2017; 8
Zare, Pourghasemi, Vafakhah, Pradhan (CR64) 2013; 6
Panagos, Van Liedekerke, Jones, Montanarella (CR43) 2012; 29
Shirzadi, Saro, Joo, Chapi (CR50) 2012; 64
Guo, Kelly, Graham (CR24) 2005; 182
Falaschi, Giacomelli, Federici, Puccinelli, Avanzi, Pochini, Ribolini (CR20) 2009; 50
Kavzoglu, Sahin, Colkesen (CR33) 2014; 11
Catani, Lagomarsino, Segoni, Tofani (CR11) 2013; 13
Young, Hewitt (CR61) 1990; 90
Chau, Sze, Fung, Wong, Fong, Chan (CR12) 2004; 30
Vapnik (CR54) 1995
Zhou, Yin, Cao, Ahmed, Li, Catani, Pourghasemi (CR66) 2018; 112
Ballabio, Sterlacchini (CR7) 2012; 44
Malczewski (CR37) 2000; 4
Youssef, Pourghasemi, El-Haddad, Dhahry (CR63) 2016; 75
Bai, Wang, Lü, Zhou, Hou, Xu (CR6) 2010; 115
Hewitt (CR26) 1998; 26
Sadiq, Muhammad, Fuchs (CR48) 2021
Taalab, Cheng, Zhang (CR51) 2018; 2
CR500
Yalcin, Reis, Aydinoglu, Yomralioglu (CR58) 2011; 85
Varnes (CR55) 1981; 23
Hong, Pradhan, Jebur, Bui, Xu, Akgun (CR28) 2016; 75
Zêzere, Pereira, Melo, Oliveira, Garcia (CR65) 2017; 589
Butt, Umar, Qamar (CR10) 2013; 65
Hong, Pourghasemi, Pourtaghi (CR27) 2016; 259
D Tien Bui (10233_CR53) 2016; 75
Y Latif (10233_CR34) 2018; 131
AD Regmi (10233_CR47) 2014; 7
DJ Varnes (10233_CR56) 1984
MJ Butt (10233_CR10) 2013; 65
DP Kanungo (10233_CR29) 2006; 85
A Ciampalini (10233_CR15) 2015; 249
Q He (10233_CR25) 2019; 663
X Yao (10233_CR59) 2008; 101
A Yalcin (10233_CR58) 2011; 85
JN Goetz (10233_CR23) 2015; 81
V Vapnik (10233_CR54) 1995
W Chen (10233_CR13) 2017; 8
AM Youssef (10233_CR63) 2016; 75
M Zare (10233_CR64) 2013; 6
10233_CR17
F Falaschi (10233_CR20) 2009; 50
AM Farooq (10233_CR21) 2016; 75
D Petley (10233_CR44) 2012; 40
P Panagos (10233_CR43) 2012; 29
AM Youssef (10233_CR62) 2016; 13
C Ballabio (10233_CR7) 2012; 44
DP Kanungo (10233_CR30) 2008; 5
10233_CR36
DD Alexakis (10233_CR4) 2014; 72
A Shirzadi (10233_CR50) 2012; 64
A Yatagai (10233_CR60) 2012; 93
HR Pourghasemi (10233_CR46) 2013; 122
S Kanwal (10233_CR32) 2017; 8
DJ Varnes (10233_CR55) 1981; 23
P Aleotti (10233_CR3) 1999; 58
M Basharat (10233_CR8) 2016; 9
H Hong (10233_CR27) 2016; 259
L Breiman (10233_CR9) 2001; 45
K Hewitt (10233_CR26) 1998; 26
GJ Young (10233_CR61) 1990; 90
10233_CR41
S Sadiq (10233_CR48) 2021
K Taalab (10233_CR51) 2018; 2
KT Chau (10233_CR12) 2004; 30
IN Aghdam (10233_CR1) 2016; 75
P Menggenang (10233_CR38) 2017; 3
AK Naithani (10233_CR40) 1999; 23
D Tien Bui (10233_CR52) 2012; 2012
BT Pham (10233_CR45) 2016; 10
P Wang (10233_CR57) 2018; 10
Q Guo (10233_CR24) 2005; 182
SL Gariano (10233_CR22) 2016; 162
H Shahabi (10233_CR49) 2015; 5
J Malczewski (10233_CR37) 2000; 4
D Di Martire (10233_CR18) 2016; 137
JL Zêzere (10233_CR65) 2017; 589
HJ Oh (10233_CR42) 2011; 37
H Hong (10233_CR28) 2016; 75
NS Diffenbaugh (10233_CR19) 2013; 341
T Kavzoglu (10233_CR33) 2014; 11
W Chen (10233_CR14) 2018; 644
S Ali (10233_CR5) 2018
DM Cruden (10233_CR16) 1991; 43
MF Ahmed (10233_CR2) 2014; 20
F Catani (10233_CR11) 2013; 13
10233_CR500
S Lee (10233_CR35) 2017; 9
EA Michael (10233_CR39) 2016; 2
C Zhou (10233_CR66) 2018; 112
SB Bai (10233_CR6) 2010; 115
DP Kanungo (10233_CR31) 2009; 2
References_xml – start-page: 63
  year: 1984
  ident: CR56
  publication-title: Landslide hazard zonation: a review of principles and practice
– volume: 131
  start-page: 761
  issue: 1–2
  year: 2018
  end-page: 775
  ident: CR34
  article-title: Spatial analysis of precipitation time series over the Upper Indus Basin
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-2007-3
– volume: 9
  start-page: 15
  issue: 1
  year: 2017
  end-page: 19
  ident: CR35
  article-title: A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea
  publication-title: Sustainability
  doi: 10.3390/su9010048
– volume: 10
  start-page: 71
  issue: 1
  year: 2016
  end-page: 79
  ident: CR45
  article-title: Evaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS
  publication-title: J Geomat
– year: 2021
  ident: CR48
  article-title: Investigation of landslides with natural lineaments derived from integrated manual and automatic techniques applied on geospatial data
  publication-title: Nat Hazards
  doi: 10.1007/s11069-021-05028-6
– volume: 122
  start-page: 349
  issue: 2
  year: 2013
  end-page: 369
  ident: CR46
  article-title: Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-013-0282-2
– volume: 2
  start-page: 159
  issue: 2
  year: 2018
  end-page: 178
  ident: CR51
  article-title: Mapping landslide susceptibility and types using Random Forest
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2018.1472392
– volume: 249
  start-page: 103
  year: 2015
  end-page: 118
  ident: CR15
  article-title: Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.01.029
– volume: 81
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR23
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.04.007
– volume: 85
  start-page: 347
  issue: 3–4
  year: 2006
  end-page: 366
  ident: CR29
  article-title: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2006.03.004
– volume: 101
  start-page: 572
  issue: 4
  year: 2008
  end-page: 582
  ident: CR59
  article-title: Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 4
  start-page: 5
  issue: 1
  year: 2000
  end-page: 22
  ident: CR37
  article-title: On the use of weighted linear combination method in GIS: Common and best practice approaches
  publication-title: Trans GIS
  doi: 10.1111/1467-9671.00035
– volume: 40
  start-page: 927
  issue: 10
  year: 2012
  end-page: 930
  ident: CR44
  article-title: Global patterns of loss of life from landslides
  publication-title: Geology
  doi: 10.1130/G33217.1
– volume: 115
  start-page: 23
  year: 2010
  end-page: 31
  ident: CR6
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– volume: 7
  start-page: 725
  issue: 2
  year: 2014
  end-page: 742
  ident: CR47
  article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0807-z
– volume: 75
  start-page: 1
  issue: 14
  year: 2016
  end-page: 22
  ident: CR53
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5919-4
– volume: 72
  start-page: 119
  issue: 1
  year: 2014
  end-page: 141
  ident: CR4
  article-title: Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0770-3
– volume: 13
  start-page: 839
  issue: 5
  year: 2016
  end-page: 856
  ident: CR62
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 137
  start-page: 406
  year: 2016
  end-page: 421
  ident: CR18
  article-title: Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.10.002
– volume: 64
  start-page: 1639
  issue: 2
  year: 2012
  end-page: 1656
  ident: CR50
  article-title: A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0321-3
– volume: 43
  start-page: 27
  year: 1991
  end-page: 29
  ident: CR16
  article-title: A simple definition of a landslide
  publication-title: Bull Int Assoc Eng Geol
  doi: 10.1007/BF02590167
– ident: CR500
– ident: CR36
– volume: 663
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR25
  article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.01.329
– volume: 10
  start-page: 1019
  issue: 8
  year: 2018
  ident: CR57
  article-title: GIS-based random forestweight for rainfall-induced landslide susceptibility assessment at a humid region in Southern China
  publication-title: Water
  doi: 10.3390/w10081019
– volume: 26
  start-page: 47
  issue: 1–3
  year: 1998
  end-page: 80
  ident: CR26
  article-title: Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(98)00051-8
– volume: 85
  start-page: 274
  issue: 3
  year: 2011
  end-page: 287
  ident: CR58
  article-title: A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey
  publication-title: CATENA
  doi: 10.1016/j.catena.2011.01.014
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: CR27
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 2
  start-page: 81
  issue: 1
  year: 2009
  end-page: 105
  ident: CR31
  article-title: Landslide susceptibility zonation (LSZ) mapping–a Review
  publication-title: J South Asia Disaster Stud
– volume: 5
  start-page: 1
  year: 2015
  end-page: 15
  ident: CR49
  article-title: Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment
  publication-title: Sci Rep
  doi: 10.1038/srep09899
– volume: 90
  start-page: 139
  year: 1990
  end-page: 152
  ident: CR61
  article-title: Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan
  publication-title: Hydrol Mt Areas
– volume: 58
  start-page: 21
  issue: 1
  year: 1999
  end-page: 44
  ident: CR3
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s100640050066
– year: 2018
  ident: CR5
  article-title: Landslide susceptibility mapping by using GIS along the China-Pakistan economic corridor (Karakoram Highway), Pakistan
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-19-999-2019
– volume: 2
  start-page: 88
  issue: 2
  year: 2016
  ident: CR39
  article-title: Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques
  publication-title: Modeling Earth Syst Environ
  doi: 10.1007/s40808-016-0141-7
– volume: 65
  start-page: 241
  issue: 1
  year: 2013
  end-page: 254
  ident: CR10
  article-title: Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0361-8
– volume: 162
  start-page: 227
  year: 2016
  end-page: 252
  ident: CR22
  article-title: Landslides in a changing climate
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2016.08.011
– volume: 75
  start-page: 63
  issue: 1
  year: 2016
  end-page: 87
  ident: CR63
  article-title: Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s11069-016-2239-7
– year: 1995
  ident: CR54
  publication-title: Nature of statistical learning theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 341
  start-page: 486
  issue: 6145
  year: 2013
  end-page: 492
  ident: CR19
  article-title: Changes in ecologically critical terrestrial climate conditions
  publication-title: Science
  doi: 10.1126/science.1237123
– volume: 50
  start-page: 551
  issue: 3
  year: 2009
  end-page: 569
  ident: CR20
  article-title: Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy
  publication-title: Nat Hazards
  doi: 10.1007/s11069-009-9356-5
– volume: 5
  start-page: 407
  issue: 4
  year: 2008
  end-page: 416
  ident: CR30
  article-title: Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas
  publication-title: Landslides
  doi: 10.1007/s10346-008-0134-3
– volume: 11
  start-page: 425
  issue: 3
  year: 2014
  end-page: 439
  ident: CR33
  article-title: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume: 8
  start-page: 950
  issue: 2
  year: 2017
  end-page: 973
  ident: CR13
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models
  publication-title: Geomat Nat Hazards Risk
  doi: 10.1080/19475705.2017.1289250
– volume: 37
  start-page: 1264
  issue: 9
  year: 2011
  end-page: 1276
  ident: CR42
  article-title: Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2010.10.012
– volume: 589
  start-page: 250
  year: 2017
  end-page: 267
  ident: CR65
  article-title: Mapping landslide susceptibility using data-driven methods
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.188
– volume: 20
  start-page: 67
  issue: 1
  year: 2014
  end-page: 83
  ident: CR2
  article-title: First-approximation landslide inventory maps for northern Pakistan, using ASTER DEM data and geomorphic indicators
  publication-title: Environ Eng Geosci
  doi: 10.2113/gseegeosci.20.1.67
– volume: 30
  start-page: 429
  issue: 4
  year: 2004
  end-page: 443
  ident: CR12
  article-title: Landslide hazard analysis for Hong Kong using landslide inventory and GIS
  publication-title: Comput Geosci
  doi: 10.5194/nhessd-1-583-2013
– volume: 75
  start-page: 563
  issue: 2
  year: 2016
  end-page: 574
  ident: CR21
  article-title: Regional level landslide inventory maps of the Shyok River watershed, Northern Pakistan
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0773-2
– volume: 29
  start-page: 329
  issue: 2
  year: 2012
  end-page: 338
  ident: CR43
  article-title: European Soil Data Centre: response to European policy support and public data requirements
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2011.07.003
– volume: 93
  start-page: 1401
  issue: 9
  year: 2012
  end-page: 1415
  ident: CR60
  article-title: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-11-00122.1
– volume: 6
  start-page: 2873
  issue: 8
  year: 2013
  end-page: 2888
  ident: CR64
  article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0610-x
– volume: 44
  start-page: 47
  issue: 1
  year: 2012
  end-page: 70
  ident: CR7
  article-title: Support vector machines for landslide susceptibility mapping: the Staffora River Basin Case Study, Italy
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9379-9
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR9
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 23
  start-page: 13
  issue: 1
  year: 1981
  end-page: 14
  ident: CR55
  article-title: The principles and practice of landslide hazard zonation
  publication-title: Bull Int Assoc Eng Geol
  doi: 10.1007/BF02594720
– volume: 75
  start-page: 1
  issue: 7
  year: 2016
  end-page: 20
  ident: CR1
  article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-5233-6
– volume: 3
  start-page: 1
  issue: 3
  year: 2017
  end-page: 10
  ident: CR38
  article-title: Modelling and mapping of landslide hazard using remote sensing and GIS techniques
  publication-title: Modeling Earth Syst Environ
  doi: 10.1007/s40808-017-0361-5
– volume: 112
  start-page: 23
  year: 2018
  end-page: 37
  ident: CR66
  article-title: Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.11.019
– ident: CR17
– volume: 75
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  ident: CR28
  article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4866-9
– volume: 8
  start-page: 348
  issue: 2
  year: 2017
  end-page: 366
  ident: CR32
  article-title: GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins
  publication-title: Geomat Nat Hazards Risk
  doi: 10.1080/19475705.2016.1220023
– volume: 13
  start-page: 2815
  issue: 11
  year: 2013
  end-page: 2831
  ident: CR11
  article-title: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues
  publication-title: Nat Hazard
  doi: 10.5194/nhess-13-2815-2013
– volume: 23
  start-page: 20
  issue: 47
  year: 1999
  end-page: 26
  ident: CR40
  article-title: The Himalayan landslides
  publication-title: Employ News
– ident: CR41
– volume: 182
  start-page: 75
  issue: 1
  year: 2005
  end-page: 90
  ident: CR24
  article-title: Support vector machines for predicting distribution of Sudden Oak Death in California
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2004.07.012
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 26
  ident: CR52
  article-title: Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Nave Bayes models
  publication-title: Math Probl Eng
  doi: 10.1155/2012/974638
– volume: 9
  start-page: 292
  issue: 4
  year: 2016
  ident: CR8
  article-title: Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2308-y
– volume: 644
  start-page: 1006
  year: 2018
  end-page: 1018
  ident: CR14
  article-title: Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.389
– volume: 2
  start-page: 159
  issue: 2
  year: 2018
  ident: 10233_CR51
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2018.1472392
– volume: 75
  start-page: 1
  issue: 7
  year: 2016
  ident: 10233_CR1
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-5233-6
– volume: 75
  start-page: 1
  issue: 1
  year: 2016
  ident: 10233_CR28
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4866-9
– ident: 10233_CR17
  doi: 10.3334/ORNLDAAC/1388
– volume: 122
  start-page: 349
  issue: 2
  year: 2013
  ident: 10233_CR46
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-013-0282-2
– volume: 37
  start-page: 1264
  issue: 9
  year: 2011
  ident: 10233_CR42
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2010.10.012
– volume: 182
  start-page: 75
  issue: 1
  year: 2005
  ident: 10233_CR24
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2004.07.012
– volume: 663
  start-page: 1
  year: 2019
  ident: 10233_CR25
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.01.329
– ident: 10233_CR41
  doi: 10.5067/ASTER/ASTGTM.002
– volume: 44
  start-page: 47
  issue: 1
  year: 2012
  ident: 10233_CR7
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9379-9
– year: 2018
  ident: 10233_CR5
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-19-999-2019
– volume: 64
  start-page: 1639
  issue: 2
  year: 2012
  ident: 10233_CR50
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0321-3
– volume: 40
  start-page: 927
  issue: 10
  year: 2012
  ident: 10233_CR44
  publication-title: Geology
  doi: 10.1130/G33217.1
– volume: 341
  start-page: 486
  issue: 6145
  year: 2013
  ident: 10233_CR19
  publication-title: Science
  doi: 10.1126/science.1237123
– start-page: 63
  volume-title: Landslide hazard zonation: a review of principles and practice
  year: 1984
  ident: 10233_CR56
– volume: 137
  start-page: 406
  year: 2016
  ident: 10233_CR18
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.10.002
– volume: 75
  start-page: 63
  issue: 1
  year: 2016
  ident: 10233_CR63
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s11069-016-2239-7
– year: 2021
  ident: 10233_CR48
  publication-title: Nat Hazards
  doi: 10.1007/s11069-021-05028-6
– volume: 30
  start-page: 429
  issue: 4
  year: 2004
  ident: 10233_CR12
  publication-title: Comput Geosci
  doi: 10.5194/nhessd-1-583-2013
– volume: 259
  start-page: 105
  year: 2016
  ident: 10233_CR27
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 131
  start-page: 761
  issue: 1–2
  year: 2018
  ident: 10233_CR34
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-2007-3
– volume: 10
  start-page: 71
  issue: 1
  year: 2016
  ident: 10233_CR45
  publication-title: J Geomat
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10233_CR52
  publication-title: Math Probl Eng
  doi: 10.1155/2012/974638
– volume: 85
  start-page: 347
  issue: 3–4
  year: 2006
  ident: 10233_CR29
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2006.03.004
– volume: 2
  start-page: 88
  issue: 2
  year: 2016
  ident: 10233_CR39
  publication-title: Modeling Earth Syst Environ
  doi: 10.1007/s40808-016-0141-7
– volume: 13
  start-page: 839
  issue: 5
  year: 2016
  ident: 10233_CR62
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 162
  start-page: 227
  year: 2016
  ident: 10233_CR22
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2016.08.011
– volume: 5
  start-page: 1
  year: 2015
  ident: 10233_CR49
  publication-title: Sci Rep
  doi: 10.1038/srep09899
– volume: 13
  start-page: 2815
  issue: 11
  year: 2013
  ident: 10233_CR11
  publication-title: Nat Hazard
  doi: 10.5194/nhess-13-2815-2013
– volume: 72
  start-page: 119
  issue: 1
  year: 2014
  ident: 10233_CR4
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0770-3
– volume: 50
  start-page: 551
  issue: 3
  year: 2009
  ident: 10233_CR20
  publication-title: Nat Hazards
  doi: 10.1007/s11069-009-9356-5
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10233_CR9
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 11
  start-page: 425
  issue: 3
  year: 2014
  ident: 10233_CR33
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume-title: Nature of statistical learning theory
  year: 1995
  ident: 10233_CR54
  doi: 10.1007/978-1-4757-2440-0
– ident: 10233_CR36
– volume: 75
  start-page: 563
  issue: 2
  year: 2016
  ident: 10233_CR21
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0773-2
– volume: 5
  start-page: 407
  issue: 4
  year: 2008
  ident: 10233_CR30
  publication-title: Landslides
  doi: 10.1007/s10346-008-0134-3
– volume: 10
  start-page: 1019
  issue: 8
  year: 2018
  ident: 10233_CR57
  publication-title: Water
  doi: 10.3390/w10081019
– volume: 43
  start-page: 27
  year: 1991
  ident: 10233_CR16
  publication-title: Bull Int Assoc Eng Geol
  doi: 10.1007/BF02590167
– volume: 2
  start-page: 81
  issue: 1
  year: 2009
  ident: 10233_CR31
  publication-title: J South Asia Disaster Stud
– volume: 7
  start-page: 725
  issue: 2
  year: 2014
  ident: 10233_CR47
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0807-z
– volume: 58
  start-page: 21
  issue: 1
  year: 1999
  ident: 10233_CR3
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s100640050066
– volume: 101
  start-page: 572
  issue: 4
  year: 2008
  ident: 10233_CR59
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 9
  start-page: 292
  issue: 4
  year: 2016
  ident: 10233_CR8
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2308-y
– volume: 644
  start-page: 1006
  year: 2018
  ident: 10233_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.389
– volume: 4
  start-page: 5
  issue: 1
  year: 2000
  ident: 10233_CR37
  publication-title: Trans GIS
  doi: 10.1111/1467-9671.00035
– volume: 3
  start-page: 1
  issue: 3
  year: 2017
  ident: 10233_CR38
  publication-title: Modeling Earth Syst Environ
  doi: 10.1007/s40808-017-0361-5
– volume: 23
  start-page: 13
  issue: 1
  year: 1981
  ident: 10233_CR55
  publication-title: Bull Int Assoc Eng Geol
  doi: 10.1007/BF02594720
– volume: 75
  start-page: 1
  issue: 14
  year: 2016
  ident: 10233_CR53
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5919-4
– volume: 29
  start-page: 329
  issue: 2
  year: 2012
  ident: 10233_CR43
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2011.07.003
– volume: 26
  start-page: 47
  issue: 1–3
  year: 1998
  ident: 10233_CR26
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(98)00051-8
– volume: 23
  start-page: 20
  issue: 47
  year: 1999
  ident: 10233_CR40
  publication-title: Employ News
– volume: 115
  start-page: 23
  year: 2010
  ident: 10233_CR6
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– volume: 6
  start-page: 2873
  issue: 8
  year: 2013
  ident: 10233_CR64
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0610-x
– volume: 85
  start-page: 274
  issue: 3
  year: 2011
  ident: 10233_CR58
  publication-title: CATENA
  doi: 10.1016/j.catena.2011.01.014
– volume: 112
  start-page: 23
  year: 2018
  ident: 10233_CR66
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.11.019
– volume: 20
  start-page: 67
  issue: 1
  year: 2014
  ident: 10233_CR2
  publication-title: Environ Eng Geosci
  doi: 10.2113/gseegeosci.20.1.67
– volume: 249
  start-page: 103
  year: 2015
  ident: 10233_CR15
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.01.029
– volume: 9
  start-page: 15
  issue: 1
  year: 2017
  ident: 10233_CR35
  publication-title: Sustainability
  doi: 10.3390/su9010048
– volume: 93
  start-page: 1401
  issue: 9
  year: 2012
  ident: 10233_CR60
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-11-00122.1
– volume: 65
  start-page: 241
  issue: 1
  year: 2013
  ident: 10233_CR10
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0361-8
– volume: 90
  start-page: 139
  year: 1990
  ident: 10233_CR61
  publication-title: Hydrol Mt Areas
– volume: 8
  start-page: 348
  issue: 2
  year: 2017
  ident: 10233_CR32
  publication-title: Geomat Nat Hazards Risk
  doi: 10.1080/19475705.2016.1220023
– ident: 10233_CR500
– volume: 589
  start-page: 250
  year: 2017
  ident: 10233_CR65
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.188
– volume: 8
  start-page: 950
  issue: 2
  year: 2017
  ident: 10233_CR13
  publication-title: Geomat Nat Hazards Risk
  doi: 10.1080/19475705.2017.1289250
– volume: 81
  start-page: 1
  year: 2015
  ident: 10233_CR23
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.04.007
SSID ssj0000313906
Score 2.4109108
Snippet The northern region of Pakistan is a top tourist destination that is highly susceptible to landslides. Current mega infrastructure development projects in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms Algorithms
Bayesian analysis
Biogeosciences
case studies
Development projects
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Geochemistry
Geographic information systems
Geographical information systems
Geology
Hydrology/Water Resources
Indus River
Information systems
Infrastructure
Landslides
Landslides & mudslides
Learning algorithms
Machine learning
Model accuracy
Modelling
Original Article
Pakistan
Remote sensing
River basins
Rivers
Safety measures
Support vector machines
Susceptibility
Terrestrial Pollution
tourists
Training
watersheds
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELagCIkLKn8ibUGDxI2utOvYuzG3gigVAg6ISL2t_BtWSjdRNqHKrQ_RV-DF-iTMON5EIEDivF6vtDP2zGfPfB9jL4X1CDtClRmH2ESISmUjo3AztAhZbD7yJkonfPpcno3Fh3N5nprCur7avb-SjDv1rtkNYwl1E_OM6AaG2fo2uyOJzgu9eMxPticrxEaooqgmkbllJR_lqVvmz9P8GpF2aeZvN6Mx4Jzus_spU4STjWkfsFu-fcjuvo9KvOtH7MdHatKdNs5Dt-picUqsc13DhSbOhclraOKBQTz_66Bp4TviYuqUgst4HtoBMWxsWhch6fXgy1Rc6SGpSUxATyezRbP8dtHdXF1rsBj1IHLSwizAaj73C4jyH_CFKjzgje6a9hhSYto-ZuPTd1_fnmVJcyHTw0ous0B6VbzUheCFy6312iBIUWi6IKpgdJDGGym8FaEIotClye3QOe5zpwRx1z1he-2s9U8ZeOukKZV1Q6lFcIhLtAqlwJllwCRIDljR__faJkJy0sWY1jsqZbJVjbaqo63q9YC92r4z39Bx_HP0UW_OOi3NruYlR2COIFwN2IvtY1xUdFOiWz9b0ZhKylJhqjhgx70b7Kb4-xcP_m_4IbvHyRNjFfgR21suVv4ZJjlL8zz69E_E1_fe
  priority: 102
  providerName: Springer Nature
Title Landslide susceptibility mapping: improvements in variable weights estimation through machine learning algorithms—a case study of upper Indus River Basin, Pakistan
URI https://link.springer.com/article/10.1007/s12665-022-10233-y
https://www.proquest.com/docview/2627131329
https://www.proquest.com/docview/2675569441
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AFBBN
  dateStart: 20091101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: U2A
  dateStart: 20091101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxNBFD60CYIv4hVjaziCb3ZxdzOzmy2IpJK2eAlSDNSnZa4xkG5iN1Hy5o_wL_jH_CXOmcwmKNjnnZ2BOWfmXOac7wN4zpRxYYfNI6ldbMJYXkR9WbjLULmQRcV9Iz11wodRdj5mby_55R6Mml4YKqts7kR_Ueu5ohz5yzRLXTxFtOivF18jYo2i19WGQkMEagX9ykOM7UM7JWSsFrRPhqOPF9usCyEVFp5wk4Deoiztx6GTZtNP58wVNSynESEa9KL139Zq54L-82rqjdHpXbgTvEgcbMR-D_ZMdR9unXmW3vUD-PWeGnhnU22wXtW-cMXXwK7xShAew-QYpz6Z4HODNU4r_OZiZuqiwu8-V1ojoW9s2hoxcPm4n6nw0mBgmpigmE3cFi2_XNW_f_wUqJxFRI9Xi3OLq8XCXKOnBsELqv7AE1FPqyMMTmv1EManw09vzqPAxxCJXs6XkSUuqzQTCUsTHStlhHQBTOHEallupbBcGsmZUcwmliUik7HqaZ2aWBeMcO0eQauaV-YxoFGay6xQuscFs9rFLKKwGXMzc-scJN6BpNn3UgWwcuLMmJU7mGWSVelkVXpZlesOvNj-s9hAddw4-rARZxmObV3ulKwDz7af3YGjVxRRmfmKxuScZ4VzIztw1KjBbor_r_jk5hUP4HZKmucrwg-htbxemafO4VnKLrQHZ5_fDbtBm7uwP04HfwC3-QOA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVgguFb8itMAgwYla2Ou1EyNViEJLStMIVa3Um7venxApdUKdUPnGQ_AKvAYPw5Mws1knAoneevZ61_LMzs7MznwfYy-EMhh22HZQaIxNhGhnQafI0BgqDFlU2DGFo0447KfdE_HpNDldYb-aXhgqq2xsojPUeqwoR_6apxzjKaJFfzv5GhBrFN2uNhQa0lMr6G0HMeYbOw5MfYkhXLW9_wHl_ZLzvd3j993AswwEMm4n08ASQxNPZSR4pEOljCzQLc_wY61o20LapDBFIowSNrIikmkRqlhrbkKdCUJrw3lvsDURiwyDv7Wd3f7no0WWh5ARM0fwScByQco7oe_cmffv4fFIDdI8IASFOKj_Ph2XLu8_t7Tu8Nu7w9a91wrv5mp2l62Y8h67-dGxAtf32c8eNQyPhtpANatcoYyrua3hXBL-w-ANDF3ywuUiKxiW8A1jdOragkuXm62A0D7mbZTguYPwZSr0NOCZLQYgRwMUyfTLefX7-w8JCk9gcPi4MLYwm0zMBTgqEjiiahPYkdWw3ALvJJcP2Mm1SOYhWy3HpXnEwCidFGmmdJxIYTXGSDKzqcCZE4sOWdJiUfPfc-XB0YmjY5QvYZ1JVjnKKneyyusWe7V4ZzKHBrly9GYjztybiSpfKnWLPV88xg1OtzayNOMZjWknSZqh29piW40aLKf4_4qPr17xGbvVPT7s5b39_sEGu81JC101-iZbnV7MzBN0tqbFU6_RwM6uexP9AVJUPxc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VViAuiF8RKDBIcKJW7c2uEyNViNKGlpaoqqjUm1nvT4iUOqFOqHzjIXgFXobH4EmY2awTgURvPXu9a3lmZ2dmZ76PsRdCWww7XCcqDMYmQnSyqFtkaAw1hiw67trCUyd87Kd7J-LDqTxdYb-aXhgqq2xsojfUZqwpR77JU47xFNGib7pQFnG003sz-RoRgxTdtDZ0GirQLJgtDzcWmjwObH2B4Vy1tb-Dsn_JeW_307u9KDAORKrdkdPIEVsTT1UieGJira0q0EXP8MOd6LhCOVnYQgqrhUucSFRaxLptDLexyQQht-G819gaXX6hkVjb3u0fHS8yPoSSmHmyTwKZi1LejUMXz7yXD49KapbmEaEptKP675Ny6f7-c2PrD8LebXYreLDwdq5yd9iKLe-y6-89Q3B9j_08pObh0dBYqGaVL5rx9bc1nCnCghi8hqFPZPi8ZAXDEr5hvE4dXHDh87QVEPLHvKUSAo8QvkxFnxYCy8UA1GiAIpl-Oat-f_-hQONpDB4rF8YOZpOJPQdPSwLHVHkC26oalhsQHObyPju5Esk8YKvluLQPGVhtZJFm2rSlEs5gvKQylwqcWTp0zmSLJc1_z3UASie-jlG-hHgmWeUoq9zLKq9b7NXinckcJuTS0euNOPNgMqp8qeAt9nzxGDc73eCo0o5nNKYjZZqhC9tiG40aLKf4_4qPLl_xGbuBmyk_3O8fPGY3OSmhL0xfZ6vT85l9gn7XtHgaFBrY56veQ38A469DRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+susceptibility+mapping%3A+improvements+in+variable+weights+estimation+through+machine+learning+algorithms%E2%80%94a+case+study+of+upper+Indus+River+Basin%2C+Pakistan&rft.jtitle=Environmental+earth+sciences&rft.au=Imtiaz%2C+Iqra&rft.au=Umar%2C+Muhammad&rft.au=La%E1%B9%AD%C4%ABf%2C+Mu%E1%B8%A5ammad&rft.au=Ahmed%2C+Rehan&rft.date=2022-02-01&rft.issn=1866-6280&rft.volume=81&rft.issue=4+p.112-112&rft.spage=112&rft.epage=112&rft_id=info:doi/10.1007%2Fs12665-022-10233-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon