Groundwater Remediation Design Underpinned By Coupling Evolution Algorithm With Deep Belief Network Surrogate
Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of sc...
Saved in:
| Published in | Water resources management Vol. 36; no. 7; pp. 2223 - 2239 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.05.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-022-03137-w |
Cover
| Abstract | Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of scalability and accuracy when the input–output relationship is highly nonlinear or high-dimensional. To tackle these problems, we herein propose a novel simulation–optimization method that embeds the deep learning deep belief network (DBN) into the particle swarm optimization (PSO) algorithm for groundwater remediation design. Firstly, a numerical simulation model based on MODFLOW and MT3DMS is established to describe the impact on the pollution environmental fate of various implementations of the remediation strategy. The input dataset to train DBN is comprised of various remediation strategies that evolve automatically in the PSO iterations, and the corresponding output dataset constituted of contaminant concentration at observation wells is garnered by executing the simulation model. In the optimization process, the DBN is retrained in an adaptive pattern to enhance prediction accuracy, selectively substituting for the original simulation model to alleviate the computational burden. Additionally, the PSO algorithm undergoes discretization and collision averting within each individual to adapt to the specific remediation task. The results reveal that the proposed method manifests satisfactory convergence behaviour and accuracy, capable of unburdening a considerable proportion (68.8%) of the time consumption for optimal groundwater remediation design. |
|---|---|
| AbstractList | Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of scalability and accuracy when the input–output relationship is highly nonlinear or high-dimensional. To tackle these problems, we herein propose a novel simulation–optimization method that embeds the deep learning deep belief network (DBN) into the particle swarm optimization (PSO) algorithm for groundwater remediation design. Firstly, a numerical simulation model based on MODFLOW and MT3DMS is established to describe the impact on the pollution environmental fate of various implementations of the remediation strategy. The input dataset to train DBN is comprised of various remediation strategies that evolve automatically in the PSO iterations, and the corresponding output dataset constituted of contaminant concentration at observation wells is garnered by executing the simulation model. In the optimization process, the DBN is retrained in an adaptive pattern to enhance prediction accuracy, selectively substituting for the original simulation model to alleviate the computational burden. Additionally, the PSO algorithm undergoes discretization and collision averting within each individual to adapt to the specific remediation task. The results reveal that the proposed method manifests satisfactory convergence behaviour and accuracy, capable of unburdening a considerable proportion (68.8%) of the time consumption for optimal groundwater remediation design. |
| Author | Liu, Guodong Meng, Yuchuan Chen, Yu Huang, Xiaohua |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-9494-1703 surname: Chen fullname: Chen, Yu organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University – sequence: 2 givenname: Guodong surname: Liu fullname: Liu, Guodong email: liugd988@163.com organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University – sequence: 3 givenname: Xiaohua surname: Huang fullname: Huang, Xiaohua organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University – sequence: 4 givenname: Yuchuan surname: Meng fullname: Meng, Yuchuan organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University |
| BookMark | eNp9kcFu1DAQhi1UJLaFF-BkiQuX0LEd25tju5RSqQIJqDhaTnYcXBI72ElXfXu8u0hIPfQyc_m-mdH8p-QkxICEvGXwgQHo88wYV00FnFcgmNDV7gVZMalFxZSEE7KChkNV65q9Iqc53wMUrYEVGa9TXMJ2Z2dM9BuOuPV29jHQj5h9H-hd2GKafAi4pZePdBOXafChp1cPcVgO4MXQx-TnXyP9WWrxcKKXOHh09AvOu5h-0-9LSrEvK16Tl84OGd_862fk7tPVj83n6vbr9c3m4rayQsu5akG7tm21EnJdc8U4rGulhW1VLUTdNtw5tK1EWHeonJPQSNWBACeRCeCtOCPvj3OnFP8smGcz-tzhMNiAccmGKy2lLi-Agr57gt7HJYVy3Z4CCbXUe2p9pLoUc07oTOfnw6PmZP1gGJh9DuaYgyk5mEMOZldU_kSdkh9tenxeEkcpFzj0mP5f9Yz1F4ounao |
| CitedBy_id | crossref_primary_10_1016_j_envres_2023_117268 crossref_primary_10_1016_j_jenvman_2023_119555 crossref_primary_10_1016_j_jhydrol_2024_131714 crossref_primary_10_1038_s41598_024_62545_7 crossref_primary_10_1007_s11269_022_03289_9 crossref_primary_10_1016_j_jhydrol_2023_129110 |
| Cites_doi | 10.1162/neco.2006.18.7.1527 10.1007/s40710-019-00402-w 10.1029/2018WR022643 10.1162/089976602760128018 10.1016/j.jhydrol.2021.126670 10.1016/j.scitotenv.2021.150811 10.1111/gwat.13005 10.1007/s11356-021-13680-5 10.1007/s11269-019-02472-9 10.1016/j.cma.2021.113895 10.1007/s11269-020-02573-w 10.1016/j.jconhyd.2021.103914 10.1016/j.jhydrol.2015.11.011 10.1016/j.jhydrol.2020.125726 10.1126/science.1127647 10.1007/s11356-021-18216-5 10.1016/j.advwatres.2020.103540 10.1007/s11269-018-2171-6 10.1007/s40710-021-00515-1 10.1111/gwat.12557 10.1007/s11356-020-11614-1 10.1029/2011WR011527 10.1029/2005WR004303 10.1007/978-3-642-21735-7_2 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-022-03137-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection (ProQuest) Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database (Proquest) Biological Science Database Engineering Database (Proquest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 2239 |
| ExternalDocumentID | 10_1007_s11269_022_03137_w |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a375t-b07fbbb7635842612084673ab64334b92ffeab5e08ce6ff50956c030f5e1302b3 |
| IEDL.DBID | U2A |
| ISSN | 0920-4741 |
| IngestDate | Thu Sep 04 16:24:34 EDT 2025 Sat Sep 06 14:42:53 EDT 2025 Wed Oct 01 01:45:01 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Fri Feb 21 02:45:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Deep learning Groundwater remediation Surrogate model Deep belief network PSO algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a375t-b07fbbb7635842612084673ab64334b92ffeab5e08ce6ff50956c030f5e1302b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9494-1703 |
| PQID | 2670504570 |
| PQPubID | 54174 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2675571000 proquest_journals_2670504570 crossref_citationtrail_10_1007_s11269_022_03137_w crossref_primary_10_1007_s11269_022_03137_w springer_journals_10_1007_s11269_022_03137_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Rezaei, Bozorg-Haddad, Loáiciga (CR19) 2020; 34 Bai, Chen, Xie, Li (CR2) 2016; 532 Janža (CR9) 2022; 807 Hinton, Osindero, Teh (CR7) 2006; 18 CR18 Zhao, Qu, Xing, Lu (CR25) 2020; 138 CR10 Hinton (CR6) 2002; 14 Shen (CR22) 2018; 54 Zhang, Qiang, Liu, Zhu, Lv (CR24) 2022 Dagasan, Juda, Renard (CR5) 2020; 58 Shams, Alimohammadi, Yazdi (CR21) 2021; 243 Lykkegaard, Dodwell, Moxey (CR12) 2021; 383 Alkizwini (CR1) 2021; 8 CR4 Hinton, Salakhutdinov (CR8) 2006; 313 CR23 Majumder, Eldho (CR13) 2020; 34 Mohanadhas, Kumar (CR16) 2019; 6 Marçais, de Dreuzy (CR14) 2017; 55 Sadeghfam, Hassanzadeh, Khatibi, Nadiri, Moazamnia (CR20) 2019; 33 Chen, Liu, Huang, Chen, Hou, Zhou (CR3) 2021; 598 Miao, Guo (CR15) 2021; 28 Pan, Lu, Fan, Li (CR17) 2021; 28 Li, Lu, Luo (CR11) 2021; 601 M Janža (3137_CR9) 2022; 807 H Rezaei (3137_CR19) 2020; 34 3137_CR23 Y Zhao (3137_CR25) 2020; 138 3137_CR4 B Mohanadhas (3137_CR16) 2019; 6 Y Dagasan (3137_CR5) 2020; 58 C Shen (3137_CR22) 2018; 54 GE Hinton (3137_CR8) 2006; 313 P Majumder (3137_CR13) 2020; 34 RS Alkizwini (3137_CR1) 2021; 8 S Sadeghfam (3137_CR20) 2019; 33 T Miao (3137_CR15) 2021; 28 Y Bai (3137_CR2) 2016; 532 Y Chen (3137_CR3) 2021; 598 S Zhang (3137_CR24) 2022 GE Hinton (3137_CR7) 2006; 18 MB Lykkegaard (3137_CR12) 2021; 383 3137_CR10 J Li (3137_CR11) 2021; 601 R Shams (3137_CR21) 2021; 243 J Marçais (3137_CR14) 2017; 55 GE Hinton (3137_CR6) 2002; 14 3137_CR18 Z Pan (3137_CR17) 2021; 28 |
| References_xml | – ident: CR18 – ident: CR4 – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR7 article-title: A Fast Learning Algorithm for Deep Belief Nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 6 start-page: 841 issue: 4 year: 2019 end-page: 858 ident: CR16 article-title: Numerical Experiments on Fate and Transport of Benzene with Biological Clogging in Vadoze Zone publication-title: Environ Prog doi: 10.1007/s40710-019-00402-w – volume: 54 start-page: 8558 issue: 11 year: 2018 end-page: 8593 ident: CR22 article-title: A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists publication-title: Water Resour Res doi: 10.1029/2018WR022643 – ident: CR10 – volume: 14 start-page: 1771 issue: 8 year: 2002 end-page: 1800 ident: CR6 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput doi: 10.1162/089976602760128018 – volume: 601 year: 2021 ident: CR11 article-title: Groundwater contamination sources identification based on the Long-Short Term Memory network publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126670 – volume: 807 year: 2022 ident: CR9 article-title: Optimization of well field management to mitigate groundwater contamination using a simulation model and evolutionary algorithm publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150811 – volume: 58 start-page: 938 issue: 6 year: 2020 end-page: 950 ident: CR5 article-title: Using generative adversarial networks as a fast forward operator for hydrogeological inverse problems publication-title: Groundwater doi: 10.1111/gwat.13005 – volume: 28 start-page: 54096 issue: 38 year: 2021 end-page: 54104 ident: CR15 article-title: Application of artificial intelligence deep learning in numerical simulation of seawater intrusion publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-13680-5 – volume: 34 start-page: 763 issue: 2 year: 2020 end-page: 783 ident: CR13 article-title: Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation publication-title: Water Resour Manage doi: 10.1007/s11269-019-02472-9 – ident: CR23 – volume: 383 year: 2021 ident: CR12 article-title: Accelerating uncertainty quantification of groundwater flow modelling using a deep neural network proxy publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113895 – volume: 34 start-page: 3079 issue: 10 year: 2020 end-page: 3097 ident: CR19 article-title: Reliability-Based Multi-Objective Optimization of Groundwater Remediation publication-title: Water Resour Manage doi: 10.1007/s11269-020-02573-w – volume: 243 year: 2021 ident: CR21 article-title: Optimized stacking, a new method for constructing ensemble surrogate models applied to DNAPL-contaminated aquifer remediation publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2021.103914 – volume: 532 start-page: 193 year: 2016 end-page: 206 ident: CR2 article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.11.011 – volume: 598 year: 2021 ident: CR3 article-title: Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125726 – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR8 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science doi: 10.1126/science.1127647 – year: 2022 ident: CR24 article-title: A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction-treatment publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-18216-5 – volume: 138 year: 2020 ident: CR25 article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2020.103540 – volume: 33 start-page: 1123 issue: 3 year: 2019 end-page: 1145 ident: CR20 article-title: Groundwater Remediation through Pump-Treat-Inject Technology Using Optimum Control by Artificial Intelligence (OCAI) publication-title: Water Resour Manage doi: 10.1007/s11269-018-2171-6 – volume: 8 start-page: 889 issue: 2 year: 2021 end-page: 910 ident: CR1 article-title: The Use of an Organo-Kaolinite Sorbent in a Permeable Reactive Barrier for Remediating Groundwater Contaminated with Methylene Blue Dye: Experimental and Theoretical Investigation publication-title: Environmental Processes doi: 10.1007/s40710-021-00515-1 – volume: 55 start-page: 688 issue: 5 year: 2017 end-page: 692 ident: CR14 article-title: Prospective Interest of Deep Learning for Hydrological Inference publication-title: Groundwater doi: 10.1111/gwat.12557 – volume: 28 start-page: 16867 issue: 13 year: 2021 end-page: 16879 ident: CR17 article-title: Identification of groundwater contamination sources and hydraulic parameters based on bayesian regularization deep neural network publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11614-1 – volume: 6 start-page: 841 issue: 4 year: 2019 ident: 3137_CR16 publication-title: Environ Prog doi: 10.1007/s40710-019-00402-w – year: 2022 ident: 3137_CR24 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-18216-5 – volume: 601 year: 2021 ident: 3137_CR11 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126670 – volume: 383 year: 2021 ident: 3137_CR12 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113895 – volume: 532 start-page: 193 year: 2016 ident: 3137_CR2 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.11.011 – volume: 598 year: 2021 ident: 3137_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125726 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 3137_CR8 publication-title: Science doi: 10.1126/science.1127647 – ident: 3137_CR18 doi: 10.1029/2011WR011527 – volume: 807 year: 2022 ident: 3137_CR9 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150811 – volume: 54 start-page: 8558 issue: 11 year: 2018 ident: 3137_CR22 publication-title: Water Resour Res doi: 10.1029/2018WR022643 – ident: 3137_CR10 – volume: 33 start-page: 1123 issue: 3 year: 2019 ident: 3137_CR20 publication-title: Water Resour Manage doi: 10.1007/s11269-018-2171-6 – volume: 55 start-page: 688 issue: 5 year: 2017 ident: 3137_CR14 publication-title: Groundwater doi: 10.1111/gwat.12557 – volume: 8 start-page: 889 issue: 2 year: 2021 ident: 3137_CR1 publication-title: Environmental Processes doi: 10.1007/s40710-021-00515-1 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 3137_CR6 publication-title: Neural Comput doi: 10.1162/089976602760128018 – ident: 3137_CR23 doi: 10.1029/2005WR004303 – volume: 34 start-page: 763 issue: 2 year: 2020 ident: 3137_CR13 publication-title: Water Resour Manage doi: 10.1007/s11269-019-02472-9 – volume: 138 year: 2020 ident: 3137_CR25 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2020.103540 – volume: 28 start-page: 16867 issue: 13 year: 2021 ident: 3137_CR17 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11614-1 – volume: 58 start-page: 938 issue: 6 year: 2020 ident: 3137_CR5 publication-title: Groundwater doi: 10.1111/gwat.13005 – volume: 34 start-page: 3079 issue: 10 year: 2020 ident: 3137_CR19 publication-title: Water Resour Manage doi: 10.1007/s11269-020-02573-w – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 3137_CR7 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 243 year: 2021 ident: 3137_CR21 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2021.103914 – volume: 28 start-page: 54096 issue: 38 year: 2021 ident: 3137_CR15 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-13680-5 – ident: 3137_CR4 doi: 10.1007/978-3-642-21735-7_2 |
| SSID | ssj0010090 |
| Score | 2.364007 |
| Snippet | Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2223 |
| SubjectTerms | Accuracy administrative management Algorithms Atmospheric Sciences Belief networks Civil Engineering Computer applications Computer simulation Computing costs Contaminants data collection Datasets Deep learning Design Earth and Environmental Science Earth Sciences Environment environmental fate Evolutionary algorithms Geotechnical Engineering & Applied Earth Sciences Groundwater Groundwater treatment Hydrogeology hydrologic models Hydrology/Water Resources Machine learning Mathematical models Methods Nonlinear systems Nonlinearity Observation wells Optimization Particle swarm optimization Pollution prediction Remediation Simulation simulation models Water resources Water resources management |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrG-WMGbLqZ5NgcRqxURLFIt9hayr3rQpNbW4r93Zpu0KthLLtnNkpnZ2dl5fANwLPBYElFkuBMJjxMgOReBllylaV0SgKXyqN75vhXedvy7btBdgFZZC0NplaVOtIpa5ZJ85GduGDkB2h-Rc9F_59Q1iqKrZQuNtGitoM4txNgiLLmEjFWBpUaz9dCexhVwdet1ifHS5ONhWpTRTIrpam4Yc8puJzzDiI9_H1Uz-_NPyNSeRDdrsFqYkOxywvN1WNDZBqz8ABbchDdyKWVqjIbkgLW1LQ8hDrBrm7DBbLejPrXdUqzxxa7yERXm9ljzs5BEdvnaw78fvryxZ3ziPN1nDY0Gq2GtSeY4exwNBjl54bagc9N8urrlRWMFnnpRMOTIICOEICy6Ol2hXIesEC8VaJ54vohdY3SKLHPqUofGBARWKFEbmEBTnFN421DJ8kzvAFMStWnqO54rYl9KVY-NCCOp4pqrUZWYKtRKGiayQB2n5hevyQwvmeieIN0TS_dkXIWT6Zz-BHNj7uj9kjVJsf8-kpm0VOFo-hp3DoVD0kznIzsmCAjcCMecliydfeL_FXfnr7gHy66VIsqK3IfKcDDSB2i5DMVhIY7f50rqcQ priority: 102 providerName: ProQuest |
| Title | Groundwater Remediation Design Underpinned By Coupling Evolution Algorithm With Deep Belief Network Surrogate |
| URI | https://link.springer.com/article/10.1007/s11269-022-03137-w https://www.proquest.com/docview/2670504570 https://www.proquest.com/docview/2675571000 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuOweEE9teVRG4rZYSpM4j2MLLQhEtQIq2FMUOzYgQVKFlop_z4ybtIB2kbgkh4wdaWbsGXtmvgE4kGiWZBga7oTS4wRIzqXQimdpGikCsMw8qne-6AenA__sVtxWRWHPdbZ7HZK0O_W82K3lBjGn7HPCGwz5ZBGWBcF5oRYP3PYsdoB_sDcrMR6MfDSYVanMv-f4aI7mPuansKi1Nr1VWKncRNaeynUNFnS-Dj_fgQduwBNdG-XZBJ3Fkl1qWwJCXGbHNimD2Y5GQ2qtlbHOKzsqxlR8e8e6L5W2sfbjXVE-jO6f2A0-cZweso5Gp9Sw_jQ7nF2Ny7Kgm7ZNGPS610envGqewFMvFCOOQjBSSsKbi-iY5DrkaXipRBfE82XsGqNTFIsTKR0YIwiQUOGKN0JTLFN6W7CUF7n-BSxTuGOmvuO5MvaVyqLYyCBUWdxyNW4XpgGtmoeJqpDFqcHFYzLHRCa-J8j3xPI9mTTg92zMcIqr8SX1bi2apFpjz4kbhI5AjzR0GrA_-4yrg0Ieaa6LsaURggCMkOawFul8iv__cft75Dvww7VaRZmQu7A0Ksd6D72VkWzCYtQ7acJy--TveRffnW7_z2XTquwbHl7lcw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcUKGtGqCwldpTu6qzfsUHVBEICq-ooqByc70vOIAdQkLEn-O3dWazTmilcuPii_dhz87uzOzMfAPwSaJYkmlqeZDKkBMgOZexUVwXRUsRgKUOKd_5uJd0z6KD8_h8Dh7qXBgKq6zPRHdQ60rRHfk3kaRBjPpHGnzv33CqGkXe1bqERuFLK-gtBzHmEzsOzf0YTbjbrf1dXO_PQux1Tne63FcZ4EWYxkOOX2ullATM1iJ7QgQkksNCoqwOI5kJa02B3x-0lEmsjQm5T-HWsLEhp58McdwXsBCFUYbG30K70_txMvVj4N-6W54MjbQIhbdP25kk7zVFknGKpif8xJSP_xaNM333Hxetk3x7r2HJq6xse8JjyzBnyhVYfARk-Aau6Qqr1GNUXAfsxLh0FFpxtusCRJirrtSnMl-ate_ZTjWiROAL1rnznM-2ry6Q2sPLa_YLn9jP9FnboIJsWW8Sqc5-jgaDim793sLZs5D4HcyXVWneA9MKT-8iCkIhs0gp3cqsTFKls6YweHTZBjRrGubKo5xTsY2rfIbPTHTPke65o3s-bsCXaZ_-BOPjydbr9dLkfr_f5jPubMDH6WvcqeR-KUpTjVybOCYwJWzztV7S2RD_n3H16Rk34WX39PgoP9rvHa7BK-E4iiIy12F-OBiZD6g1DeWGZ00Gv597N_wBbXEmZg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFA5oLaAui2lrtSewCLrPLw5VBWwLFDKCvEQ3NLYseEAybLsdsVf669jxkl2AQluXHKJH8l4xjP2zHwD8F2hWlJSWu5J5XMCJOcqNJpnadrSBGCZ-ZTvfNCNdk-D3-fh-RT8r3NhKKyy3hPdRp0Vmu7I10UkvRDtD-mt2yos4rDd-dW74VRBijytdTmNkkX2zd0Ij2-3P_fauNY_hOhsn2zt8qrCAE99GQ44fqlVShEoW4vOEsIjdeynCvW0H6hYWGtS_HavpU1kbUiofRrFwoaGHH7Kx3HfwIwkFHfKUu_sjD0Y-J_ufifG41mAartK2CnT9poiijnF0RNyouSjx0pxYuk-cc46ndd5B_OVsco2Su56D1Mm_wBzDyAMF-CaLq_ybIQma58dGZeIQmvN2i40hLm6Sj0q8JWxzTu2VQwpBfiCbf-reJ5tXF0gbQeX1-wMn9jP9NimQdPYsm4Zo86Oh_1-Qfd9i3D6KgRegum8yM1HYJnGfTsNPF-oONA6a8VWRVJncVMY3LRsA5o1DRNd4ZtTmY2rZILMTHRPkO6Jo3syasDquE-vRPd4sfVyvTRJJem3yYQvG_Bt_BpllBwvaW6KoWsThgSjhG3W6iWdDPH8jJ9envErzKIMJH_2uvuf4a1wDEWhmMswPegPzRc0lwZqxfElg7-vLQj3USUkAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+Remediation+Design+Underpinned+By+Coupling+Evolution+Algorithm+With+Deep+Belief+Network+Surrogate&rft.jtitle=Water+resources+management&rft.au=Chen%2C+Yu&rft.au=Liu%2C+Guodong&rft.au=Huang%2C+Xiaohua&rft.au=Meng%2C+Yuchuan&rft.date=2022-05-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=36&rft.issue=7&rft.spage=2223&rft.epage=2239&rft_id=info:doi/10.1007%2Fs11269-022-03137-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_022_03137_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |