Groundwater Remediation Design Underpinned By Coupling Evolution Algorithm With Deep Belief Network Surrogate

Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of sc...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 36; no. 7; pp. 2223 - 2239
Main Authors Chen, Yu, Liu, Guodong, Huang, Xiaohua, Meng, Yuchuan
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-022-03137-w

Cover

Abstract Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of scalability and accuracy when the input–output relationship is highly nonlinear or high-dimensional. To tackle these problems, we herein propose a novel simulation–optimization method that embeds the deep learning deep belief network (DBN) into the particle swarm optimization (PSO) algorithm for groundwater remediation design. Firstly, a numerical simulation model based on MODFLOW and MT3DMS is established to describe the impact on the pollution environmental fate of various implementations of the remediation strategy. The input dataset to train DBN is comprised of various remediation strategies that evolve automatically in the PSO iterations, and the corresponding output dataset constituted of contaminant concentration at observation wells is garnered by executing the simulation model. In the optimization process, the DBN is retrained in an adaptive pattern to enhance prediction accuracy, selectively substituting for the original simulation model to alleviate the computational burden. Additionally, the PSO algorithm undergoes discretization and collision averting within each individual to adapt to the specific remediation task. The results reveal that the proposed method manifests satisfactory convergence behaviour and accuracy, capable of unburdening a considerable proportion (68.8%) of the time consumption for optimal groundwater remediation design.
AbstractList Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and nonlinearity of the groundwater system. Traditional surrogate methods that can reduce the computational costs tend to encounter barriers of scalability and accuracy when the input–output relationship is highly nonlinear or high-dimensional. To tackle these problems, we herein propose a novel simulation–optimization method that embeds the deep learning deep belief network (DBN) into the particle swarm optimization (PSO) algorithm for groundwater remediation design. Firstly, a numerical simulation model based on MODFLOW and MT3DMS is established to describe the impact on the pollution environmental fate of various implementations of the remediation strategy. The input dataset to train DBN is comprised of various remediation strategies that evolve automatically in the PSO iterations, and the corresponding output dataset constituted of contaminant concentration at observation wells is garnered by executing the simulation model. In the optimization process, the DBN is retrained in an adaptive pattern to enhance prediction accuracy, selectively substituting for the original simulation model to alleviate the computational burden. Additionally, the PSO algorithm undergoes discretization and collision averting within each individual to adapt to the specific remediation task. The results reveal that the proposed method manifests satisfactory convergence behaviour and accuracy, capable of unburdening a considerable proportion (68.8%) of the time consumption for optimal groundwater remediation design.
Author Liu, Guodong
Meng, Yuchuan
Chen, Yu
Huang, Xiaohua
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-9494-1703
  surname: Chen
  fullname: Chen, Yu
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University
– sequence: 2
  givenname: Guodong
  surname: Liu
  fullname: Liu, Guodong
  email: liugd988@163.com
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University
– sequence: 3
  givenname: Xiaohua
  surname: Huang
  fullname: Huang, Xiaohua
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University
– sequence: 4
  givenname: Yuchuan
  surname: Meng
  fullname: Meng, Yuchuan
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College of Water Resources and Hydropower, Sichuan University
BookMark eNp9kcFu1DAQhi1UJLaFF-BkiQuX0LEd25tju5RSqQIJqDhaTnYcXBI72ElXfXu8u0hIPfQyc_m-mdH8p-QkxICEvGXwgQHo88wYV00FnFcgmNDV7gVZMalFxZSEE7KChkNV65q9Iqc53wMUrYEVGa9TXMJ2Z2dM9BuOuPV29jHQj5h9H-hd2GKafAi4pZePdBOXafChp1cPcVgO4MXQx-TnXyP9WWrxcKKXOHh09AvOu5h-0-9LSrEvK16Tl84OGd_862fk7tPVj83n6vbr9c3m4rayQsu5akG7tm21EnJdc8U4rGulhW1VLUTdNtw5tK1EWHeonJPQSNWBACeRCeCtOCPvj3OnFP8smGcz-tzhMNiAccmGKy2lLi-Agr57gt7HJYVy3Z4CCbXUe2p9pLoUc07oTOfnw6PmZP1gGJh9DuaYgyk5mEMOZldU_kSdkh9tenxeEkcpFzj0mP5f9Yz1F4ounao
CitedBy_id crossref_primary_10_1016_j_envres_2023_117268
crossref_primary_10_1016_j_jenvman_2023_119555
crossref_primary_10_1016_j_jhydrol_2024_131714
crossref_primary_10_1038_s41598_024_62545_7
crossref_primary_10_1007_s11269_022_03289_9
crossref_primary_10_1016_j_jhydrol_2023_129110
Cites_doi 10.1162/neco.2006.18.7.1527
10.1007/s40710-019-00402-w
10.1029/2018WR022643
10.1162/089976602760128018
10.1016/j.jhydrol.2021.126670
10.1016/j.scitotenv.2021.150811
10.1111/gwat.13005
10.1007/s11356-021-13680-5
10.1007/s11269-019-02472-9
10.1016/j.cma.2021.113895
10.1007/s11269-020-02573-w
10.1016/j.jconhyd.2021.103914
10.1016/j.jhydrol.2015.11.011
10.1016/j.jhydrol.2020.125726
10.1126/science.1127647
10.1007/s11356-021-18216-5
10.1016/j.advwatres.2020.103540
10.1007/s11269-018-2171-6
10.1007/s40710-021-00515-1
10.1111/gwat.12557
10.1007/s11356-020-11614-1
10.1029/2011WR011527
10.1029/2005WR004303
10.1007/978-3-642-21735-7_2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-022-03137-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database (Proquest)
Biological Science Database
Engineering Database (Proquest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 2239
ExternalDocumentID 10_1007_s11269_022_03137_w
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a375t-b07fbbb7635842612084673ab64334b92ffeab5e08ce6ff50956c030f5e1302b3
IEDL.DBID U2A
ISSN 0920-4741
IngestDate Thu Sep 04 16:24:34 EDT 2025
Sat Sep 06 14:42:53 EDT 2025
Wed Oct 01 01:45:01 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Fri Feb 21 02:45:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Groundwater remediation
Surrogate model
Deep belief network
PSO algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-b07fbbb7635842612084673ab64334b92ffeab5e08ce6ff50956c030f5e1302b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9494-1703
PQID 2670504570
PQPubID 54174
PageCount 17
ParticipantIDs proquest_miscellaneous_2675571000
proquest_journals_2670504570
crossref_citationtrail_10_1007_s11269_022_03137_w
crossref_primary_10_1007_s11269_022_03137_w
springer_journals_10_1007_s11269_022_03137_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Rezaei, Bozorg-Haddad, Loáiciga (CR19) 2020; 34
Bai, Chen, Xie, Li (CR2) 2016; 532
Janža (CR9) 2022; 807
Hinton, Osindero, Teh (CR7) 2006; 18
CR18
Zhao, Qu, Xing, Lu (CR25) 2020; 138
CR10
Hinton (CR6) 2002; 14
Shen (CR22) 2018; 54
Zhang, Qiang, Liu, Zhu, Lv (CR24) 2022
Dagasan, Juda, Renard (CR5) 2020; 58
Shams, Alimohammadi, Yazdi (CR21) 2021; 243
Lykkegaard, Dodwell, Moxey (CR12) 2021; 383
Alkizwini (CR1) 2021; 8
CR4
Hinton, Salakhutdinov (CR8) 2006; 313
CR23
Majumder, Eldho (CR13) 2020; 34
Mohanadhas, Kumar (CR16) 2019; 6
Marçais, de Dreuzy (CR14) 2017; 55
Sadeghfam, Hassanzadeh, Khatibi, Nadiri, Moazamnia (CR20) 2019; 33
Chen, Liu, Huang, Chen, Hou, Zhou (CR3) 2021; 598
Miao, Guo (CR15) 2021; 28
Pan, Lu, Fan, Li (CR17) 2021; 28
Li, Lu, Luo (CR11) 2021; 601
M Janža (3137_CR9) 2022; 807
H Rezaei (3137_CR19) 2020; 34
3137_CR23
Y Zhao (3137_CR25) 2020; 138
3137_CR4
B Mohanadhas (3137_CR16) 2019; 6
Y Dagasan (3137_CR5) 2020; 58
C Shen (3137_CR22) 2018; 54
GE Hinton (3137_CR8) 2006; 313
P Majumder (3137_CR13) 2020; 34
RS Alkizwini (3137_CR1) 2021; 8
S Sadeghfam (3137_CR20) 2019; 33
T Miao (3137_CR15) 2021; 28
Y Bai (3137_CR2) 2016; 532
Y Chen (3137_CR3) 2021; 598
S Zhang (3137_CR24) 2022
GE Hinton (3137_CR7) 2006; 18
MB Lykkegaard (3137_CR12) 2021; 383
3137_CR10
J Li (3137_CR11) 2021; 601
R Shams (3137_CR21) 2021; 243
J Marçais (3137_CR14) 2017; 55
GE Hinton (3137_CR6) 2002; 14
3137_CR18
Z Pan (3137_CR17) 2021; 28
References_xml – ident: CR18
– ident: CR4
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: CR7
  article-title: A Fast Learning Algorithm for Deep Belief Nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 6
  start-page: 841
  issue: 4
  year: 2019
  end-page: 858
  ident: CR16
  article-title: Numerical Experiments on Fate and Transport of Benzene with Biological Clogging in Vadoze Zone
  publication-title: Environ Prog
  doi: 10.1007/s40710-019-00402-w
– volume: 54
  start-page: 8558
  issue: 11
  year: 2018
  end-page: 8593
  ident: CR22
  article-title: A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists
  publication-title: Water Resour Res
  doi: 10.1029/2018WR022643
– ident: CR10
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  end-page: 1800
  ident: CR6
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput
  doi: 10.1162/089976602760128018
– volume: 601
  year: 2021
  ident: CR11
  article-title: Groundwater contamination sources identification based on the Long-Short Term Memory network
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126670
– volume: 807
  year: 2022
  ident: CR9
  article-title: Optimization of well field management to mitigate groundwater contamination using a simulation model and evolutionary algorithm
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150811
– volume: 58
  start-page: 938
  issue: 6
  year: 2020
  end-page: 950
  ident: CR5
  article-title: Using generative adversarial networks as a fast forward operator for hydrogeological inverse problems
  publication-title: Groundwater
  doi: 10.1111/gwat.13005
– volume: 28
  start-page: 54096
  issue: 38
  year: 2021
  end-page: 54104
  ident: CR15
  article-title: Application of artificial intelligence deep learning in numerical simulation of seawater intrusion
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-13680-5
– volume: 34
  start-page: 763
  issue: 2
  year: 2020
  end-page: 783
  ident: CR13
  article-title: Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02472-9
– ident: CR23
– volume: 383
  year: 2021
  ident: CR12
  article-title: Accelerating uncertainty quantification of groundwater flow modelling using a deep neural network proxy
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.113895
– volume: 34
  start-page: 3079
  issue: 10
  year: 2020
  end-page: 3097
  ident: CR19
  article-title: Reliability-Based Multi-Objective Optimization of Groundwater Remediation
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-020-02573-w
– volume: 243
  year: 2021
  ident: CR21
  article-title: Optimized stacking, a new method for constructing ensemble surrogate models applied to DNAPL-contaminated aquifer remediation
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2021.103914
– volume: 532
  start-page: 193
  year: 2016
  end-page: 206
  ident: CR2
  article-title: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.11.011
– volume: 598
  year: 2021
  ident: CR3
  article-title: Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125726
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR8
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2022
  ident: CR24
  article-title: A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction-treatment
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-18216-5
– volume: 138
  year: 2020
  ident: CR25
  article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2020.103540
– volume: 33
  start-page: 1123
  issue: 3
  year: 2019
  end-page: 1145
  ident: CR20
  article-title: Groundwater Remediation through Pump-Treat-Inject Technology Using Optimum Control by Artificial Intelligence (OCAI)
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-018-2171-6
– volume: 8
  start-page: 889
  issue: 2
  year: 2021
  end-page: 910
  ident: CR1
  article-title: The Use of an Organo-Kaolinite Sorbent in a Permeable Reactive Barrier for Remediating Groundwater Contaminated with Methylene Blue Dye: Experimental and Theoretical Investigation
  publication-title: Environmental Processes
  doi: 10.1007/s40710-021-00515-1
– volume: 55
  start-page: 688
  issue: 5
  year: 2017
  end-page: 692
  ident: CR14
  article-title: Prospective Interest of Deep Learning for Hydrological Inference
  publication-title: Groundwater
  doi: 10.1111/gwat.12557
– volume: 28
  start-page: 16867
  issue: 13
  year: 2021
  end-page: 16879
  ident: CR17
  article-title: Identification of groundwater contamination sources and hydraulic parameters based on bayesian regularization deep neural network
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11614-1
– volume: 6
  start-page: 841
  issue: 4
  year: 2019
  ident: 3137_CR16
  publication-title: Environ Prog
  doi: 10.1007/s40710-019-00402-w
– year: 2022
  ident: 3137_CR24
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-18216-5
– volume: 601
  year: 2021
  ident: 3137_CR11
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126670
– volume: 383
  year: 2021
  ident: 3137_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.113895
– volume: 532
  start-page: 193
  year: 2016
  ident: 3137_CR2
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.11.011
– volume: 598
  year: 2021
  ident: 3137_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125726
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 3137_CR8
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 3137_CR18
  doi: 10.1029/2011WR011527
– volume: 807
  year: 2022
  ident: 3137_CR9
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150811
– volume: 54
  start-page: 8558
  issue: 11
  year: 2018
  ident: 3137_CR22
  publication-title: Water Resour Res
  doi: 10.1029/2018WR022643
– ident: 3137_CR10
– volume: 33
  start-page: 1123
  issue: 3
  year: 2019
  ident: 3137_CR20
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-018-2171-6
– volume: 55
  start-page: 688
  issue: 5
  year: 2017
  ident: 3137_CR14
  publication-title: Groundwater
  doi: 10.1111/gwat.12557
– volume: 8
  start-page: 889
  issue: 2
  year: 2021
  ident: 3137_CR1
  publication-title: Environmental Processes
  doi: 10.1007/s40710-021-00515-1
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 3137_CR6
  publication-title: Neural Comput
  doi: 10.1162/089976602760128018
– ident: 3137_CR23
  doi: 10.1029/2005WR004303
– volume: 34
  start-page: 763
  issue: 2
  year: 2020
  ident: 3137_CR13
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02472-9
– volume: 138
  year: 2020
  ident: 3137_CR25
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2020.103540
– volume: 28
  start-page: 16867
  issue: 13
  year: 2021
  ident: 3137_CR17
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11614-1
– volume: 58
  start-page: 938
  issue: 6
  year: 2020
  ident: 3137_CR5
  publication-title: Groundwater
  doi: 10.1111/gwat.13005
– volume: 34
  start-page: 3079
  issue: 10
  year: 2020
  ident: 3137_CR19
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-020-02573-w
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 3137_CR7
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 243
  year: 2021
  ident: 3137_CR21
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2021.103914
– volume: 28
  start-page: 54096
  issue: 38
  year: 2021
  ident: 3137_CR15
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-13680-5
– ident: 3137_CR4
  doi: 10.1007/978-3-642-21735-7_2
SSID ssj0010090
Score 2.364007
Snippet Groundwater remediation design is crucial to contemporary water resources management, which is prone to massive computational costs due to the complexity and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2223
SubjectTerms Accuracy
administrative management
Algorithms
Atmospheric Sciences
Belief networks
Civil Engineering
Computer applications
Computer simulation
Computing costs
Contaminants
data collection
Datasets
Deep learning
Design
Earth and Environmental Science
Earth Sciences
Environment
environmental fate
Evolutionary algorithms
Geotechnical Engineering & Applied Earth Sciences
Groundwater
Groundwater treatment
Hydrogeology
hydrologic models
Hydrology/Water Resources
Machine learning
Mathematical models
Methods
Nonlinear systems
Nonlinearity
Observation wells
Optimization
Particle swarm optimization
Pollution
prediction
Remediation
Simulation
simulation models
Water resources
Water resources management
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrG-WMGbLqZ5NgcRqxURLFIt9hayr3rQpNbW4r93Zpu0KthLLtnNkpnZ2dl5fANwLPBYElFkuBMJjxMgOReBllylaV0SgKXyqN75vhXedvy7btBdgFZZC0NplaVOtIpa5ZJ85GduGDkB2h-Rc9F_59Q1iqKrZQuNtGitoM4txNgiLLmEjFWBpUaz9dCexhVwdet1ifHS5ONhWpTRTIrpam4Yc8puJzzDiI9_H1Uz-_NPyNSeRDdrsFqYkOxywvN1WNDZBqz8ABbchDdyKWVqjIbkgLW1LQ8hDrBrm7DBbLejPrXdUqzxxa7yERXm9ljzs5BEdvnaw78fvryxZ3ziPN1nDY0Gq2GtSeY4exwNBjl54bagc9N8urrlRWMFnnpRMOTIICOEICy6Ol2hXIesEC8VaJ54vohdY3SKLHPqUofGBARWKFEbmEBTnFN421DJ8kzvAFMStWnqO54rYl9KVY-NCCOp4pqrUZWYKtRKGiayQB2n5hevyQwvmeieIN0TS_dkXIWT6Zz-BHNj7uj9kjVJsf8-kpm0VOFo-hp3DoVD0kznIzsmCAjcCMecliydfeL_FXfnr7gHy66VIsqK3IfKcDDSB2i5DMVhIY7f50rqcQ
  priority: 102
  providerName: ProQuest
Title Groundwater Remediation Design Underpinned By Coupling Evolution Algorithm With Deep Belief Network Surrogate
URI https://link.springer.com/article/10.1007/s11269-022-03137-w
https://www.proquest.com/docview/2670504570
https://www.proquest.com/docview/2675571000
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuOweEE9teVRG4rZYSpM4j2MLLQhEtQIq2FMUOzYgQVKFlop_z4ybtIB2kbgkh4wdaWbsGXtmvgE4kGiWZBga7oTS4wRIzqXQimdpGikCsMw8qne-6AenA__sVtxWRWHPdbZ7HZK0O_W82K3lBjGn7HPCGwz5ZBGWBcF5oRYP3PYsdoB_sDcrMR6MfDSYVanMv-f4aI7mPuansKi1Nr1VWKncRNaeynUNFnS-Dj_fgQduwBNdG-XZBJ3Fkl1qWwJCXGbHNimD2Y5GQ2qtlbHOKzsqxlR8e8e6L5W2sfbjXVE-jO6f2A0-cZweso5Gp9Sw_jQ7nF2Ny7Kgm7ZNGPS610envGqewFMvFCOOQjBSSsKbi-iY5DrkaXipRBfE82XsGqNTFIsTKR0YIwiQUOGKN0JTLFN6W7CUF7n-BSxTuGOmvuO5MvaVyqLYyCBUWdxyNW4XpgGtmoeJqpDFqcHFYzLHRCa-J8j3xPI9mTTg92zMcIqr8SX1bi2apFpjz4kbhI5AjzR0GrA_-4yrg0Ieaa6LsaURggCMkOawFul8iv__cft75Dvww7VaRZmQu7A0Ksd6D72VkWzCYtQ7acJy--TveRffnW7_z2XTquwbHl7lcw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcUKGtGqCwldpTu6qzfsUHVBEICq-ooqByc70vOIAdQkLEn-O3dWazTmilcuPii_dhz87uzOzMfAPwSaJYkmlqeZDKkBMgOZexUVwXRUsRgKUOKd_5uJd0z6KD8_h8Dh7qXBgKq6zPRHdQ60rRHfk3kaRBjPpHGnzv33CqGkXe1bqERuFLK-gtBzHmEzsOzf0YTbjbrf1dXO_PQux1Tne63FcZ4EWYxkOOX2ullATM1iJ7QgQkksNCoqwOI5kJa02B3x-0lEmsjQm5T-HWsLEhp58McdwXsBCFUYbG30K70_txMvVj4N-6W54MjbQIhbdP25kk7zVFknGKpif8xJSP_xaNM333Hxetk3x7r2HJq6xse8JjyzBnyhVYfARk-Aau6Qqr1GNUXAfsxLh0FFpxtusCRJirrtSnMl-ate_ZTjWiROAL1rnznM-2ry6Q2sPLa_YLn9jP9FnboIJsWW8Sqc5-jgaDim793sLZs5D4HcyXVWneA9MKT-8iCkIhs0gp3cqsTFKls6YweHTZBjRrGubKo5xTsY2rfIbPTHTPke65o3s-bsCXaZ_-BOPjydbr9dLkfr_f5jPubMDH6WvcqeR-KUpTjVybOCYwJWzztV7S2RD_n3H16Rk34WX39PgoP9rvHa7BK-E4iiIy12F-OBiZD6g1DeWGZ00Gv597N_wBbXEmZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFA5oLaAui2lrtSewCLrPLw5VBWwLFDKCvEQ3NLYseEAybLsdsVf669jxkl2AQluXHKJH8l4xjP2zHwD8F2hWlJSWu5J5XMCJOcqNJpnadrSBGCZ-ZTvfNCNdk-D3-fh-RT8r3NhKKyy3hPdRp0Vmu7I10UkvRDtD-mt2yos4rDd-dW74VRBijytdTmNkkX2zd0Ij2-3P_fauNY_hOhsn2zt8qrCAE99GQ44fqlVShEoW4vOEsIjdeynCvW0H6hYWGtS_HavpU1kbUiofRrFwoaGHH7Kx3HfwIwkFHfKUu_sjD0Y-J_ufifG41mAartK2CnT9poiijnF0RNyouSjx0pxYuk-cc46ndd5B_OVsco2Su56D1Mm_wBzDyAMF-CaLq_ybIQma58dGZeIQmvN2i40hLm6Sj0q8JWxzTu2VQwpBfiCbf-reJ5tXF0gbQeX1-wMn9jP9NimQdPYsm4Zo86Oh_1-Qfd9i3D6KgRegum8yM1HYJnGfTsNPF-oONA6a8VWRVJncVMY3LRsA5o1DRNd4ZtTmY2rZILMTHRPkO6Jo3syasDquE-vRPd4sfVyvTRJJem3yYQvG_Bt_BpllBwvaW6KoWsThgSjhG3W6iWdDPH8jJ9envErzKIMJH_2uvuf4a1wDEWhmMswPegPzRc0lwZqxfElg7-vLQj3USUkAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+Remediation+Design+Underpinned+By+Coupling+Evolution+Algorithm+With+Deep+Belief+Network+Surrogate&rft.jtitle=Water+resources+management&rft.au=Chen%2C+Yu&rft.au=Liu%2C+Guodong&rft.au=Huang%2C+Xiaohua&rft.au=Meng%2C+Yuchuan&rft.date=2022-05-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=36&rft.issue=7&rft.spage=2223&rft.epage=2239&rft_id=info:doi/10.1007%2Fs11269-022-03137-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_022_03137_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon