A Composition-Based Model to Predict and Optimize Biodiesel-Fuelled Engine Characteristics Using Artificial Neural Networks and Genetic Algorithms

The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel mix of the world toward renewable energy sources. One of the most promising biofuels is biodiesel, which is renewable, nontoxic, biodegradabl...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 32; no. 11; pp. 11607 - 11618
Main Authors Menon, P. Rishikesh, Krishnasamy, Anand
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.11.2018
Subjects
Online AccessGet full text
ISSN0887-0624
1520-5029
1520-5029
DOI10.1021/acs.energyfuels.8b02846

Cover

Abstract The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel mix of the world toward renewable energy sources. One of the most promising biofuels is biodiesel, which is renewable, nontoxic, biodegradable, safe to store, handle, and transport, and produces lower pollutant emissions (except oxides of nitrogen) compared to fossil diesel. However, one of the potential problems associated with biodiesel is the variability in its fatty acid methyl ester composition owing to larger variations in the feedstock used for its production. The biodiesel composition variations leads to variations in fuel properties, and thereby engine characteristics, demanding engine recalibration every time a new biodiesel fuel is introduced. In the present study, biodiesel-composition-based models are developed using artificial neural networks (ANN) to predict combustion, performance, and emission characteristics of a light duty naturally aspirated and a heavy duty turbocharged engine fuelled with different types of biodiesel. The models provide predictive functions for estimating the engine performance, combustion, and emission parameters across a range of biodiesel composition, thus reducing extensive engine experiments. The predictions from the developed ANN models compare well with measurements with a higher regression coefficient of above 0.9 and less than 10% absolute error. Further, attempts are made to combine the developed ANN models with a genetic algorithm to arrive at an optimal biodiesel composition which could result in better fuel economy and lower oxides of nitrogen emission. The obtained results show that the total saturated methyl ester falls in the range of 36–43% by weight and that the total unsaturated methyl ester falls in the range of 55–63% by weight for the optimum biodiesel composition.
AbstractList The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel mix of the world toward renewable energy sources. One of the most promising biofuels is biodiesel, which is renewable, nontoxic, biodegradable, safe to store, handle, and transport, and produces lower pollutant emissions (except oxides of nitrogen) compared to fossil diesel. However, one of the potential problems associated with biodiesel is the variability in its fatty acid methyl ester composition owing to larger variations in the feedstock used for its production. The biodiesel composition variations leads to variations in fuel properties, and thereby engine characteristics, demanding engine recalibration every time a new biodiesel fuel is introduced. In the present study, biodiesel-composition-based models are developed using artificial neural networks (ANN) to predict combustion, performance, and emission characteristics of a light duty naturally aspirated and a heavy duty turbocharged engine fuelled with different types of biodiesel. The models provide predictive functions for estimating the engine performance, combustion, and emission parameters across a range of biodiesel composition, thus reducing extensive engine experiments. The predictions from the developed ANN models compare well with measurements with a higher regression coefficient of above 0.9 and less than 10% absolute error. Further, attempts are made to combine the developed ANN models with a genetic algorithm to arrive at an optimal biodiesel composition which could result in better fuel economy and lower oxides of nitrogen emission. The obtained results show that the total saturated methyl ester falls in the range of 36–43% by weight and that the total unsaturated methyl ester falls in the range of 55–63% by weight for the optimum biodiesel composition.
Author Krishnasamy, Anand
Menon, P. Rishikesh
Author_xml – sequence: 1
  givenname: P. Rishikesh
  surname: Menon
  fullname: Menon, P. Rishikesh
– sequence: 2
  givenname: Anand
  orcidid: 0000-0001-7848-6213
  surname: Krishnasamy
  fullname: Krishnasamy, Anand
  email: anand_k@iitm.ac.in
BookMark eNqNkbtuFDEUhi0UJDaBZ8AlzSy-zMVTUGxWSUAKhCLUI499vDlhxl5sj6LwGDwx3mwKRAPVab7v3P5TcuKDB0LecrbmTPD32qQ1eIi7R7fAlNZqZELV7Quy4o1gVcNEf0JWTKmuYq2oX5HTlO4ZY61UzYr82tBtmPchYcbgq3OdwNLPwcJEc6BfI1g0mWpv6c0-44w_gZ5jsAgJpuqyDJwKf-F36IFu73TUJkPElNEk-i2h39FNzOjQoJ7oF1jiU8kPIX5PT22vyu6FpptpFyLmuzm9Ji-dnhK8ea5n5Pby4nb7sbq-ufq03VxXWnY8V7WDXhnJG2db3trWCj42Yw9CciGV6Hg_Ktf11squHg237cgt18I1sha1c_KMvDu23cfwY4GUhxmTKQdpD2FJg-Cqb6RSvSpod0RNDClFcMM-4qzj48DZcAhhKCEMf4QwPIdQzA9_mQazPrw6R43Tf_jy6B-A-7BEXz7yT-s3NC-r0w
CitedBy_id crossref_primary_10_1039_C9AY01155B
crossref_primary_10_1177_1468087421990476
crossref_primary_10_1016_j_energy_2024_131583
crossref_primary_10_1016_j_heliyon_2025_e42931
crossref_primary_10_61435_ijred_2024_60250
crossref_primary_10_3390_en18020438
crossref_primary_10_1016_j_psep_2024_07_069
crossref_primary_10_1016_j_enconman_2022_115757
crossref_primary_10_3390_en14165072
crossref_primary_10_1016_j_fuel_2023_128604
crossref_primary_10_4018_JOEUC_330678
crossref_primary_10_1016_j_seta_2021_101416
crossref_primary_10_1021_acs_energyfuels_9b01377
crossref_primary_10_1016_j_enconman_2023_116909
crossref_primary_10_1016_j_pecs_2021_100904
crossref_primary_10_1021_acs_energyfuels_3c01682
Cites_doi 10.5120/15212-3705
10.1007/s11708-015-0383-5
10.17485/ijst/2010/v3i5/29764
10.1021/ef401989c
10.1016/j.fuel.2014.12.016
10.1016/j.renene.2006.01.009
10.1080/01430750.2015.1023466
10.1016/j.apenergy.2017.05.162
10.13031/2013.13948
10.4271/2017-01-2340
10.1016/j.fuel.2015.10.087
10.1016/j.watres.2011.09.037
10.5650/jos.55.487
10.1016/j.rser.2004.09.002
10.1016/j.rser.2016.05.035
10.1016/j.fuel.2015.01.024
10.1016/j.jngse.2015.06.041
10.1002/ep.12410
10.1021/acs.energyfuels.6b01343
10.1016/j.desal.2011.01.083
10.4271/2013-01-1092
10.1007/978-3-642-48318-9
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.8b02846
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 11618
ExternalDocumentID 10_1021_acs_energyfuels_8b02846
b923046306
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a371t-4fe98c315fd616d6d21b5b9e2312382719b8f79dd374bc1d6b1d1a2f53424ff3
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 13:16:15 EDT 2025
Tue Jul 01 01:57:14 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-4fe98c315fd616d6d21b5b9e2312382719b8f79dd374bc1d6b1d1a2f53424ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7848-6213
PQID 2189538898
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2189538898
crossref_primary_10_1021_acs_energyfuels_8b02846
crossref_citationtrail_10_1021_acs_energyfuels_8b02846
acs_journals_10_1021_acs_energyfuels_8b02846
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref27/cit27
ref18/cit18
Goldberg D. E. (ref23/cit23) 1989
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
Silitonga A. S. (ref13/cit13) 2015
ref10/cit10
Yegnanarayana B. (ref21/cit21) 1999
S&T2 Consultants Inc. (ref3/cit3) 2015
ref12/cit12
ref15/cit15
ref33/cit33
ref4/cit4
ref1/cit1
ref24/cit24
Hwang C. L. (ref26/cit26) 1981
Haykin S. (ref19/cit19) 1999
Balaji C. (ref22/cit22) 2011
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.5120/15212-3705
– ident: ref2/cit2
– volume-title: Neural Networks - A comprehensive foundation
  year: 1999
  ident: ref19/cit19
– ident: ref20/cit20
– ident: ref27/cit27
  doi: 10.1007/s11708-015-0383-5
– ident: ref5/cit5
  doi: 10.17485/ijst/2010/v3i5/29764
– ident: ref17/cit17
  doi: 10.1021/ef401989c
– ident: ref7/cit7
  doi: 10.1016/j.fuel.2014.12.016
– ident: ref10/cit10
  doi: 10.1016/j.renene.2006.01.009
– ident: ref8/cit8
  doi: 10.1080/01430750.2015.1023466
– ident: ref31/cit31
  doi: 10.1016/j.apenergy.2017.05.162
– ident: ref33/cit33
  doi: 10.13031/2013.13948
– ident: ref32/cit32
  doi: 10.4271/2017-01-2340
– volume-title: Artificial Neural Networks
  year: 1999
  ident: ref21/cit21
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning
  year: 1989
  ident: ref23/cit23
– ident: ref18/cit18
  doi: 10.1016/j.fuel.2015.10.087
– start-page: 18
  year: 2015
  ident: ref13/cit13
  publication-title: SAE International
– ident: ref24/cit24
  doi: 10.1016/j.watres.2011.09.037
– ident: ref1/cit1
– ident: ref4/cit4
  doi: 10.5650/jos.55.487
– ident: ref29/cit29
  doi: 10.1016/j.rser.2004.09.002
– ident: ref15/cit15
  doi: 10.1016/j.rser.2016.05.035
– ident: ref28/cit28
– ident: ref11/cit11
  doi: 10.1016/j.fuel.2015.01.024
– ident: ref12/cit12
  doi: 10.1016/j.jngse.2015.06.041
– ident: ref14/cit14
  doi: 10.1002/ep.12410
– ident: ref6/cit6
  doi: 10.1021/acs.energyfuels.6b01343
– ident: ref25/cit25
  doi: 10.1016/j.desal.2011.01.083
– volume-title: GHG emission reductions from world biofuel production and use-2015
  year: 2015
  ident: ref3/cit3
– volume-title: Essentials of Thermal System Design and Optimisation
  year: 2011
  ident: ref22/cit22
– ident: ref16/cit16
  doi: 10.4271/2013-01-1092
– volume-title: Multiple Attribute Decision Making: Methods and Applications
  year: 1981
  ident: ref26/cit26
  doi: 10.1007/978-3-642-48318-9
SSID ssj0006385
Score 2.3526783
Snippet The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11607
SubjectTerms algorithms
biodegradability
biodiesel
carbon dioxide
combustion
emissions
fatty acid methyl esters
feedstocks
fossil fuels
neural networks
nitrogen oxides
pollutants
pollution
prediction
regression analysis
Title A Composition-Based Model to Predict and Optimize Biodiesel-Fuelled Engine Characteristics Using Artificial Neural Networks and Genetic Algorithms
URI http://dx.doi.org/10.1021/acs.energyfuels.8b02846
https://www.proquest.com/docview/2189538898
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006385
  issn: 0887-0624
  databaseCode: ACS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKewAOUFoQ5VEZiSPerh-xk-N2xapCKiBopd4iP2HFNkGb5NKfwS9m7CRVV1VVOEWKMpZjj-cbaT5_g9B7gDjBHS9IsEERYTNPcuM04VoYFwyYJW7O6Wd5ci4-XWQXW4jeUcFn9EjbZuLTPbjQAVxMcgOQKOQDtMOkUpHFN5t_vw6-4E7ZKO45lUyMlK67B4qwZJtNWNqMyglqFk_Rt_HCTs8w-TXpWjOxV7f1G__9L3bRkyHxxLPeU56hLV_toYfzsd_bHnp8Q5pwH_2Z4RgqBkoXOQawczg2TlvhtsZf17G-02JdOfwFgs7l8srj42UdKYl-RRZdLAc43I-I55ui0DjRFNJMevkKHBVC0iNR0ps0bNTDhq_xbPWjXi_bn5fNc3S2-Hg2PyFD_waiuaItEcEXueU0C05S6aRj1GSm8JBSQqLAFC1MHlThHFfCWOqkoY5qFjIumAiBv0DbVV35lwhHn6HCTLXiVlAmjXIWMrsgpQva0-IAfYAFLofj15Spss5oGV_eWPVyWPUDJMfNLu0ghR47cqzuN5xeG_7u1UDuN3k3elMJGxrLMbryddeUkFwVADd5kb_6v-m_Ro8gbcvjjUiavUHb7brzbyE1as1hOgx_AcJuEmA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6Vcig9FCigtryMxBEv69hxkuN2xWqBtiCxSOUUxS9YsU2qTXLpz-gvZuxNli4SquAUycqMJvZ4volm_BngNUKc4IZn1GmXUKFjS1NlCsoLoYxTKBZ6c07P5PSr-HAen29B2p-FQSNq1FSHIv5vdgH21o_ZcBzOtYgag1QhMgp5B-7GUjD_2zUaf1nHYPSquOf4HMpI9J1df1fk0UnXm-i0GZwD4kzuw7e1raHR5OegbdRAX_1B4_g_H_MA9ro0lIxWfvMQtmy5Dzvj_va3fdi9QVT4CK5HxAeOrsGLHiP0GeKvUVuQpiKfl77a05CiNOQThqCL-ZUlx_PKNyjaBZ20vjhgyEojGW9SRJPQtBAsWZFZEM8XEh6hQb0Oaj07Nr5NRovv1XLe_LioH8Ns8m42ntLuNgda8IQ1VDibpZqz2BnJpJEmYipWmcUEE9OGKGGZSl2SGcMToTQzUjHDisjFXETCOf4EtsuqtAdAvAcxoYZFwrVgkVSJ0ZjnOSmNKyzLDuENTnDebcY6D3X2iOV-8Mas592sH4Ls1zzXHTG6v59jcbvgcC14ueIGuV3kVe9UOS6oL84Upa3aOsdUK0PwSbP06N_Mfwk709npSX7y_uzjU7iHCV3qz0qy-BlsN8vWPsekqVEvwv74BUp9GsI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC348WK0Vq1ZX8NG93mY3mwT6cj171K9asEJfJGS_6uE1KZfkpX-Gf3Fn95KjJ0jRp0DIDJPdmfkNzOxvAd4ixAlueEaddgkVOrY0VaagvBDKOIViYTbny7E8-i4-nsVna7Dfn4VBI2rUVIcmvo_qS-M6hgG259_bcCTOtYgcg1QhOgp5BzZiiQHvC6Pxt2UeRs-Ke57PoYxEP931d0UeoXS9ilCrCTqgzmQTfiztDcMmvwZtowb66g8qx__9oUfwsCtHyWjhP49hzZZbcG_c3wK3BQ9uEBY-gd8j4hNIN-hFDxACDfHXqc1IU5GTue_6NKQoDfmKqehiemXJwbTyg4p2RietbxIYstBIxqtU0SQMLwRLFqQWxPOGhEcYVK-DWs-SjV-T0ey8mk-bnxf1NpxODk_HR7S71YEWPGENFc5mqeYsdkYyaaSJmIpVZrHQxPIhSlimUpdkxvBEKM2MVMywInIxF5Fwjj-F9bIq7TMg3pOYUMMi4VqwSKrEaKz3nJTGFZZlO_AOFzjvgrLOQ789Yrl_eWPV827Vd0D2-57rjiDd39Mxu11wuBS8XHCE3C7ypnesHDfUN2mK0lZtnWPJlSEIpVn6_N_Mfw13T95P8s8fjj-9gPtY16X-yCSLX8J6M2_tLtZOjXoVQuQaIlgdRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Composition-Based+Model+to+Predict+and+Optimize+Biodiesel-Fuelled+Engine+Characteristics+Using+Artificial+Neural+Networks+and+Genetic+Algorithms&rft.jtitle=Energy+%26+fuels&rft.au=Menon%2C+P+Rishikesh&rft.au=Krishnasamy%2C+Anand&rft.date=2018-11-15&rft.issn=1520-5029&rft.volume=32&rft.issue=11+p.11607-11618&rft.spage=11607&rft.epage=11618&rft_id=info:doi/10.1021%2Facs.energyfuels.8b02846&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon