A Composition-Based Model to Predict and Optimize Biodiesel-Fuelled Engine Characteristics Using Artificial Neural Networks and Genetic Algorithms
The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel mix of the world toward renewable energy sources. One of the most promising biofuels is biodiesel, which is renewable, nontoxic, biodegradabl...
Saved in:
| Published in | Energy & fuels Vol. 32; no. 11; pp. 11607 - 11618 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
American Chemical Society
15.11.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0887-0624 1520-5029 1520-5029 |
| DOI | 10.1021/acs.energyfuels.8b02846 |
Cover
| Abstract | The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel mix of the world toward renewable energy sources. One of the most promising biofuels is biodiesel, which is renewable, nontoxic, biodegradable, safe to store, handle, and transport, and produces lower pollutant emissions (except oxides of nitrogen) compared to fossil diesel. However, one of the potential problems associated with biodiesel is the variability in its fatty acid methyl ester composition owing to larger variations in the feedstock used for its production. The biodiesel composition variations leads to variations in fuel properties, and thereby engine characteristics, demanding engine recalibration every time a new biodiesel fuel is introduced. In the present study, biodiesel-composition-based models are developed using artificial neural networks (ANN) to predict combustion, performance, and emission characteristics of a light duty naturally aspirated and a heavy duty turbocharged engine fuelled with different types of biodiesel. The models provide predictive functions for estimating the engine performance, combustion, and emission parameters across a range of biodiesel composition, thus reducing extensive engine experiments. The predictions from the developed ANN models compare well with measurements with a higher regression coefficient of above 0.9 and less than 10% absolute error. Further, attempts are made to combine the developed ANN models with a genetic algorithm to arrive at an optimal biodiesel composition which could result in better fuel economy and lower oxides of nitrogen emission. The obtained results show that the total saturated methyl ester falls in the range of 36–43% by weight and that the total unsaturated methyl ester falls in the range of 55–63% by weight for the optimum biodiesel composition. |
|---|---|
| AbstractList | The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel mix of the world toward renewable energy sources. One of the most promising biofuels is biodiesel, which is renewable, nontoxic, biodegradable, safe to store, handle, and transport, and produces lower pollutant emissions (except oxides of nitrogen) compared to fossil diesel. However, one of the potential problems associated with biodiesel is the variability in its fatty acid methyl ester composition owing to larger variations in the feedstock used for its production. The biodiesel composition variations leads to variations in fuel properties, and thereby engine characteristics, demanding engine recalibration every time a new biodiesel fuel is introduced. In the present study, biodiesel-composition-based models are developed using artificial neural networks (ANN) to predict combustion, performance, and emission characteristics of a light duty naturally aspirated and a heavy duty turbocharged engine fuelled with different types of biodiesel. The models provide predictive functions for estimating the engine performance, combustion, and emission parameters across a range of biodiesel composition, thus reducing extensive engine experiments. The predictions from the developed ANN models compare well with measurements with a higher regression coefficient of above 0.9 and less than 10% absolute error. Further, attempts are made to combine the developed ANN models with a genetic algorithm to arrive at an optimal biodiesel composition which could result in better fuel economy and lower oxides of nitrogen emission. The obtained results show that the total saturated methyl ester falls in the range of 36–43% by weight and that the total unsaturated methyl ester falls in the range of 55–63% by weight for the optimum biodiesel composition. |
| Author | Krishnasamy, Anand Menon, P. Rishikesh |
| Author_xml | – sequence: 1 givenname: P. Rishikesh surname: Menon fullname: Menon, P. Rishikesh – sequence: 2 givenname: Anand orcidid: 0000-0001-7848-6213 surname: Krishnasamy fullname: Krishnasamy, Anand email: anand_k@iitm.ac.in |
| BookMark | eNqNkbtuFDEUhi0UJDaBZ8AlzSy-zMVTUGxWSUAKhCLUI499vDlhxl5sj6LwGDwx3mwKRAPVab7v3P5TcuKDB0LecrbmTPD32qQ1eIi7R7fAlNZqZELV7Quy4o1gVcNEf0JWTKmuYq2oX5HTlO4ZY61UzYr82tBtmPchYcbgq3OdwNLPwcJEc6BfI1g0mWpv6c0-44w_gZ5jsAgJpuqyDJwKf-F36IFu73TUJkPElNEk-i2h39FNzOjQoJ7oF1jiU8kPIX5PT22vyu6FpptpFyLmuzm9Ji-dnhK8ea5n5Pby4nb7sbq-ufq03VxXWnY8V7WDXhnJG2db3trWCj42Yw9CciGV6Hg_Ktf11squHg237cgt18I1sha1c_KMvDu23cfwY4GUhxmTKQdpD2FJg-Cqb6RSvSpod0RNDClFcMM-4qzj48DZcAhhKCEMf4QwPIdQzA9_mQazPrw6R43Tf_jy6B-A-7BEXz7yT-s3NC-r0w |
| CitedBy_id | crossref_primary_10_1039_C9AY01155B crossref_primary_10_1177_1468087421990476 crossref_primary_10_1016_j_energy_2024_131583 crossref_primary_10_1016_j_heliyon_2025_e42931 crossref_primary_10_61435_ijred_2024_60250 crossref_primary_10_3390_en18020438 crossref_primary_10_1016_j_psep_2024_07_069 crossref_primary_10_1016_j_enconman_2022_115757 crossref_primary_10_3390_en14165072 crossref_primary_10_1016_j_fuel_2023_128604 crossref_primary_10_4018_JOEUC_330678 crossref_primary_10_1016_j_seta_2021_101416 crossref_primary_10_1021_acs_energyfuels_9b01377 crossref_primary_10_1016_j_enconman_2023_116909 crossref_primary_10_1016_j_pecs_2021_100904 crossref_primary_10_1021_acs_energyfuels_3c01682 |
| Cites_doi | 10.5120/15212-3705 10.1007/s11708-015-0383-5 10.17485/ijst/2010/v3i5/29764 10.1021/ef401989c 10.1016/j.fuel.2014.12.016 10.1016/j.renene.2006.01.009 10.1080/01430750.2015.1023466 10.1016/j.apenergy.2017.05.162 10.13031/2013.13948 10.4271/2017-01-2340 10.1016/j.fuel.2015.10.087 10.1016/j.watres.2011.09.037 10.5650/jos.55.487 10.1016/j.rser.2004.09.002 10.1016/j.rser.2016.05.035 10.1016/j.fuel.2015.01.024 10.1016/j.jngse.2015.06.041 10.1002/ep.12410 10.1021/acs.energyfuels.6b01343 10.1016/j.desal.2011.01.083 10.4271/2013-01-1092 10.1007/978-3-642-48318-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1021/acs.energyfuels.8b02846 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1520-5029 |
| EndPage | 11618 |
| ExternalDocumentID | 10_1021_acs_energyfuels_8b02846 b923046306 |
| GroupedDBID | 02 55A 5GY 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 7S9 L.6 |
| ID | FETCH-LOGICAL-a371t-4fe98c315fd616d6d21b5b9e2312382719b8f79dd374bc1d6b1d1a2f53424ff3 |
| IEDL.DBID | ACS |
| ISSN | 0887-0624 1520-5029 |
| IngestDate | Fri Jul 11 13:16:15 EDT 2025 Tue Jul 01 01:57:14 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a371t-4fe98c315fd616d6d21b5b9e2312382719b8f79dd374bc1d6b1d1a2f53424ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7848-6213 |
| PQID | 2189538898 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2189538898 crossref_primary_10_1021_acs_energyfuels_8b02846 crossref_citationtrail_10_1021_acs_energyfuels_8b02846 acs_journals_10_1021_acs_energyfuels_8b02846 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-15 |
| PublicationDateYYYYMMDD | 2018-11-15 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy & fuels |
| PublicationTitleAlternate | Energy Fuels |
| PublicationYear | 2018 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref27/cit27 ref18/cit18 Goldberg D. E. (ref23/cit23) 1989 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 Silitonga A. S. (ref13/cit13) 2015 ref10/cit10 Yegnanarayana B. (ref21/cit21) 1999 S&T2 Consultants Inc. (ref3/cit3) 2015 ref12/cit12 ref15/cit15 ref33/cit33 ref4/cit4 ref1/cit1 ref24/cit24 Hwang C. L. (ref26/cit26) 1981 Haykin S. (ref19/cit19) 1999 Balaji C. (ref22/cit22) 2011 ref7/cit7 |
| References_xml | – ident: ref9/cit9 doi: 10.5120/15212-3705 – ident: ref2/cit2 – volume-title: Neural Networks - A comprehensive foundation year: 1999 ident: ref19/cit19 – ident: ref20/cit20 – ident: ref27/cit27 doi: 10.1007/s11708-015-0383-5 – ident: ref5/cit5 doi: 10.17485/ijst/2010/v3i5/29764 – ident: ref17/cit17 doi: 10.1021/ef401989c – ident: ref7/cit7 doi: 10.1016/j.fuel.2014.12.016 – ident: ref10/cit10 doi: 10.1016/j.renene.2006.01.009 – ident: ref8/cit8 doi: 10.1080/01430750.2015.1023466 – ident: ref31/cit31 doi: 10.1016/j.apenergy.2017.05.162 – ident: ref33/cit33 doi: 10.13031/2013.13948 – ident: ref32/cit32 doi: 10.4271/2017-01-2340 – volume-title: Artificial Neural Networks year: 1999 ident: ref21/cit21 – volume-title: Genetic Algorithms in Search, Optimization and Machine Learning year: 1989 ident: ref23/cit23 – ident: ref18/cit18 doi: 10.1016/j.fuel.2015.10.087 – start-page: 18 year: 2015 ident: ref13/cit13 publication-title: SAE International – ident: ref24/cit24 doi: 10.1016/j.watres.2011.09.037 – ident: ref1/cit1 – ident: ref4/cit4 doi: 10.5650/jos.55.487 – ident: ref29/cit29 doi: 10.1016/j.rser.2004.09.002 – ident: ref15/cit15 doi: 10.1016/j.rser.2016.05.035 – ident: ref28/cit28 – ident: ref11/cit11 doi: 10.1016/j.fuel.2015.01.024 – ident: ref12/cit12 doi: 10.1016/j.jngse.2015.06.041 – ident: ref14/cit14 doi: 10.1002/ep.12410 – ident: ref6/cit6 doi: 10.1021/acs.energyfuels.6b01343 – ident: ref25/cit25 doi: 10.1016/j.desal.2011.01.083 – volume-title: GHG emission reductions from world biofuel production and use-2015 year: 2015 ident: ref3/cit3 – volume-title: Essentials of Thermal System Design and Optimisation year: 2011 ident: ref22/cit22 – ident: ref16/cit16 doi: 10.4271/2013-01-1092 – volume-title: Multiple Attribute Decision Making: Methods and Applications year: 1981 ident: ref26/cit26 doi: 10.1007/978-3-642-48318-9 |
| SSID | ssj0006385 |
| Score | 2.3526783 |
| Snippet | The concern over extensive pollution, including anthropogenic carbon dioxide emission caused by the use of fossil fuels, results in the transition of the fuel... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11607 |
| SubjectTerms | algorithms biodegradability biodiesel carbon dioxide combustion emissions fatty acid methyl esters feedstocks fossil fuels neural networks nitrogen oxides pollutants pollution prediction regression analysis |
| Title | A Composition-Based Model to Predict and Optimize Biodiesel-Fuelled Engine Characteristics Using Artificial Neural Networks and Genetic Algorithms |
| URI | http://dx.doi.org/10.1021/acs.energyfuels.8b02846 https://www.proquest.com/docview/2189538898 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006385 issn: 0887-0624 databaseCode: ACS dateStart: 19870101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKewAOUFoQ5VEZiSPerh-xk-N2xapCKiBopd4iP2HFNkGb5NKfwS9m7CRVV1VVOEWKMpZjj-cbaT5_g9B7gDjBHS9IsEERYTNPcuM04VoYFwyYJW7O6Wd5ci4-XWQXW4jeUcFn9EjbZuLTPbjQAVxMcgOQKOQDtMOkUpHFN5t_vw6-4E7ZKO45lUyMlK67B4qwZJtNWNqMyglqFk_Rt_HCTs8w-TXpWjOxV7f1G__9L3bRkyHxxLPeU56hLV_toYfzsd_bHnp8Q5pwH_2Z4RgqBkoXOQawczg2TlvhtsZf17G-02JdOfwFgs7l8srj42UdKYl-RRZdLAc43I-I55ui0DjRFNJMevkKHBVC0iNR0ps0bNTDhq_xbPWjXi_bn5fNc3S2-Hg2PyFD_waiuaItEcEXueU0C05S6aRj1GSm8JBSQqLAFC1MHlThHFfCWOqkoY5qFjIumAiBv0DbVV35lwhHn6HCTLXiVlAmjXIWMrsgpQva0-IAfYAFLofj15Spss5oGV_eWPVyWPUDJMfNLu0ghR47cqzuN5xeG_7u1UDuN3k3elMJGxrLMbryddeUkFwVADd5kb_6v-m_Ro8gbcvjjUiavUHb7brzbyE1as1hOgx_AcJuEmA |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6Vcig9FCigtryMxBEv69hxkuN2xWqBtiCxSOUUxS9YsU2qTXLpz-gvZuxNli4SquAUycqMJvZ4volm_BngNUKc4IZn1GmXUKFjS1NlCsoLoYxTKBZ6c07P5PSr-HAen29B2p-FQSNq1FSHIv5vdgH21o_ZcBzOtYgag1QhMgp5B-7GUjD_2zUaf1nHYPSquOf4HMpI9J1df1fk0UnXm-i0GZwD4kzuw7e1raHR5OegbdRAX_1B4_g_H_MA9ro0lIxWfvMQtmy5Dzvj_va3fdi9QVT4CK5HxAeOrsGLHiP0GeKvUVuQpiKfl77a05CiNOQThqCL-ZUlx_PKNyjaBZ20vjhgyEojGW9SRJPQtBAsWZFZEM8XEh6hQb0Oaj07Nr5NRovv1XLe_LioH8Ns8m42ntLuNgda8IQ1VDibpZqz2BnJpJEmYipWmcUEE9OGKGGZSl2SGcMToTQzUjHDisjFXETCOf4EtsuqtAdAvAcxoYZFwrVgkVSJ0ZjnOSmNKyzLDuENTnDebcY6D3X2iOV-8Mas592sH4Ls1zzXHTG6v59jcbvgcC14ueIGuV3kVe9UOS6oL84Upa3aOsdUK0PwSbP06N_Mfwk709npSX7y_uzjU7iHCV3qz0qy-BlsN8vWPsekqVEvwv74BUp9GsI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC348WK0Vq1ZX8NG93mY3mwT6cj171K9asEJfJGS_6uE1KZfkpX-Gf3Fn95KjJ0jRp0DIDJPdmfkNzOxvAd4ixAlueEaddgkVOrY0VaagvBDKOIViYTbny7E8-i4-nsVna7Dfn4VBI2rUVIcmvo_qS-M6hgG259_bcCTOtYgcg1QhOgp5BzZiiQHvC6Pxt2UeRs-Ke57PoYxEP931d0UeoXS9ilCrCTqgzmQTfiztDcMmvwZtowb66g8qx__9oUfwsCtHyWjhP49hzZZbcG_c3wK3BQ9uEBY-gd8j4hNIN-hFDxACDfHXqc1IU5GTue_6NKQoDfmKqehiemXJwbTyg4p2RietbxIYstBIxqtU0SQMLwRLFqQWxPOGhEcYVK-DWs-SjV-T0ey8mk-bnxf1NpxODk_HR7S71YEWPGENFc5mqeYsdkYyaaSJmIpVZrHQxPIhSlimUpdkxvBEKM2MVMywInIxF5Fwjj-F9bIq7TMg3pOYUMMi4VqwSKrEaKz3nJTGFZZlO_AOFzjvgrLOQ789Yrl_eWPV827Vd0D2-57rjiDd39Mxu11wuBS8XHCE3C7ypnesHDfUN2mK0lZtnWPJlSEIpVn6_N_Mfw13T95P8s8fjj-9gPtY16X-yCSLX8J6M2_tLtZOjXoVQuQaIlgdRQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Composition-Based+Model+to+Predict+and+Optimize+Biodiesel-Fuelled+Engine+Characteristics+Using+Artificial+Neural+Networks+and+Genetic+Algorithms&rft.jtitle=Energy+%26+fuels&rft.au=Menon%2C+P+Rishikesh&rft.au=Krishnasamy%2C+Anand&rft.date=2018-11-15&rft.issn=1520-5029&rft.volume=32&rft.issue=11+p.11607-11618&rft.spage=11607&rft.epage=11618&rft_id=info:doi/10.1021%2Facs.energyfuels.8b02846&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |