Integrating scientific knowledge into machine learning using interactive decision trees

Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, the application of DT is hindered by data limitations, such as significant biases...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 170; p. 105248
Main Authors Sarailidis, Georgios, Wagener, Thorsten, Pianosi, Francesca
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN0098-3004
1873-7803
1873-7803
DOI10.1016/j.cageo.2022.105248

Cover

Abstract Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, the application of DT is hindered by data limitations, such as significant biases, leading to potentially physically unrealistic results. We develop interactive DT (iDT) that put humans in the loop to integrate the power of experts' scientific knowledge with the power of the algorithms to automatically learn patterns from large datasets. We created an open-source Python toolbox that implements the iDT framework. Users can interactively create new composite variables, change the variable and threshold to split, prune and group variables based on their physical meaning. We demonstrate with three case studies how iDT overcomes problems with current DT thus achieving higher interpretability and robustness of the result. •We propose a framework for building Decision Trees that put humans in the loop.•The framework compensates for dataset issues encountered in standard Decision Trees.•Interactive Decision Trees enhance interpretability and physical consistency.•We developed an open-source toolbox for constructing Interactive Decision Trees.
AbstractList Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, the application of DT is hindered by data limitations, such as significant biases, leading to potentially physically unrealistic results. We develop interactive DT (iDT) that put humans in the loop to integrate the power of experts' scientific knowledge with the power of the algorithms to automatically learn patterns from large datasets. We created an open-source Python toolbox that implements the iDT framework. Users can interactively create new composite variables, change the variable and threshold to split, prune and group variables based on their physical meaning. We demonstrate with three case studies how iDT overcomes problems with current DT thus achieving higher interpretability and robustness of the result. •We propose a framework for building Decision Trees that put humans in the loop.•The framework compensates for dataset issues encountered in standard Decision Trees.•Interactive Decision Trees enhance interpretability and physical consistency.•We developed an open-source toolbox for constructing Interactive Decision Trees.
ArticleNumber 105248
Author Wagener, Thorsten
Sarailidis, Georgios
Pianosi, Francesca
Author_xml – sequence: 1
  givenname: Georgios
  orcidid: 0000-0001-5166-2571
  surname: Sarailidis
  fullname: Sarailidis, Georgios
  email: g.sarailidis@bristol.ac.uk
  organization: Water and Environmental Engineering, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom
– sequence: 2
  givenname: Thorsten
  surname: Wagener
  fullname: Wagener, Thorsten
  organization: Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
– sequence: 3
  givenname: Francesca
  surname: Pianosi
  fullname: Pianosi, Francesca
  organization: Water and Environmental Engineering, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom
BookMark eNqNkD1PwzAQhi1UJNrCL2DJH0g520ntDAyo4qNSJRYQo-U4l-CSOpXtUvXfk7RMDMByJ937Pjc8EzJynUNCrinMKND5zXpmdIPdjAFj_SVnmTwjYyoFT4UEPiJjgEKmHCC7IJMQ1gB9U-Zj8rZ0ERuvo3VNEoxFF21tTfLhun2LVYOJdbFLNtq8W4dJi9q7oboLw-wz9NpE-4lJhcYG27kkesRwSc5r3Qa8-t5T8vpw_7J4SlfPj8vF3SrVXNCY8lyD5JLlBci6FJBBqUGA4QWdU1HoOatqjlleioJlIFCWWhdVLRjnVGLJ-JRkp787t9WHvW5btfV2o_1BUVCDHLVWRzlqkKNOcnqMnzDjuxA81v-kih-UsbFX17notW3_YG9PLPY2Pi16dbRtsLIeTVRVZ3_lvwCYM5Sm
CitedBy_id crossref_primary_10_3390_math11133010
crossref_primary_10_1038_s41598_022_23335_1
crossref_primary_10_1007_s11831_024_10081_y
crossref_primary_10_1016_j_aej_2024_03_106
crossref_primary_10_1186_s44147_023_00302_9
crossref_primary_10_1016_j_xinn_2024_100691
crossref_primary_10_1016_j_dss_2024_114169
crossref_primary_10_1016_j_eij_2024_100540
crossref_primary_10_1016_j_envpol_2023_121363
crossref_primary_10_1016_j_jclepro_2024_142452
crossref_primary_10_48084_etasr_9464
crossref_primary_10_1002_adma_202309351
crossref_primary_10_1016_j_acags_2024_100155
crossref_primary_10_1016_j_actatropica_2024_107486
crossref_primary_10_1007_s11442_024_2202_6
crossref_primary_10_1016_j_asoc_2023_110812
crossref_primary_10_1080_15481603_2025_2460513
crossref_primary_10_1007_s10346_024_02327_4
crossref_primary_10_1109_ACCESS_2024_3398582
Cites_doi 10.1371/journal.pone.0169748
10.1002/hyp.13678
10.1038/s41586-020-1940-6
10.1147/rd.33.0210
10.1162/evco.2009.17.3.275
10.1613/jair.953
10.5194/nhess-18-2741-2018
10.1038/nmeth.4526
10.1038/450778a
10.5194/hess-21-2863-2017
10.1016/j.jhydrol.2014.06.030
10.1109/TKDE.2017.2720168
10.1016/j.neucom.2017.01.026
10.2166/hydro.2008.015
10.1016/j.patrec.2005.08.011
10.1029/2004WR003094
10.5194/hess-18-273-2014
10.1016/j.earscirev.2006.05.001
10.1016/j.cageo.2022.105034
10.5194/hess-20-2611-2016
10.1029/2019WR024922
10.1016/j.geoderma.2008.05.008
10.1002/2016WR019285
10.1145/3233231
10.1016/S0034-4257(03)00132-9
10.1038/s41586-019-0912-1
10.1126/science.aau0323
10.1109/ACCESS.2020.2976199
10.1089/big.2014.0026
10.1002/2015EA000136
10.1111/insr.12016
10.5194/nhess-17-225-2017
10.1109/TKDE.2018.2861006
10.1029/2018WR022606
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.cageo.2022.105248
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 10.1016/j.cageo.2022.105248
10_1016_j_cageo_2022_105248
S0098300422001972
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-a371t-35a083825908fb7040ba070c3916179a62df3e45b792407e8baa9df723318eb23
IEDL.DBID .~1
ISSN 0098-3004
1873-7803
IngestDate Mon Sep 29 05:47:52 EDT 2025
Thu Oct 02 04:26:15 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Fri Feb 23 02:38:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Interactive decision trees
Human-in-the-Loop
Geosciences and environmental sciences
Open-source toolbox
Interpretability
Machine learning
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-35a083825908fb7040ba070c3916179a62df3e45b792407e8baa9df723318eb23
ORCID 0000-0001-5166-2571
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0098300422001972
ParticipantIDs unpaywall_primary_10_1016_j_cageo_2022_105248
crossref_primary_10_1016_j_cageo_2022_105248
crossref_citationtrail_10_1016_j_cageo_2022_105248
elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105248
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kirchner, Berghuijs, Allen, Hrachowitz, Hut, Rizzo (bib30) 2020; 578
Molnar (bib35) 2020
Estivill-Castro, Gilmore, Hexel (bib13) 2020
Sawicz, Kelleher, Wagener, Troch, Sivapalan, Carrillo (bib43) 2014; 18
Bzdok, Krzywinski, Altman (bib8) 2017; 14
Karpatne, Atluri, Faghmous, Steinbach, Banerjee, Ganguly, Shekhar, Samatova, Kumar (bib28) 2017; 29
Sun, Sandoval, Crystal-Ornelas, Mousavi, Wang, Lin, Cristea, Tong, Hawley Carande, Ma, Rao, Bednar, J, Tan, Wang, Purushotham, Gill T, Chastang, Howard, Holt, Gangodagamage, Zhao, Rivas, Chester, Orduz, John (bib49) 2022; 159
García, Herrera (bib17) 2009; 17
Breiman, Friedman, Olshen, Stone (bib6) 1984
Loh (bib33) 2014; 82
Lipton (bib32) 2018; 61
Bergen, Johnson, de Hoop, Beroza (bib4) 2019; 363
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib39) 2019; 566
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib37) 2011; 12
van den Elzen, van Wijk (bib51) 2011
Faghmous, Kumar (bib14) 2014; 2
Iorgulescu, Beven (bib27) 2004; 40
Addor, Nearing, Prieto, Newman, le Vine, Clark (bib1) 2018; 54
Samuel (bib41) 1959; 3
Flach (bib16) 2012
Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bib23) 2017; 12
Pal, Mather (bib36) 2003; 86
Solomatine, Ostfeld (bib46) 2008
Beven, Almeida, Aspinall, Bates, Blazkova, Borgomeo, Freer, Goda, Hall, Phillips, Simpson, Smith, Stephenson, Wagener, Watson, Wilkins (bib5) 2018; 18
Singh, Archfield, Wagener (bib45) 2014; 517
Hutton, Wagener, Freer, Han, Duffy, Arheimer (bib25) 2016
Karpatne, Ebert-Uphoff, Ravela, Babaie, Kumar (bib29) 2019; 31
Gil, David, Demir, Essawy, Fulweiler, Goodall, Karlstrom, Lee, Mills, Oh, Pierce, Pope, Tzeng, Villamizar, Yu (bib18) 2016
Mickens, Szummer, Narayanan (bib34) 2007
Washington, Buja, Craig (bib52) 2009; 367
Han, Cercone (bib21) 2001
Grimm, Behrens, Märker, Elsenbeer (bib20) 2008; 146
Sarrazin (bib42) 2018
Teoh, Ma (bib50) 2003
(bib26) 2020
Stein, Pianosi, Woods (bib48) 2020; 34
Gislason, Benediktsson, Sveinsson (bib19) 2006; 27
Solomatine, Siek (bib47) 2004
Almeida, Ann Holcombe, Pianosi, Wagener (bib2) 2017; 17
Chawla, Bowyer, Hall, Kegelmeyer (bib9) 2002; 16
Elia, Gajek, Schiendorfer, Wolfgang (bib12) 2021
Read, Jia, Willard, Appling, Zwart, Oliver, Karpatne, Hansen, Hanson, Watkins, Steinbach, Kumar (bib38) 2019; 55
Zhou, Pan, Wang, Vasilakos (bib53) 2017; 237
Kuentz, Arheimer, Hundecha, Wagener (bib31) 2017; 21
Butler (bib7) 2007; 450
Hart, Martinez (bib22) 2006; 78
Doshi-Velez, Been (bib11) 2017
Do (bib10) 2006
Roscher, Bohn, Duarte, Garcke (bib40) 2020; 8
Ankerst, Ester, Kriegel (bib3) 2000
Holdridge (bib24) 1947
Fails, Olsen (bib15) 2003
Shortridge, Guikema, Zaitchik (bib44) 2016; 20
Mickens (10.1016/j.cageo.2022.105248_bib34) 2007
Sarrazin (10.1016/j.cageo.2022.105248_bib42) 2018
Singh (10.1016/j.cageo.2022.105248_bib45) 2014; 517
Zhou (10.1016/j.cageo.2022.105248_bib53) 2017; 237
Teoh (10.1016/j.cageo.2022.105248_bib50) 2003
Grimm (10.1016/j.cageo.2022.105248_bib20) 2008; 146
Solomatine (10.1016/j.cageo.2022.105248_bib46) 2008
Karpatne (10.1016/j.cageo.2022.105248_bib29) 2019; 31
Estivill-Castro (10.1016/j.cageo.2022.105248_bib13) 2020
Breiman (10.1016/j.cageo.2022.105248_bib6) 1984
Faghmous (10.1016/j.cageo.2022.105248_bib14) 2014; 2
Gil (10.1016/j.cageo.2022.105248_bib18) 2016
Pedregosa (10.1016/j.cageo.2022.105248_bib37) 2011; 12
van den Elzen (10.1016/j.cageo.2022.105248_bib51) 2011
Loh (10.1016/j.cageo.2022.105248_bib33) 2014; 82
Doshi-Velez (10.1016/j.cageo.2022.105248_bib11) 2017
Sawicz (10.1016/j.cageo.2022.105248_bib43) 2014; 18
Hengl (10.1016/j.cageo.2022.105248_bib23) 2017; 12
Lipton (10.1016/j.cageo.2022.105248_bib32) 2018; 61
Shortridge (10.1016/j.cageo.2022.105248_bib44) 2016; 20
Flach (10.1016/j.cageo.2022.105248_bib16) 2012
Iorgulescu (10.1016/j.cageo.2022.105248_bib27) 2004; 40
Gislason (10.1016/j.cageo.2022.105248_bib19) 2006; 27
Karpatne (10.1016/j.cageo.2022.105248_bib28) 2017; 29
Butler (10.1016/j.cageo.2022.105248_bib7) 2007; 450
Molnar (10.1016/j.cageo.2022.105248_bib35) 2020
Solomatine (10.1016/j.cageo.2022.105248_bib47) 2004
Fails (10.1016/j.cageo.2022.105248_bib15) 2003
Holdridge (10.1016/j.cageo.2022.105248_bib24) 1947
Stein (10.1016/j.cageo.2022.105248_bib48) 2020; 34
Roscher (10.1016/j.cageo.2022.105248_bib40) 2020; 8
Kirchner (10.1016/j.cageo.2022.105248_bib30) 2020; 578
Pal (10.1016/j.cageo.2022.105248_bib36) 2003; 86
Sun (10.1016/j.cageo.2022.105248_bib49) 2022; 159
Samuel (10.1016/j.cageo.2022.105248_bib41) 1959; 3
Bzdok (10.1016/j.cageo.2022.105248_bib8) 2017; 14
Read (10.1016/j.cageo.2022.105248_bib38) 2019; 55
Elia (10.1016/j.cageo.2022.105248_bib12) 2021
Beven (10.1016/j.cageo.2022.105248_bib5) 2018; 18
Do (10.1016/j.cageo.2022.105248_bib10) 2006
Han (10.1016/j.cageo.2022.105248_bib21) 2001
Hart (10.1016/j.cageo.2022.105248_bib22) 2006; 78
Kuentz (10.1016/j.cageo.2022.105248_bib31) 2017; 21
Addor (10.1016/j.cageo.2022.105248_bib1) 2018; 54
Almeida (10.1016/j.cageo.2022.105248_bib2) 2017; 17
Bergen (10.1016/j.cageo.2022.105248_bib4) 2019; 363
García (10.1016/j.cageo.2022.105248_bib17) 2009; 17
Hutton (10.1016/j.cageo.2022.105248_bib25) 2016
Reichstein (10.1016/j.cageo.2022.105248_bib39) 2019; 566
Washington (10.1016/j.cageo.2022.105248_bib52) 2009; 367
Ankerst (10.1016/j.cageo.2022.105248_bib3) 2000
Chawla (10.1016/j.cageo.2022.105248_bib9) 2002; 16
References_xml – volume: 20
  year: 2016
  ident: bib44
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 14
  start-page: 1119
  year: 2017
  end-page: 1120
  ident: bib8
  article-title: Machine learning: a primer
  publication-title: Nat. Methods
– volume: 17
  start-page: 275
  year: 2009
  end-page: 306
  ident: bib17
  article-title: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
  publication-title: Evol. Comput.
– year: 1984
  ident: bib6
  article-title: Classification and Regression Trees, Classification and Regression Trees
– year: 2006
  ident: bib10
  article-title: Towards simple, easy-to-understand, an interactive decision tree algorithm
  publication-title: 9th National Conference in Computer Science
– volume: 34
  year: 2020
  ident: bib48
  article-title: Event-based classification for global study of river flood generating processes
  publication-title: Hydrol. Process.
– volume: 2
  start-page: 155
  year: 2014
  end-page: 163
  ident: bib14
  article-title: A big data guide to understanding climate change: the case for theory-guided data science
  publication-title: Big Data
– year: 2016
  ident: bib18
  article-title: Toward the Geoscience Paper of the Future: best practices for documenting and sharing research from data to software to provenance
  publication-title: Earth Space Sci.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib9
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– start-page: 151
  year: 2011
  end-page: 160
  ident: bib51
  article-title: BaobabView: interactive construction and analysis of decision trees
  publication-title: VAST 2011 - IEEE Conference on Visual Analytics Science and Technology 2011, Proceedings
– volume: 17
  start-page: 225
  year: 2017
  end-page: 241
  ident: bib2
  article-title: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 450
  start-page: 778
  year: 2007
  end-page: 781
  ident: bib7
  article-title: Earth monitoring: the planetary panopticon
  publication-title: Nature
– year: 2020
  ident: bib35
  article-title: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable
– volume: 55
  start-page: 9173
  year: 2019
  end-page: 9190
  ident: bib38
  article-title: Process-Guided deep learning predictions of lake water temperature
  publication-title: Water Resour. Res.
– start-page: 667
  year: 2003
  end-page: 672
  ident: bib50
  article-title: PaintingClass: interactive construction, visualization and exploration of decision trees
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2018
  ident: bib42
  article-title: Understanding the Sensitivity of Karst Groundwater Recharge to Climate and Land Cover Changes at a Large-Scale
– volume: 18
  start-page: 273
  year: 2014
  end-page: 285
  ident: bib43
  article-title: Characterizing hydrologic change through catchment classification
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 18
  start-page: 2741
  year: 2018
  end-page: 2768
  ident: bib5
  article-title: Epistemic uncertainties and natural hazard risk assessment - Part 1: a review of different natural hazard areas
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 578
  start-page: E12
  year: 2020
  end-page: E15
  ident: bib30
  article-title: Streamflow response to forest management
  publication-title: Nature
– volume: 86
  start-page: 554
  year: 2003
  end-page: 565
  ident: bib36
  article-title: An assessment of the effectiveness of decision tree methods for land cover classification
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: bib13
  article-title: Human-in-the-loop construction of decision tree classifiers with parallel coordinates
  publication-title: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bib39
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– volume: 8
  start-page: 42200
  year: 2020
  end-page: 42216
  ident: bib40
  article-title: Explainable machine learning for scientific insights and discoveries
  publication-title: IEEE Access
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: bib28
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 12
  year: 2017
  ident: bib23
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
– year: 2003
  ident: bib15
  article-title: Interactive machine learning
  publication-title: International Conference on Intelligent User Interfaces
– year: 2008
  ident: bib46
  article-title: Data-driven modelling: some past experiences and new approaches
  publication-title: J. Hydroinf.
– volume: 367
  start-page: 833
  year: 2009
  end-page: 846
  ident: bib52
  article-title: The computational future for climate and Earth system models: on the path to petaflop and beyond
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– year: 2012
  ident: bib16
  article-title: Machine Learning the Art and Science of Algorithms that Make Sense of Data
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib37
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: bib11
  article-title: Towards A Rigorous Science of Interpretable Machine Learning
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bib19
  article-title: Random forests for land cover classification
  publication-title: Pattern Recogn. Lett.
– year: 2001
  ident: bib21
  article-title: Interactive construction of decision trees
  publication-title: 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 159
  year: 2022
  ident: bib49
  article-title: A review of earth artificial intelligence
  publication-title: Comput. Geosci.
– volume: 61
  start-page: 36
  year: 2018
  end-page: 43
  ident: bib32
  article-title: The mythos of model interpretability
  publication-title: Commun. ACM
– volume: 237
  start-page: 350
  year: 2017
  end-page: 361
  ident: bib53
  article-title: Machine learning on big data: opportunities and challenges
  publication-title: Neurocomputing
– volume: 146
  start-page: 102
  year: 2008
  end-page: 113
  ident: bib20
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island - digital soil mapping using Random Forests analysis
  publication-title: Geoderma
– year: 2016
  ident: bib25
  article-title: Most computational hydrology is not reproducible, so is it really science?
  publication-title: Water Resour. Res.
– year: 2007
  ident: bib34
  article-title: Snitch: interactive decision trees for troubleshooting misconfigurations
  publication-title: 2nd Workshop on Tackling Computer Systems Problems with Machine Learning Techniques
– volume: 54
  start-page: 8792
  year: 2018
  end-page: 8812
  ident: bib1
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
– volume: 82
  start-page: 329
  year: 2014
  end-page: 348
  ident: bib33
  article-title: Fifty years of classification and regression trees
  publication-title: Int. Stat. Rev.
– year: 2020
  ident: bib26
  article-title: Machine learning [WWW document]
– volume: 21
  start-page: 2863
  year: 2017
  end-page: 2879
  ident: bib31
  article-title: Understanding hydrologic variability across Europe through catchment classification
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 40
  year: 2004
  ident: bib27
  article-title: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling?
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 1544
  year: 2019
  end-page: 1554
  ident: bib29
  article-title: Machine learning for the geosciences: challenges and opportunities
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2021
  ident: bib12
  article-title: An interactive web application for decision tree learning
  publication-title: Proceedings of the European Conference on Machine Learning, Teaching Machine Learning Workshop
– volume: 517
  start-page: 985
  year: 2014
  end-page: 996
  ident: bib45
  article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - a comparative hydrology approach
  publication-title: J. Hydrol.
– year: 2004
  ident: bib47
  article-title: Flexible and optimal M5 model trees with applications to flow predictions
  publication-title: Hydroinformatics
– volume: 78
  start-page: 177
  year: 2006
  end-page: 191
  ident: bib22
  article-title: Environmental Sensor Networks: a revolution in the earth system science?
  publication-title: Earth Sci. Rev.
– volume: 3
  start-page: 210
  year: 1959
  end-page: 229
  ident: bib41
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM J. Res. Dev.
– start-page: 179
  year: 2000
  end-page: 188
  ident: bib3
  article-title: Towards an effective cooperation of the user and the computer for classification
  publication-title: Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 363
  year: 2019
  ident: bib4
  article-title: Machine learning for data-driven discovery in solid Earth geoscience
  publication-title: Science
– start-page: 105
  year: 1947
  ident: bib24
  article-title: Determination of world plant formations from simple climatic data
  publication-title: Science
– volume: 12
  year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib23
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 34
  year: 2020
  ident: 10.1016/j.cageo.2022.105248_bib48
  article-title: Event-based classification for global study of river flood generating processes
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13678
– year: 2001
  ident: 10.1016/j.cageo.2022.105248_bib21
  article-title: Interactive construction of decision trees
– volume: 578
  start-page: E12
  year: 2020
  ident: 10.1016/j.cageo.2022.105248_bib30
  article-title: Streamflow response to forest management
  publication-title: Nature
  doi: 10.1038/s41586-020-1940-6
– volume: 3
  start-page: 210
  year: 1959
  ident: 10.1016/j.cageo.2022.105248_bib41
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.33.0210
– volume: 17
  start-page: 275
  year: 2009
  ident: 10.1016/j.cageo.2022.105248_bib17
  article-title: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2009.17.3.275
– year: 2004
  ident: 10.1016/j.cageo.2022.105248_bib47
  article-title: Flexible and optimal M5 model trees with applications to flow predictions
– year: 2020
  ident: 10.1016/j.cageo.2022.105248_bib35
– start-page: 151
  year: 2011
  ident: 10.1016/j.cageo.2022.105248_bib51
  article-title: BaobabView: interactive construction and analysis of decision trees
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.cageo.2022.105248_bib9
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– year: 2020
  ident: 10.1016/j.cageo.2022.105248_bib13
  article-title: Human-in-the-loop construction of decision tree classifiers with parallel coordinates
– start-page: 105
  year: 1947
  ident: 10.1016/j.cageo.2022.105248_bib24
  article-title: Determination of world plant formations from simple climatic data
  publication-title: Science
– volume: 18
  start-page: 2741
  year: 2018
  ident: 10.1016/j.cageo.2022.105248_bib5
  article-title: Epistemic uncertainties and natural hazard risk assessment - Part 1: a review of different natural hazard areas
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-18-2741-2018
– year: 2012
  ident: 10.1016/j.cageo.2022.105248_bib16
– year: 2018
  ident: 10.1016/j.cageo.2022.105248_bib42
– volume: 14
  start-page: 1119
  year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib8
  article-title: Machine learning: a primer
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4526
– year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib11
– volume: 450
  start-page: 778
  year: 2007
  ident: 10.1016/j.cageo.2022.105248_bib7
  article-title: Earth monitoring: the planetary panopticon
  publication-title: Nature
  doi: 10.1038/450778a
– year: 2021
  ident: 10.1016/j.cageo.2022.105248_bib12
  article-title: An interactive web application for decision tree learning
– volume: 21
  start-page: 2863
  year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib31
  article-title: Understanding hydrologic variability across Europe through catchment classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-2863-2017
– volume: 517
  start-page: 985
  year: 2014
  ident: 10.1016/j.cageo.2022.105248_bib45
  article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - a comparative hydrology approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.06.030
– volume: 29
  start-page: 2318
  year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib28
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 237
  start-page: 350
  year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib53
  article-title: Machine learning on big data: opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– year: 2008
  ident: 10.1016/j.cageo.2022.105248_bib46
  article-title: Data-driven modelling: some past experiences and new approaches
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2008.015
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.cageo.2022.105248_bib19
  article-title: Random forests for land cover classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 40
  year: 2004
  ident: 10.1016/j.cageo.2022.105248_bib27
  article-title: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling?
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003094
– volume: 18
  start-page: 273
  year: 2014
  ident: 10.1016/j.cageo.2022.105248_bib43
  article-title: Characterizing hydrologic change through catchment classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-273-2014
– volume: 78
  start-page: 177
  year: 2006
  ident: 10.1016/j.cageo.2022.105248_bib22
  article-title: Environmental Sensor Networks: a revolution in the earth system science?
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2006.05.001
– year: 2007
  ident: 10.1016/j.cageo.2022.105248_bib34
  article-title: Snitch: interactive decision trees for troubleshooting misconfigurations
– volume: 159
  year: 2022
  ident: 10.1016/j.cageo.2022.105248_bib49
  article-title: A review of earth artificial intelligence
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2022.105034
– volume: 20
  year: 2016
  ident: 10.1016/j.cageo.2022.105248_bib44
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-2611-2016
– year: 2006
  ident: 10.1016/j.cageo.2022.105248_bib10
  article-title: Towards simple, easy-to-understand, an interactive decision tree algorithm
– volume: 367
  start-page: 833
  year: 2009
  ident: 10.1016/j.cageo.2022.105248_bib52
  article-title: The computational future for climate and Earth system models: on the path to petaflop and beyond
  publication-title: Phil. Trans. Math. Phys. Eng. Sci.
– volume: 55
  start-page: 9173
  year: 2019
  ident: 10.1016/j.cageo.2022.105248_bib38
  article-title: Process-Guided deep learning predictions of lake water temperature
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR024922
– start-page: 179
  year: 2000
  ident: 10.1016/j.cageo.2022.105248_bib3
  article-title: Towards an effective cooperation of the user and the computer for classification
– volume: 146
  start-page: 102
  year: 2008
  ident: 10.1016/j.cageo.2022.105248_bib20
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island - digital soil mapping using Random Forests analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.008
– year: 2016
  ident: 10.1016/j.cageo.2022.105248_bib25
  article-title: Most computational hydrology is not reproducible, so is it really science?
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019285
– volume: 61
  start-page: 36
  year: 2018
  ident: 10.1016/j.cageo.2022.105248_bib32
  article-title: The mythos of model interpretability
  publication-title: Commun. ACM
  doi: 10.1145/3233231
– volume: 86
  start-page: 554
  year: 2003
  ident: 10.1016/j.cageo.2022.105248_bib36
  article-title: An assessment of the effectiveness of decision tree methods for land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00132-9
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.cageo.2022.105248_bib39
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– year: 1984
  ident: 10.1016/j.cageo.2022.105248_bib6
– volume: 363
  year: 2019
  ident: 10.1016/j.cageo.2022.105248_bib4
  article-title: Machine learning for data-driven discovery in solid Earth geoscience
  publication-title: Science
  doi: 10.1126/science.aau0323
– volume: 8
  start-page: 42200
  year: 2020
  ident: 10.1016/j.cageo.2022.105248_bib40
  article-title: Explainable machine learning for scientific insights and discoveries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976199
– volume: 2
  start-page: 155
  year: 2014
  ident: 10.1016/j.cageo.2022.105248_bib14
  article-title: A big data guide to understanding climate change: the case for theory-guided data science
  publication-title: Big Data
  doi: 10.1089/big.2014.0026
– year: 2016
  ident: 10.1016/j.cageo.2022.105248_bib18
  article-title: Toward the Geoscience Paper of the Future: best practices for documenting and sharing research from data to software to provenance
  publication-title: Earth Space Sci.
  doi: 10.1002/2015EA000136
– volume: 82
  start-page: 329
  year: 2014
  ident: 10.1016/j.cageo.2022.105248_bib33
  article-title: Fifty years of classification and regression trees
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12016
– volume: 17
  start-page: 225
  year: 2017
  ident: 10.1016/j.cageo.2022.105248_bib2
  article-title: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-17-225-2017
– volume: 31
  start-page: 1544
  year: 2019
  ident: 10.1016/j.cageo.2022.105248_bib29
  article-title: Machine learning for the geosciences: challenges and opportunities
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2861006
– volume: 54
  start-page: 8792
  year: 2018
  ident: 10.1016/j.cageo.2022.105248_bib1
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022606
– year: 2003
  ident: 10.1016/j.cageo.2022.105248_bib15
  article-title: Interactive machine learning
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cageo.2022.105248_bib37
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– start-page: 667
  year: 2003
  ident: 10.1016/j.cageo.2022.105248_bib50
  article-title: PaintingClass: interactive construction, visualization and exploration of decision trees
SSID ssj0002285
Score 2.536534
Snippet Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105248
SubjectTerms Geosciences and environmental sciences
Human-in-the-Loop
Interactive decision trees
Interpretability
Machine learning
Open-source toolbox
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UYjz524hR04NHS6Dduu1IjIgeiAeJeFrariMqDCJDg3-9fV1H1CjB25K1W_ba1763fu_7EDqPwGe4p4n0FTUJio7MVSMhmlMdKaaCVFmAbJd3et5t3-87nm2ohfl2fm9xWMr4FVTpUQqatNQL11GV-ybwrqBqr3vXeixZMYE7CtKrMGAkCBus5Bj6_Sl_7UObs2wi5u9iOPyyz7S3iwLuqaUnBHjJS32Wy7r6-EHeuOIn7KAtF2_iVjFBdtGazvbQxrXV853vo4cbRxdhdjBcFEcCdggvfrXhpywf45GFXGrsNCYGGODyA7inbZXVm8aJE-vBcMw9PUC99tX9ZYc4rQUiWNDMCfOFCcZMuhg1wlQGxrWlMKuBgrpc47OC0yRl2vNlEEEOqEMpRJSkAWVmUTDZOTtElWyc6SOEQcFEppwJT2kgFJO8mURhU8tESEZVWEO0tHysHBE56GEM4xJx9hxbi8VgsbiwWA1dLDpNCh6O5c15OaSxCyWKECE2o7O8I1lMgFVedPzP9ieokr_O9KmJZHJ55mbwJ5se7os
  priority: 102
  providerName: Unpaywall
Title Integrating scientific knowledge into machine learning using interactive decision trees
URI https://dx.doi.org/10.1016/j.cageo.2022.105248
https://doi.org/10.1016/j.cageo.2022.105248
UnpaywallVersion publishedVersion
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEb2Inzg_Rg4erduSNm2OYzg3heHB4TyVJE3HZHZDO2UX_3bz0nQqyBBPLW1Cykvey3vp770fQuccdIb52pOBIiZA0dzcNRJPM6K5oipMlQXI9ll34N8Mg2EFtctcGIBVOttf2HRrrd2TupNmfTYeQ44vj6itYQV-Sgh22PdDYDG4_PiCeRASBWXdTGhdVh6yGC9ldBYyAAkBvlsCJEC_706b82wmFu9iMvm2-3R20LZzG3Gr-LJdVNHZHtq4trS8i3300HNVH8xGhIscR4AA4eWJGR5n-RQ_W-Skxo4qYoQB9T6Cd9omS71pnDjOHQx_q18P0KBzdd_ueo4ywRM0bOYeDYTxqUzUxxtRKkOjoVIYpVaQXmtUTzCSpFT7gQw5hHI6kkLwJA0JNbptgmx6iNayaaaPEAYiEpkyKnyloS6YZM2ER00tEyEpUVEVkVJUsXL1xIHWYhKXwLGn2Mo3BvnGhXyr6GLZaVaU01jdnJVzEP9YFbEx-Ks7essZ-8tAx_8d6ARtAQF9cShzitbyl7k-M25KLmt2HdbQeqt32-2b66B_13r8BEeg6CQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MxuDF-Iz47MGjK9Duq0dDRFDkBJFb03a7BIMLUdBw8bfb6XZRE0OMt81um26mnelM-818CF0w0JnQ154MFDEBimbmqZZ4OiSaKaqiVFmAbDds9f27QTBYQ40iFwZglc725zbdWmv3puqkWZ2ORpDjy2Jqa1iBnxIZO7zuBySCCOzq4wvnQUgcFIUzoXlResiCvJRRWkgBJAQIbwmwAP2-PZXn2VQs3sV4_G37aW6jLec34uv813bQms520cat5eVd7KHHtiv7YHYinCc5AgYIL4_M8CibTfCzhU5q7Lgihhhg70P4pm221JvGiSPdwXBd_bqP-s2bXqPlOc4ET9CoPvNoIIxTZcI-VotTGRkVlcJotYL8WqN7IiRJSrUfyIhBLKdjKQRL0ohQo9wmyqYHqJRNMn2IMDCRyDSkwlcaCoPJsJ6wuK5lIiQlKq4gUoiKK1dQHHgtxrxAjj1xK18O8uW5fCvoctlpmtfTWN08LOaA_1gW3Fj81R295Yz9ZaCj_w50jsqt3kOHd9rd-2O0CWz0-QnNCSrNXub61PgsM3lm1-QndtfoCQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UYjz524hR04NHS6Dduu1IjIgeiAeJeFrariMqDCJDg3-9fV1H1CjB25K1W_ba1763fu_7EDqPwGe4p4n0FTUJio7MVSMhmlMdKaaCVFmAbJd3et5t3-87nm2ohfl2fm9xWMr4FVTpUQqatNQL11GV-ybwrqBqr3vXeixZMYE7CtKrMGAkCBus5Bj6_Sl_7UObs2wi5u9iOPyyz7S3iwLuqaUnBHjJS32Wy7r6-EHeuOIn7KAtF2_iVjFBdtGazvbQxrXV853vo4cbRxdhdjBcFEcCdggvfrXhpywf45GFXGrsNCYGGODyA7inbZXVm8aJE-vBcMw9PUC99tX9ZYc4rQUiWNDMCfOFCcZMuhg1wlQGxrWlMKuBgrpc47OC0yRl2vNlEEEOqEMpRJSkAWVmUTDZOTtElWyc6SOEQcFEppwJT2kgFJO8mURhU8tESEZVWEO0tHysHBE56GEM4xJx9hxbi8VgsbiwWA1dLDpNCh6O5c15OaSxCyWKECE2o7O8I1lMgFVedPzP9ieokr_O9KmJZHJ55mbwJ5se7os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+scientific+knowledge+into+machine+learning+using+interactive+decision+trees&rft.jtitle=Computers+%26+geosciences&rft.au=Sarailidis%2C+Georgios&rft.au=Wagener%2C+Thorsten&rft.au=Pianosi%2C+Francesca&rft.date=2023-01-01&rft.issn=0098-3004&rft.volume=170&rft.spage=105248&rft_id=info:doi/10.1016%2Fj.cageo.2022.105248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2022_105248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon