Integrating scientific knowledge into machine learning using interactive decision trees
Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, the application of DT is hindered by data limitations, such as significant biases...
        Saved in:
      
    
          | Published in | Computers & geosciences Vol. 170; p. 105248 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0098-3004 1873-7803 1873-7803  | 
| DOI | 10.1016/j.cageo.2022.105248 | 
Cover
| Abstract | Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, the application of DT is hindered by data limitations, such as significant biases, leading to potentially physically unrealistic results. We develop interactive DT (iDT) that put humans in the loop to integrate the power of experts' scientific knowledge with the power of the algorithms to automatically learn patterns from large datasets. We created an open-source Python toolbox that implements the iDT framework. Users can interactively create new composite variables, change the variable and threshold to split, prune and group variables based on their physical meaning. We demonstrate with three case studies how iDT overcomes problems with current DT thus achieving higher interpretability and robustness of the result.
•We propose a framework for building Decision Trees that put humans in the loop.•The framework compensates for dataset issues encountered in standard Decision Trees.•Interactive Decision Trees enhance interpretability and physical consistency.•We developed an open-source toolbox for constructing Interactive Decision Trees. | 
    
|---|---|
| AbstractList | Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and high dimensional data. However, like any data-based method, the application of DT is hindered by data limitations, such as significant biases, leading to potentially physically unrealistic results. We develop interactive DT (iDT) that put humans in the loop to integrate the power of experts' scientific knowledge with the power of the algorithms to automatically learn patterns from large datasets. We created an open-source Python toolbox that implements the iDT framework. Users can interactively create new composite variables, change the variable and threshold to split, prune and group variables based on their physical meaning. We demonstrate with three case studies how iDT overcomes problems with current DT thus achieving higher interpretability and robustness of the result.
•We propose a framework for building Decision Trees that put humans in the loop.•The framework compensates for dataset issues encountered in standard Decision Trees.•Interactive Decision Trees enhance interpretability and physical consistency.•We developed an open-source toolbox for constructing Interactive Decision Trees. | 
    
| ArticleNumber | 105248 | 
    
| Author | Wagener, Thorsten Sarailidis, Georgios Pianosi, Francesca  | 
    
| Author_xml | – sequence: 1 givenname: Georgios orcidid: 0000-0001-5166-2571 surname: Sarailidis fullname: Sarailidis, Georgios email: g.sarailidis@bristol.ac.uk organization: Water and Environmental Engineering, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom – sequence: 2 givenname: Thorsten surname: Wagener fullname: Wagener, Thorsten organization: Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany – sequence: 3 givenname: Francesca surname: Pianosi fullname: Pianosi, Francesca organization: Water and Environmental Engineering, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom  | 
    
| BookMark | eNqNkD1PwzAQhi1UJNrCL2DJH0g520ntDAyo4qNSJRYQo-U4l-CSOpXtUvXfk7RMDMByJ937Pjc8EzJynUNCrinMKND5zXpmdIPdjAFj_SVnmTwjYyoFT4UEPiJjgEKmHCC7IJMQ1gB9U-Zj8rZ0ERuvo3VNEoxFF21tTfLhun2LVYOJdbFLNtq8W4dJi9q7oboLw-wz9NpE-4lJhcYG27kkesRwSc5r3Qa8-t5T8vpw_7J4SlfPj8vF3SrVXNCY8lyD5JLlBci6FJBBqUGA4QWdU1HoOatqjlleioJlIFCWWhdVLRjnVGLJ-JRkp787t9WHvW5btfV2o_1BUVCDHLVWRzlqkKNOcnqMnzDjuxA81v-kih-UsbFX17notW3_YG9PLPY2Pi16dbRtsLIeTVRVZ3_lvwCYM5Sm | 
    
| CitedBy_id | crossref_primary_10_3390_math11133010 crossref_primary_10_1038_s41598_022_23335_1 crossref_primary_10_1007_s11831_024_10081_y crossref_primary_10_1016_j_aej_2024_03_106 crossref_primary_10_1186_s44147_023_00302_9 crossref_primary_10_1016_j_xinn_2024_100691 crossref_primary_10_1016_j_dss_2024_114169 crossref_primary_10_1016_j_eij_2024_100540 crossref_primary_10_1016_j_envpol_2023_121363 crossref_primary_10_1016_j_jclepro_2024_142452 crossref_primary_10_48084_etasr_9464 crossref_primary_10_1002_adma_202309351 crossref_primary_10_1016_j_acags_2024_100155 crossref_primary_10_1016_j_actatropica_2024_107486 crossref_primary_10_1007_s11442_024_2202_6 crossref_primary_10_1016_j_asoc_2023_110812 crossref_primary_10_1080_15481603_2025_2460513 crossref_primary_10_1007_s10346_024_02327_4 crossref_primary_10_1109_ACCESS_2024_3398582  | 
    
| Cites_doi | 10.1371/journal.pone.0169748 10.1002/hyp.13678 10.1038/s41586-020-1940-6 10.1147/rd.33.0210 10.1162/evco.2009.17.3.275 10.1613/jair.953 10.5194/nhess-18-2741-2018 10.1038/nmeth.4526 10.1038/450778a 10.5194/hess-21-2863-2017 10.1016/j.jhydrol.2014.06.030 10.1109/TKDE.2017.2720168 10.1016/j.neucom.2017.01.026 10.2166/hydro.2008.015 10.1016/j.patrec.2005.08.011 10.1029/2004WR003094 10.5194/hess-18-273-2014 10.1016/j.earscirev.2006.05.001 10.1016/j.cageo.2022.105034 10.5194/hess-20-2611-2016 10.1029/2019WR024922 10.1016/j.geoderma.2008.05.008 10.1002/2016WR019285 10.1145/3233231 10.1016/S0034-4257(03)00132-9 10.1038/s41586-019-0912-1 10.1126/science.aau0323 10.1109/ACCESS.2020.2976199 10.1089/big.2014.0026 10.1002/2015EA000136 10.1111/insr.12016 10.5194/nhess-17-225-2017 10.1109/TKDE.2018.2861006 10.1029/2018WR022606  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 The Authors | 
    
| Copyright_xml | – notice: 2022 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.cageo.2022.105248 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 1873-7803 | 
    
| ExternalDocumentID | 10.1016/j.cageo.2022.105248 10_1016_j_cageo_2022_105248 S0098300422001972  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-a371t-35a083825908fb7040ba070c3916179a62df3e45b792407e8baa9df723318eb23 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0098-3004 1873-7803  | 
    
| IngestDate | Mon Sep 29 05:47:52 EDT 2025 Thu Oct 02 04:26:15 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Fri Feb 23 02:38:35 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Interactive decision trees Human-in-the-Loop Geosciences and environmental sciences Open-source toolbox Interpretability Machine learning  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a371t-35a083825908fb7040ba070c3916179a62df3e45b792407e8baa9df723318eb23 | 
    
| ORCID | 0000-0001-5166-2571 | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0098300422001972 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_cageo_2022_105248 crossref_primary_10_1016_j_cageo_2022_105248 crossref_citationtrail_10_1016_j_cageo_2022_105248 elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105248  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2023 2023-01-00  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computers & geosciences | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Kirchner, Berghuijs, Allen, Hrachowitz, Hut, Rizzo (bib30) 2020; 578 Molnar (bib35) 2020 Estivill-Castro, Gilmore, Hexel (bib13) 2020 Sawicz, Kelleher, Wagener, Troch, Sivapalan, Carrillo (bib43) 2014; 18 Bzdok, Krzywinski, Altman (bib8) 2017; 14 Karpatne, Atluri, Faghmous, Steinbach, Banerjee, Ganguly, Shekhar, Samatova, Kumar (bib28) 2017; 29 Sun, Sandoval, Crystal-Ornelas, Mousavi, Wang, Lin, Cristea, Tong, Hawley Carande, Ma, Rao, Bednar, J, Tan, Wang, Purushotham, Gill T, Chastang, Howard, Holt, Gangodagamage, Zhao, Rivas, Chester, Orduz, John (bib49) 2022; 159 García, Herrera (bib17) 2009; 17 Breiman, Friedman, Olshen, Stone (bib6) 1984 Loh (bib33) 2014; 82 Lipton (bib32) 2018; 61 Bergen, Johnson, de Hoop, Beroza (bib4) 2019; 363 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib39) 2019; 566 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib37) 2011; 12 van den Elzen, van Wijk (bib51) 2011 Faghmous, Kumar (bib14) 2014; 2 Iorgulescu, Beven (bib27) 2004; 40 Addor, Nearing, Prieto, Newman, le Vine, Clark (bib1) 2018; 54 Samuel (bib41) 1959; 3 Flach (bib16) 2012 Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bib23) 2017; 12 Pal, Mather (bib36) 2003; 86 Solomatine, Ostfeld (bib46) 2008 Beven, Almeida, Aspinall, Bates, Blazkova, Borgomeo, Freer, Goda, Hall, Phillips, Simpson, Smith, Stephenson, Wagener, Watson, Wilkins (bib5) 2018; 18 Singh, Archfield, Wagener (bib45) 2014; 517 Hutton, Wagener, Freer, Han, Duffy, Arheimer (bib25) 2016 Karpatne, Ebert-Uphoff, Ravela, Babaie, Kumar (bib29) 2019; 31 Gil, David, Demir, Essawy, Fulweiler, Goodall, Karlstrom, Lee, Mills, Oh, Pierce, Pope, Tzeng, Villamizar, Yu (bib18) 2016 Mickens, Szummer, Narayanan (bib34) 2007 Washington, Buja, Craig (bib52) 2009; 367 Han, Cercone (bib21) 2001 Grimm, Behrens, Märker, Elsenbeer (bib20) 2008; 146 Sarrazin (bib42) 2018 Teoh, Ma (bib50) 2003 (bib26) 2020 Stein, Pianosi, Woods (bib48) 2020; 34 Gislason, Benediktsson, Sveinsson (bib19) 2006; 27 Solomatine, Siek (bib47) 2004 Almeida, Ann Holcombe, Pianosi, Wagener (bib2) 2017; 17 Chawla, Bowyer, Hall, Kegelmeyer (bib9) 2002; 16 Elia, Gajek, Schiendorfer, Wolfgang (bib12) 2021 Read, Jia, Willard, Appling, Zwart, Oliver, Karpatne, Hansen, Hanson, Watkins, Steinbach, Kumar (bib38) 2019; 55 Zhou, Pan, Wang, Vasilakos (bib53) 2017; 237 Kuentz, Arheimer, Hundecha, Wagener (bib31) 2017; 21 Butler (bib7) 2007; 450 Hart, Martinez (bib22) 2006; 78 Doshi-Velez, Been (bib11) 2017 Do (bib10) 2006 Roscher, Bohn, Duarte, Garcke (bib40) 2020; 8 Ankerst, Ester, Kriegel (bib3) 2000 Holdridge (bib24) 1947 Fails, Olsen (bib15) 2003 Shortridge, Guikema, Zaitchik (bib44) 2016; 20 Mickens (10.1016/j.cageo.2022.105248_bib34) 2007 Sarrazin (10.1016/j.cageo.2022.105248_bib42) 2018 Singh (10.1016/j.cageo.2022.105248_bib45) 2014; 517 Zhou (10.1016/j.cageo.2022.105248_bib53) 2017; 237 Teoh (10.1016/j.cageo.2022.105248_bib50) 2003 Grimm (10.1016/j.cageo.2022.105248_bib20) 2008; 146 Solomatine (10.1016/j.cageo.2022.105248_bib46) 2008 Karpatne (10.1016/j.cageo.2022.105248_bib29) 2019; 31 Estivill-Castro (10.1016/j.cageo.2022.105248_bib13) 2020 Breiman (10.1016/j.cageo.2022.105248_bib6) 1984 Faghmous (10.1016/j.cageo.2022.105248_bib14) 2014; 2 Gil (10.1016/j.cageo.2022.105248_bib18) 2016 Pedregosa (10.1016/j.cageo.2022.105248_bib37) 2011; 12 van den Elzen (10.1016/j.cageo.2022.105248_bib51) 2011 Loh (10.1016/j.cageo.2022.105248_bib33) 2014; 82 Doshi-Velez (10.1016/j.cageo.2022.105248_bib11) 2017 Sawicz (10.1016/j.cageo.2022.105248_bib43) 2014; 18 Hengl (10.1016/j.cageo.2022.105248_bib23) 2017; 12 Lipton (10.1016/j.cageo.2022.105248_bib32) 2018; 61 Shortridge (10.1016/j.cageo.2022.105248_bib44) 2016; 20 Flach (10.1016/j.cageo.2022.105248_bib16) 2012 Iorgulescu (10.1016/j.cageo.2022.105248_bib27) 2004; 40 Gislason (10.1016/j.cageo.2022.105248_bib19) 2006; 27 Karpatne (10.1016/j.cageo.2022.105248_bib28) 2017; 29 Butler (10.1016/j.cageo.2022.105248_bib7) 2007; 450 Molnar (10.1016/j.cageo.2022.105248_bib35) 2020 Solomatine (10.1016/j.cageo.2022.105248_bib47) 2004 Fails (10.1016/j.cageo.2022.105248_bib15) 2003 Holdridge (10.1016/j.cageo.2022.105248_bib24) 1947 Stein (10.1016/j.cageo.2022.105248_bib48) 2020; 34 Roscher (10.1016/j.cageo.2022.105248_bib40) 2020; 8 Kirchner (10.1016/j.cageo.2022.105248_bib30) 2020; 578 Pal (10.1016/j.cageo.2022.105248_bib36) 2003; 86 Sun (10.1016/j.cageo.2022.105248_bib49) 2022; 159 Samuel (10.1016/j.cageo.2022.105248_bib41) 1959; 3 Bzdok (10.1016/j.cageo.2022.105248_bib8) 2017; 14 Read (10.1016/j.cageo.2022.105248_bib38) 2019; 55 Elia (10.1016/j.cageo.2022.105248_bib12) 2021 Beven (10.1016/j.cageo.2022.105248_bib5) 2018; 18 Do (10.1016/j.cageo.2022.105248_bib10) 2006 Han (10.1016/j.cageo.2022.105248_bib21) 2001 Hart (10.1016/j.cageo.2022.105248_bib22) 2006; 78 Kuentz (10.1016/j.cageo.2022.105248_bib31) 2017; 21 Addor (10.1016/j.cageo.2022.105248_bib1) 2018; 54 Almeida (10.1016/j.cageo.2022.105248_bib2) 2017; 17 Bergen (10.1016/j.cageo.2022.105248_bib4) 2019; 363 García (10.1016/j.cageo.2022.105248_bib17) 2009; 17 Hutton (10.1016/j.cageo.2022.105248_bib25) 2016 Reichstein (10.1016/j.cageo.2022.105248_bib39) 2019; 566 Washington (10.1016/j.cageo.2022.105248_bib52) 2009; 367 Ankerst (10.1016/j.cageo.2022.105248_bib3) 2000 Chawla (10.1016/j.cageo.2022.105248_bib9) 2002; 16  | 
    
| References_xml | – volume: 20 year: 2016 ident: bib44 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol. Earth Syst. Sci. – volume: 14 start-page: 1119 year: 2017 end-page: 1120 ident: bib8 article-title: Machine learning: a primer publication-title: Nat. Methods – volume: 17 start-page: 275 year: 2009 end-page: 306 ident: bib17 article-title: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy publication-title: Evol. Comput. – year: 1984 ident: bib6 article-title: Classification and Regression Trees, Classification and Regression Trees – year: 2006 ident: bib10 article-title: Towards simple, easy-to-understand, an interactive decision tree algorithm publication-title: 9th National Conference in Computer Science – volume: 34 year: 2020 ident: bib48 article-title: Event-based classification for global study of river flood generating processes publication-title: Hydrol. Process. – volume: 2 start-page: 155 year: 2014 end-page: 163 ident: bib14 article-title: A big data guide to understanding climate change: the case for theory-guided data science publication-title: Big Data – year: 2016 ident: bib18 article-title: Toward the Geoscience Paper of the Future: best practices for documenting and sharing research from data to software to provenance publication-title: Earth Space Sci. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib9 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – start-page: 151 year: 2011 end-page: 160 ident: bib51 article-title: BaobabView: interactive construction and analysis of decision trees publication-title: VAST 2011 - IEEE Conference on Visual Analytics Science and Technology 2011, Proceedings – volume: 17 start-page: 225 year: 2017 end-page: 241 ident: bib2 article-title: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change publication-title: Nat. Hazards Earth Syst. Sci. – volume: 450 start-page: 778 year: 2007 end-page: 781 ident: bib7 article-title: Earth monitoring: the planetary panopticon publication-title: Nature – year: 2020 ident: bib35 article-title: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable – volume: 55 start-page: 9173 year: 2019 end-page: 9190 ident: bib38 article-title: Process-Guided deep learning predictions of lake water temperature publication-title: Water Resour. Res. – start-page: 667 year: 2003 end-page: 672 ident: bib50 article-title: PaintingClass: interactive construction, visualization and exploration of decision trees publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2018 ident: bib42 article-title: Understanding the Sensitivity of Karst Groundwater Recharge to Climate and Land Cover Changes at a Large-Scale – volume: 18 start-page: 273 year: 2014 end-page: 285 ident: bib43 article-title: Characterizing hydrologic change through catchment classification publication-title: Hydrol. Earth Syst. Sci. – volume: 18 start-page: 2741 year: 2018 end-page: 2768 ident: bib5 article-title: Epistemic uncertainties and natural hazard risk assessment - Part 1: a review of different natural hazard areas publication-title: Nat. Hazards Earth Syst. Sci. – volume: 578 start-page: E12 year: 2020 end-page: E15 ident: bib30 article-title: Streamflow response to forest management publication-title: Nature – volume: 86 start-page: 554 year: 2003 end-page: 565 ident: bib36 article-title: An assessment of the effectiveness of decision tree methods for land cover classification publication-title: Remote Sens. Environ. – year: 2020 ident: bib13 article-title: Human-in-the-loop construction of decision tree classifiers with parallel coordinates publication-title: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bib39 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – volume: 8 start-page: 42200 year: 2020 end-page: 42216 ident: bib40 article-title: Explainable machine learning for scientific insights and discoveries publication-title: IEEE Access – volume: 29 start-page: 2318 year: 2017 end-page: 2331 ident: bib28 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 12 year: 2017 ident: bib23 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – year: 2003 ident: bib15 article-title: Interactive machine learning publication-title: International Conference on Intelligent User Interfaces – year: 2008 ident: bib46 article-title: Data-driven modelling: some past experiences and new approaches publication-title: J. Hydroinf. – volume: 367 start-page: 833 year: 2009 end-page: 846 ident: bib52 article-title: The computational future for climate and Earth system models: on the path to petaflop and beyond publication-title: Phil. Trans. Math. Phys. Eng. Sci. – year: 2012 ident: bib16 article-title: Machine Learning the Art and Science of Algorithms that Make Sense of Data – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib37 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2017 ident: bib11 article-title: Towards A Rigorous Science of Interpretable Machine Learning – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bib19 article-title: Random forests for land cover classification publication-title: Pattern Recogn. Lett. – year: 2001 ident: bib21 article-title: Interactive construction of decision trees publication-title: 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 159 year: 2022 ident: bib49 article-title: A review of earth artificial intelligence publication-title: Comput. Geosci. – volume: 61 start-page: 36 year: 2018 end-page: 43 ident: bib32 article-title: The mythos of model interpretability publication-title: Commun. ACM – volume: 237 start-page: 350 year: 2017 end-page: 361 ident: bib53 article-title: Machine learning on big data: opportunities and challenges publication-title: Neurocomputing – volume: 146 start-page: 102 year: 2008 end-page: 113 ident: bib20 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island - digital soil mapping using Random Forests analysis publication-title: Geoderma – year: 2016 ident: bib25 article-title: Most computational hydrology is not reproducible, so is it really science? publication-title: Water Resour. Res. – year: 2007 ident: bib34 article-title: Snitch: interactive decision trees for troubleshooting misconfigurations publication-title: 2nd Workshop on Tackling Computer Systems Problems with Machine Learning Techniques – volume: 54 start-page: 8792 year: 2018 end-page: 8812 ident: bib1 article-title: A ranking of hydrological signatures based on their predictability in space publication-title: Water Resour. Res. – volume: 82 start-page: 329 year: 2014 end-page: 348 ident: bib33 article-title: Fifty years of classification and regression trees publication-title: Int. Stat. Rev. – year: 2020 ident: bib26 article-title: Machine learning [WWW document] – volume: 21 start-page: 2863 year: 2017 end-page: 2879 ident: bib31 article-title: Understanding hydrologic variability across Europe through catchment classification publication-title: Hydrol. Earth Syst. Sci. – volume: 40 year: 2004 ident: bib27 article-title: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling? publication-title: Water Resour. Res. – volume: 31 start-page: 1544 year: 2019 end-page: 1554 ident: bib29 article-title: Machine learning for the geosciences: challenges and opportunities publication-title: IEEE Trans. Knowl. Data Eng. – year: 2021 ident: bib12 article-title: An interactive web application for decision tree learning publication-title: Proceedings of the European Conference on Machine Learning, Teaching Machine Learning Workshop – volume: 517 start-page: 985 year: 2014 end-page: 996 ident: bib45 article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - a comparative hydrology approach publication-title: J. Hydrol. – year: 2004 ident: bib47 article-title: Flexible and optimal M5 model trees with applications to flow predictions publication-title: Hydroinformatics – volume: 78 start-page: 177 year: 2006 end-page: 191 ident: bib22 article-title: Environmental Sensor Networks: a revolution in the earth system science? publication-title: Earth Sci. Rev. – volume: 3 start-page: 210 year: 1959 end-page: 229 ident: bib41 article-title: Some studies in machine learning using the game of checkers publication-title: IBM J. Res. Dev. – start-page: 179 year: 2000 end-page: 188 ident: bib3 article-title: Towards an effective cooperation of the user and the computer for classification publication-title: Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 363 year: 2019 ident: bib4 article-title: Machine learning for data-driven discovery in solid Earth geoscience publication-title: Science – start-page: 105 year: 1947 ident: bib24 article-title: Determination of world plant formations from simple climatic data publication-title: Science – volume: 12 year: 2017 ident: 10.1016/j.cageo.2022.105248_bib23 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 – volume: 34 year: 2020 ident: 10.1016/j.cageo.2022.105248_bib48 article-title: Event-based classification for global study of river flood generating processes publication-title: Hydrol. Process. doi: 10.1002/hyp.13678 – year: 2001 ident: 10.1016/j.cageo.2022.105248_bib21 article-title: Interactive construction of decision trees – volume: 578 start-page: E12 year: 2020 ident: 10.1016/j.cageo.2022.105248_bib30 article-title: Streamflow response to forest management publication-title: Nature doi: 10.1038/s41586-020-1940-6 – volume: 3 start-page: 210 year: 1959 ident: 10.1016/j.cageo.2022.105248_bib41 article-title: Some studies in machine learning using the game of checkers publication-title: IBM J. Res. Dev. doi: 10.1147/rd.33.0210 – volume: 17 start-page: 275 year: 2009 ident: 10.1016/j.cageo.2022.105248_bib17 article-title: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy publication-title: Evol. Comput. doi: 10.1162/evco.2009.17.3.275 – year: 2004 ident: 10.1016/j.cageo.2022.105248_bib47 article-title: Flexible and optimal M5 model trees with applications to flow predictions – year: 2020 ident: 10.1016/j.cageo.2022.105248_bib35 – start-page: 151 year: 2011 ident: 10.1016/j.cageo.2022.105248_bib51 article-title: BaobabView: interactive construction and analysis of decision trees – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.cageo.2022.105248_bib9 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – year: 2020 ident: 10.1016/j.cageo.2022.105248_bib13 article-title: Human-in-the-loop construction of decision tree classifiers with parallel coordinates – start-page: 105 year: 1947 ident: 10.1016/j.cageo.2022.105248_bib24 article-title: Determination of world plant formations from simple climatic data publication-title: Science – volume: 18 start-page: 2741 year: 2018 ident: 10.1016/j.cageo.2022.105248_bib5 article-title: Epistemic uncertainties and natural hazard risk assessment - Part 1: a review of different natural hazard areas publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-18-2741-2018 – year: 2012 ident: 10.1016/j.cageo.2022.105248_bib16 – year: 2018 ident: 10.1016/j.cageo.2022.105248_bib42 – volume: 14 start-page: 1119 year: 2017 ident: 10.1016/j.cageo.2022.105248_bib8 article-title: Machine learning: a primer publication-title: Nat. Methods doi: 10.1038/nmeth.4526 – year: 2017 ident: 10.1016/j.cageo.2022.105248_bib11 – volume: 450 start-page: 778 year: 2007 ident: 10.1016/j.cageo.2022.105248_bib7 article-title: Earth monitoring: the planetary panopticon publication-title: Nature doi: 10.1038/450778a – year: 2021 ident: 10.1016/j.cageo.2022.105248_bib12 article-title: An interactive web application for decision tree learning – volume: 21 start-page: 2863 year: 2017 ident: 10.1016/j.cageo.2022.105248_bib31 article-title: Understanding hydrologic variability across Europe through catchment classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-2863-2017 – volume: 517 start-page: 985 year: 2014 ident: 10.1016/j.cageo.2022.105248_bib45 article-title: Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - a comparative hydrology approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.06.030 – volume: 29 start-page: 2318 year: 2017 ident: 10.1016/j.cageo.2022.105248_bib28 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2720168 – volume: 237 start-page: 350 year: 2017 ident: 10.1016/j.cageo.2022.105248_bib53 article-title: Machine learning on big data: opportunities and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.026 – year: 2008 ident: 10.1016/j.cageo.2022.105248_bib46 article-title: Data-driven modelling: some past experiences and new approaches publication-title: J. Hydroinf. doi: 10.2166/hydro.2008.015 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.cageo.2022.105248_bib19 article-title: Random forests for land cover classification publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 40 year: 2004 ident: 10.1016/j.cageo.2022.105248_bib27 article-title: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling? publication-title: Water Resour. Res. doi: 10.1029/2004WR003094 – volume: 18 start-page: 273 year: 2014 ident: 10.1016/j.cageo.2022.105248_bib43 article-title: Characterizing hydrologic change through catchment classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-273-2014 – volume: 78 start-page: 177 year: 2006 ident: 10.1016/j.cageo.2022.105248_bib22 article-title: Environmental Sensor Networks: a revolution in the earth system science? publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2006.05.001 – year: 2007 ident: 10.1016/j.cageo.2022.105248_bib34 article-title: Snitch: interactive decision trees for troubleshooting misconfigurations – volume: 159 year: 2022 ident: 10.1016/j.cageo.2022.105248_bib49 article-title: A review of earth artificial intelligence publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2022.105034 – volume: 20 year: 2016 ident: 10.1016/j.cageo.2022.105248_bib44 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-2611-2016 – year: 2006 ident: 10.1016/j.cageo.2022.105248_bib10 article-title: Towards simple, easy-to-understand, an interactive decision tree algorithm – volume: 367 start-page: 833 year: 2009 ident: 10.1016/j.cageo.2022.105248_bib52 article-title: The computational future for climate and Earth system models: on the path to petaflop and beyond publication-title: Phil. Trans. Math. Phys. Eng. Sci. – volume: 55 start-page: 9173 year: 2019 ident: 10.1016/j.cageo.2022.105248_bib38 article-title: Process-Guided deep learning predictions of lake water temperature publication-title: Water Resour. Res. doi: 10.1029/2019WR024922 – start-page: 179 year: 2000 ident: 10.1016/j.cageo.2022.105248_bib3 article-title: Towards an effective cooperation of the user and the computer for classification – volume: 146 start-page: 102 year: 2008 ident: 10.1016/j.cageo.2022.105248_bib20 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island - digital soil mapping using Random Forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 – year: 2016 ident: 10.1016/j.cageo.2022.105248_bib25 article-title: Most computational hydrology is not reproducible, so is it really science? publication-title: Water Resour. Res. doi: 10.1002/2016WR019285 – volume: 61 start-page: 36 year: 2018 ident: 10.1016/j.cageo.2022.105248_bib32 article-title: The mythos of model interpretability publication-title: Commun. ACM doi: 10.1145/3233231 – volume: 86 start-page: 554 year: 2003 ident: 10.1016/j.cageo.2022.105248_bib36 article-title: An assessment of the effectiveness of decision tree methods for land cover classification publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00132-9 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.cageo.2022.105248_bib39 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – year: 1984 ident: 10.1016/j.cageo.2022.105248_bib6 – volume: 363 year: 2019 ident: 10.1016/j.cageo.2022.105248_bib4 article-title: Machine learning for data-driven discovery in solid Earth geoscience publication-title: Science doi: 10.1126/science.aau0323 – volume: 8 start-page: 42200 year: 2020 ident: 10.1016/j.cageo.2022.105248_bib40 article-title: Explainable machine learning for scientific insights and discoveries publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976199 – volume: 2 start-page: 155 year: 2014 ident: 10.1016/j.cageo.2022.105248_bib14 article-title: A big data guide to understanding climate change: the case for theory-guided data science publication-title: Big Data doi: 10.1089/big.2014.0026 – year: 2016 ident: 10.1016/j.cageo.2022.105248_bib18 article-title: Toward the Geoscience Paper of the Future: best practices for documenting and sharing research from data to software to provenance publication-title: Earth Space Sci. doi: 10.1002/2015EA000136 – volume: 82 start-page: 329 year: 2014 ident: 10.1016/j.cageo.2022.105248_bib33 article-title: Fifty years of classification and regression trees publication-title: Int. Stat. Rev. doi: 10.1111/insr.12016 – volume: 17 start-page: 225 year: 2017 ident: 10.1016/j.cageo.2022.105248_bib2 article-title: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-17-225-2017 – volume: 31 start-page: 1544 year: 2019 ident: 10.1016/j.cageo.2022.105248_bib29 article-title: Machine learning for the geosciences: challenges and opportunities publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2861006 – volume: 54 start-page: 8792 year: 2018 ident: 10.1016/j.cageo.2022.105248_bib1 article-title: A ranking of hydrological signatures based on their predictability in space publication-title: Water Resour. Res. doi: 10.1029/2018WR022606 – year: 2003 ident: 10.1016/j.cageo.2022.105248_bib15 article-title: Interactive machine learning – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cageo.2022.105248_bib37 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – start-page: 667 year: 2003 ident: 10.1016/j.cageo.2022.105248_bib50 article-title: PaintingClass: interactive construction, visualization and exploration of decision trees  | 
    
| SSID | ssj0002285 | 
    
| Score | 2.536534 | 
    
| Snippet | Decision Trees (DT) describe a type of machine learning method that has been widely used in the geosciences to automatically extract patterns from complex and... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 105248 | 
    
| SubjectTerms | Geosciences and environmental sciences Human-in-the-Loop Interactive decision trees Interpretability Machine learning Open-source toolbox  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UYjz524hR04NHS6Dduu1IjIgeiAeJeFrariMqDCJDg3-9fV1H1CjB25K1W_ba1763fu_7EDqPwGe4p4n0FTUJio7MVSMhmlMdKaaCVFmAbJd3et5t3-87nm2ohfl2fm9xWMr4FVTpUQqatNQL11GV-ybwrqBqr3vXeixZMYE7CtKrMGAkCBus5Bj6_Sl_7UObs2wi5u9iOPyyz7S3iwLuqaUnBHjJS32Wy7r6-EHeuOIn7KAtF2_iVjFBdtGazvbQxrXV853vo4cbRxdhdjBcFEcCdggvfrXhpywf45GFXGrsNCYGGODyA7inbZXVm8aJE-vBcMw9PUC99tX9ZYc4rQUiWNDMCfOFCcZMuhg1wlQGxrWlMKuBgrpc47OC0yRl2vNlEEEOqEMpRJSkAWVmUTDZOTtElWyc6SOEQcFEppwJT2kgFJO8mURhU8tESEZVWEO0tHysHBE56GEM4xJx9hxbi8VgsbiwWA1dLDpNCh6O5c15OaSxCyWKECE2o7O8I1lMgFVedPzP9ieokr_O9KmJZHJ55mbwJ5se7os priority: 102 providerName: Unpaywall  | 
    
| Title | Integrating scientific knowledge into machine learning using interactive decision trees | 
    
| URI | https://dx.doi.org/10.1016/j.cageo.2022.105248 https://doi.org/10.1016/j.cageo.2022.105248  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 170 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEb2Inzg_Rg4erduSNm2OYzg3heHB4TyVJE3HZHZDO2UX_3bz0nQqyBBPLW1Cykvey3vp770fQuccdIb52pOBIiZA0dzcNRJPM6K5oipMlQXI9ll34N8Mg2EFtctcGIBVOttf2HRrrd2TupNmfTYeQ44vj6itYQV-Sgh22PdDYDG4_PiCeRASBWXdTGhdVh6yGC9ldBYyAAkBvlsCJEC_706b82wmFu9iMvm2-3R20LZzG3Gr-LJdVNHZHtq4trS8i3300HNVH8xGhIscR4AA4eWJGR5n-RQ_W-Skxo4qYoQB9T6Cd9omS71pnDjOHQx_q18P0KBzdd_ueo4ywRM0bOYeDYTxqUzUxxtRKkOjoVIYpVaQXmtUTzCSpFT7gQw5hHI6kkLwJA0JNbptgmx6iNayaaaPEAYiEpkyKnyloS6YZM2ER00tEyEpUVEVkVJUsXL1xIHWYhKXwLGn2Mo3BvnGhXyr6GLZaVaU01jdnJVzEP9YFbEx-Ks7essZ-8tAx_8d6ARtAQF9cShzitbyl7k-M25KLmt2HdbQeqt32-2b66B_13r8BEeg6CQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MxuDF-Iz47MGjK9Duq0dDRFDkBJFb03a7BIMLUdBw8bfb6XZRE0OMt81um26mnelM-818CF0w0JnQ154MFDEBimbmqZZ4OiSaKaqiVFmAbDds9f27QTBYQ40iFwZglc725zbdWmv3puqkWZ2ORpDjy2Jqa1iBnxIZO7zuBySCCOzq4wvnQUgcFIUzoXlResiCvJRRWkgBJAQIbwmwAP2-PZXn2VQs3sV4_G37aW6jLec34uv813bQms520cat5eVd7KHHtiv7YHYinCc5AgYIL4_M8CibTfCzhU5q7Lgihhhg70P4pm221JvGiSPdwXBd_bqP-s2bXqPlOc4ET9CoPvNoIIxTZcI-VotTGRkVlcJotYL8WqN7IiRJSrUfyIhBLKdjKQRL0ohQo9wmyqYHqJRNMn2IMDCRyDSkwlcaCoPJsJ6wuK5lIiQlKq4gUoiKK1dQHHgtxrxAjj1xK18O8uW5fCvoctlpmtfTWN08LOaA_1gW3Fj81R295Yz9ZaCj_w50jsqt3kOHd9rd-2O0CWz0-QnNCSrNXub61PgsM3lm1-QndtfoCQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UYjz524hR04NHS6Dduu1IjIgeiAeJeFrariMqDCJDg3-9fV1H1CjB25K1W_ba1763fu_7EDqPwGe4p4n0FTUJio7MVSMhmlMdKaaCVFmAbJd3et5t3-87nm2ohfl2fm9xWMr4FVTpUQqatNQL11GV-ybwrqBqr3vXeixZMYE7CtKrMGAkCBus5Bj6_Sl_7UObs2wi5u9iOPyyz7S3iwLuqaUnBHjJS32Wy7r6-EHeuOIn7KAtF2_iVjFBdtGazvbQxrXV853vo4cbRxdhdjBcFEcCdggvfrXhpywf45GFXGrsNCYGGODyA7inbZXVm8aJE-vBcMw9PUC99tX9ZYc4rQUiWNDMCfOFCcZMuhg1wlQGxrWlMKuBgrpc47OC0yRl2vNlEEEOqEMpRJSkAWVmUTDZOTtElWyc6SOEQcFEppwJT2kgFJO8mURhU8tESEZVWEO0tHysHBE56GEM4xJx9hxbi8VgsbiwWA1dLDpNCh6O5c15OaSxCyWKECE2o7O8I1lMgFVedPzP9ieokr_O9KmJZHJ55mbwJ5se7os | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+scientific+knowledge+into+machine+learning+using+interactive+decision+trees&rft.jtitle=Computers+%26+geosciences&rft.au=Sarailidis%2C+Georgios&rft.au=Wagener%2C+Thorsten&rft.au=Pianosi%2C+Francesca&rft.date=2023-01-01&rft.issn=0098-3004&rft.volume=170&rft.spage=105248&rft_id=info:doi/10.1016%2Fj.cageo.2022.105248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2022_105248 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |