An inertial iterative method for solving split equality problem in Banach spaces
In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthe...
Saved in:
| Published in | AIMS mathematics Vol. 7; no. 10; pp. 17628 - 17646 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2022971 |
Cover
| Abstract | In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature. |
|---|---|
| AbstractList | In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature. |
| Author | Shi, Luoyi Wang, Meiying Guo, Cuijuan |
| Author_xml | – sequence: 1 givenname: Meiying surname: Wang fullname: Wang, Meiying organization: School of Mathematical Sciences, Tiangong University, Tianjin 300387, China – sequence: 2 givenname: Luoyi surname: Shi fullname: Shi, Luoyi organization: School of Software, Tiangong University, Tianjin 300387, China – sequence: 3 givenname: Cuijuan surname: Guo fullname: Guo, Cuijuan organization: School of Software, Tiangong University, Tianjin 300387, China |
| BookMark | eNp9kMtOwzAQRS1UJErpjg_wB5Di2M7Dy1LxqFQJFrCOJs64deXEwUmL-vektEKsWM3V6MyR5l6TUeMbJOQ2ZjOhhLyvod_MOONcZfEFGXOZiShVeT76k6_ItOu2jDEec8kzOSZv84baBkNvwVHbY4De7pHW2G98RY0PtPNub5s17Vpne4qfOxjmgbbBlw7r4Zg-QAN6MwCgsbshlwZch9PznJCPp8f3xUu0en1eLuarCESq-kinldE851DKFNFoo-JEGaENKxNUTCudGdTVkFGJOE2BV5nkxmRJksW5ZmJClidv5WFbtMHWEA6FB1v8LHxYFzB8pR0WXEnDpci4SnIJAoFLxSRgKXReSQGDKzq5dk0Lhy9w7lcYs-LYbnFstzi3O_B3J14H33UBzf_4N1dDfvI |
| Cites_doi | 10.1007/s11075-020-00999-2 10.1186/1687-1812-2014-215 10.1186/s13660-021-02570-6 10.1016/0362-546X(91)90200-K 10.1080/02331934.2014.967237 10.1007/BF02142692 10.1007/978-3-662-35347-9 10.1088/0266-5611/28/8/085004 10.1088/0266-5611/18/2/310 10.1186/1029-242X-2014-478 10.1088/0031-9155/51/10/001 10.1016/j.na.2012.11.013 10.1088/0266-5611/26/5/055007 10.1155/2021/6624509 10.1007/s11075-015-0069-4 10.23952/jnva.5.2021.1.06 10.1007/s11784-019-0684-0 10.1016/0041-5553(64)90137-5 10.1186/s13660-021-02656-1 10.1088/0266-5611/24/5/055008 10.1088/0266-5611/20/1/006 10.1007/s40314-021-01465-y 10.1080/01630563.2013.809360 10.1016/S0252-9602(16)30049-2 10.23952/jnva.5.2021.1.04 10.1515/JIIP.2008.026 10.11948/20190330 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2022971 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 17646 |
| ExternalDocumentID | oai_doaj_org_article_294f243729584a3ea24904aeb3c8d43a 10.3934/math.2022971 10_3934_math_2022971 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a369t-c6dfc282ab46eefcf9159f3cf0b5e90c9c7fecd5e9e93166a2d742ff755718c03 |
| IEDL.DBID | UNPAY |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:02 EDT 2025 Mon Sep 15 08:22:49 EDT 2025 Tue Jul 01 03:56:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a369t-c6dfc282ab46eefcf9159f3cf0b5e90c9c7fecd5e9e93166a2d742ff755718c03 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2022971 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_294f243729584a3ea24904aeb3c8d43a unpaywall_primary_10_3934_math_2022971 crossref_primary_10_3934_math_2022971 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2022 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2022971-3 key-10.3934/math.2022971-11 key-10.3934/math.2022971-33 key-10.3934/math.2022971-4 key-10.3934/math.2022971-10 key-10.3934/math.2022971-32 key-10.3934/math.2022971-5 key-10.3934/math.2022971-31 key-10.3934/math.2022971-6 key-10.3934/math.2022971-30 key-10.3934/math.2022971-1 key-10.3934/math.2022971-2 key-10.3934/math.2022971-19 key-10.3934/math.2022971-18 key-10.3934/math.2022971-17 key-10.3934/math.2022971-16 key-10.3934/math.2022971-15 key-10.3934/math.2022971-14 key-10.3934/math.2022971-13 key-10.3934/math.2022971-12 key-10.3934/math.2022971-34 key-10.3934/math.2022971-7 key-10.3934/math.2022971-8 key-10.3934/math.2022971-9 key-10.3934/math.2022971-22 key-10.3934/math.2022971-21 key-10.3934/math.2022971-20 key-10.3934/math.2022971-29 key-10.3934/math.2022971-28 key-10.3934/math.2022971-27 key-10.3934/math.2022971-26 key-10.3934/math.2022971-25 key-10.3934/math.2022971-24 key-10.3934/math.2022971-23 |
| References_xml | – ident: key-10.3934/math.2022971-20 doi: 10.1007/s11075-020-00999-2 – ident: key-10.3934/math.2022971-8 doi: 10.1186/1687-1812-2014-215 – ident: key-10.3934/math.2022971-11 – ident: key-10.3934/math.2022971-13 doi: 10.1186/s13660-021-02570-6 – ident: key-10.3934/math.2022971-32 doi: 10.1016/0362-546X(91)90200-K – ident: key-10.3934/math.2022971-29 doi: 10.1080/02331934.2014.967237 – ident: key-10.3934/math.2022971-5 doi: 10.1007/BF02142692 – ident: key-10.3934/math.2022971-4 – ident: key-10.3934/math.2022971-14 doi: 10.1007/978-3-662-35347-9 – ident: key-10.3934/math.2022971-15 doi: 10.1088/0266-5611/28/8/085004 – ident: key-10.3934/math.2022971-2 doi: 10.1088/0266-5611/18/2/310 – ident: key-10.3934/math.2022971-23 doi: 10.1186/1029-242X-2014-478 – ident: key-10.3934/math.2022971-28 – ident: key-10.3934/math.2022971-6 doi: 10.1088/0031-9155/51/10/001 – ident: key-10.3934/math.2022971-17 doi: 10.1016/j.na.2012.11.013 – ident: key-10.3934/math.2022971-7 doi: 10.1088/0266-5611/26/5/055007 – ident: key-10.3934/math.2022971-16 doi: 10.1155/2021/6624509 – ident: key-10.3934/math.2022971-24 doi: 10.1007/s11075-015-0069-4 – ident: key-10.3934/math.2022971-9 doi: 10.23952/jnva.5.2021.1.06 – ident: key-10.3934/math.2022971-25 doi: 10.1007/s11784-019-0684-0 – ident: key-10.3934/math.2022971-19 doi: 10.1016/0041-5553(64)90137-5 – ident: key-10.3934/math.2022971-10 – ident: key-10.3934/math.2022971-31 doi: 10.1186/s13660-021-02656-1 – ident: key-10.3934/math.2022971-12 – ident: key-10.3934/math.2022971-21 doi: 10.1088/0266-5611/24/5/055008 – ident: key-10.3934/math.2022971-1 – ident: key-10.3934/math.2022971-18 – ident: key-10.3934/math.2022971-3 doi: 10.1088/0266-5611/20/1/006 – ident: key-10.3934/math.2022971-27 doi: 10.1007/s40314-021-01465-y – ident: key-10.3934/math.2022971-30 doi: 10.1080/01630563.2013.809360 – ident: key-10.3934/math.2022971-26 doi: 10.1016/S0252-9602(16)30049-2 – ident: key-10.3934/math.2022971-34 doi: 10.23952/jnva.5.2021.1.04 – ident: key-10.3934/math.2022971-22 doi: 10.1515/JIIP.2008.026 – ident: key-10.3934/math.2022971-33 doi: 10.11948/20190330 |
| SSID | ssj0002124274 |
| Score | 2.1782742 |
| Snippet | In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and... In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 17628 |
| SubjectTerms | banach space inertial technique self-adaptive method split equality problem strong convergence |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hLtAB8RTlJQ_AFtW1HSceW0RVIRUxUKlb5PghhipUkAr133OOQ1UWWNiiyImjz87d99m-O4CbVFitGaqTzDKRiNKYpPRKJrmV0jI7sMyEaOTpk5zMxOM8nW-V-gpnwmJ64AhcnynhWbO5hK5Sc6dRL1ChUQOa3AreUCOaqy0xFWwwGmSBeiuedOeKiz7yv7D3wJjKBj98UJOqvwu7q2qp1596sdjyL-MD2G-JIRnGDzqEHVcdQXe6yar6cQzPw4qEWD38KRckpkNGW0ViEWiC7JPgRAoLBOQDqWVNXIyYXJO2agw-TEa60uYVG4SjWCcwGz-83E-StiJCorlUdWKk9QZFki6FdM4br5CNeG48LVOnqFEm885YvHaKD6TUzKL09T5LU_RBhvJT6FRvlTsDorRJLc1MXmZaUI4Cm2JrJBe8lAHzHtx-Y1QsY-KLAgVDwLIIWBYtlj0YBQA3bUK66uYGDmLRDmLx1yD24G4D_6-9nf9HbxewF14XF1IuoVO_r9wVUou6vG5m0RcqV81N priority: 102 providerName: Directory of Open Access Journals |
| Title | An inertial iterative method for solving split equality problem in Banach spaces |
| URI | https://doi.org/10.3934/math.2022971 https://doaj.org/article/294f243729584a3ea24904aeb3c8d43a |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5Ke1APvsX6KDlUb6trks1ujq0oRWjpwYKelmweCJa12C1Sf72T7rb4APUWlslumCQ735fJzAC0I26UoshOYkN5wDOtg8xJESRGCEPNlaHaRyP3B6I34ncP0UMN2stYmE_-eyYZv0TY5l0GlEofKN4QESLuOjRGg2Hn0deN4zELhEyS8k77jy5frM0iKf8GrM3yiZq_qfH4kyW53YKb5RjKCyTPF7Miu9Dv39Iz_jXIbdisoCTplHO_AzWb78JGf5WHdboHw05OfHQfbuMxKRMo49-NlGWjCeJVgkvPHymQKYLRgtgyxnJOqjoz2Jl0Va70Ewr4y1v7MLq9ub_uBVUNhUAxIYtAC-M00iqVcWGt004ifnFMuzCLrAy11LGz2mDbSnYlhKIGybJzcRSh1dIhO4B6_pLbQyBS6ciEsU6yWPGQISUPURrhCMsEldw14Wyp63RSpspIkWJ4DaVeQ2mloSZ0_USsZHyC68UDVGla7ZfUv5AufIqIkBSzCmliyBVSf50YzlQTzlfT-OvXjv4reAzrvlUer5xAvXid2VMEHEXWWhD1VrXqPgAsxtUh |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5KPagH32J9kYN627pNstnNsRWLCBYPFuppyeaBYFlFt4j-eifNtlQF9RaWyW6YJDvfl8nMAJwk3ChFkZ2khvKIF1pHhZMiyowQhpqOodpHI98MxNWQX4-SUQNOZrEwC_57Jhk_R9jmXQaUSh8oviQSRNxNWBoObrv3vm4cT1kkZJaFO-0_unyxNtOk_KuwPCmf1fubGo8XLEl_HS5nYwgXSB7bk6po649v6Rn_GuQGrNVQknTD3G9Cw5ZbsHozz8P6ug233ZL46D7cxmMSEijj342EstEE8SrBpeePFMgrgtGK2BBj-U7qOjPYmfRUqfQDCvjLWzsw7F_eXVxFdQ2FSDEhq0gL4zTSKlVwYa3TTiJ-cUy7uEisjLXUqbPaYNtK1hFCUYNk2bk0SdBq6ZjtQrN8Ku0eEKl0YuJUZ0WqeMyQkscojXCEFYJK7lpwOtN1_hxSZeRIMbyGcq-hvNZQC3p-IuYyPsH19AGqNK_3S-5fSKc-RURIilmFNDHmCqm_zgxnqgVn82n89Wv7_xU8gBXfCscrh9CsXib2CAFHVRzX6-0TM4DULA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inertial+iterative+method+for+solving+split+equality+problem+in+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Wang%2C+Meiying&rft.au=Shi%2C+Luoyi&rft.au=Guo%2C+Cuijuan&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=10&rft.spage=17628&rft.epage=17646&rft_id=info:doi/10.3934%2Fmath.2022971&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022971 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |