An inertial iterative method for solving split equality problem in Banach spaces

In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthe...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 10; pp. 17628 - 17646
Main Authors Wang, Meiying, Shi, Luoyi, Guo, Cuijuan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022971

Cover

Abstract In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature.
AbstractList In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature.
Author Shi, Luoyi
Wang, Meiying
Guo, Cuijuan
Author_xml – sequence: 1
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
  organization: School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
– sequence: 2
  givenname: Luoyi
  surname: Shi
  fullname: Shi, Luoyi
  organization: School of Software, Tiangong University, Tianjin 300387, China
– sequence: 3
  givenname: Cuijuan
  surname: Guo
  fullname: Guo, Cuijuan
  organization: School of Software, Tiangong University, Tianjin 300387, China
BookMark eNp9kMtOwzAQRS1UJErpjg_wB5Di2M7Dy1LxqFQJFrCOJs64deXEwUmL-vektEKsWM3V6MyR5l6TUeMbJOQ2ZjOhhLyvod_MOONcZfEFGXOZiShVeT76k6_ItOu2jDEec8kzOSZv84baBkNvwVHbY4De7pHW2G98RY0PtPNub5s17Vpne4qfOxjmgbbBlw7r4Zg-QAN6MwCgsbshlwZch9PznJCPp8f3xUu0en1eLuarCESq-kinldE851DKFNFoo-JEGaENKxNUTCudGdTVkFGJOE2BV5nkxmRJksW5ZmJClidv5WFbtMHWEA6FB1v8LHxYFzB8pR0WXEnDpci4SnIJAoFLxSRgKXReSQGDKzq5dk0Lhy9w7lcYs-LYbnFstzi3O_B3J14H33UBzf_4N1dDfvI
Cites_doi 10.1007/s11075-020-00999-2
10.1186/1687-1812-2014-215
10.1186/s13660-021-02570-6
10.1016/0362-546X(91)90200-K
10.1080/02331934.2014.967237
10.1007/BF02142692
10.1007/978-3-662-35347-9
10.1088/0266-5611/28/8/085004
10.1088/0266-5611/18/2/310
10.1186/1029-242X-2014-478
10.1088/0031-9155/51/10/001
10.1016/j.na.2012.11.013
10.1088/0266-5611/26/5/055007
10.1155/2021/6624509
10.1007/s11075-015-0069-4
10.23952/jnva.5.2021.1.06
10.1007/s11784-019-0684-0
10.1016/0041-5553(64)90137-5
10.1186/s13660-021-02656-1
10.1088/0266-5611/24/5/055008
10.1088/0266-5611/20/1/006
10.1007/s40314-021-01465-y
10.1080/01630563.2013.809360
10.1016/S0252-9602(16)30049-2
10.23952/jnva.5.2021.1.04
10.1515/JIIP.2008.026
10.11948/20190330
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2022971
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 17646
ExternalDocumentID oai_doaj_org_article_294f243729584a3ea24904aeb3c8d43a
10.3934/math.2022971
10_3934_math_2022971
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a369t-c6dfc282ab46eefcf9159f3cf0b5e90c9c7fecd5e9e93166a2d742ff755718c03
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:02 EDT 2025
Mon Sep 15 08:22:49 EDT 2025
Tue Jul 01 03:56:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-c6dfc282ab46eefcf9159f3cf0b5e90c9c7fecd5e9e93166a2d742ff755718c03
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2022971
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_294f243729584a3ea24904aeb3c8d43a
unpaywall_primary_10_3934_math_2022971
crossref_primary_10_3934_math_2022971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022971-3
key-10.3934/math.2022971-11
key-10.3934/math.2022971-33
key-10.3934/math.2022971-4
key-10.3934/math.2022971-10
key-10.3934/math.2022971-32
key-10.3934/math.2022971-5
key-10.3934/math.2022971-31
key-10.3934/math.2022971-6
key-10.3934/math.2022971-30
key-10.3934/math.2022971-1
key-10.3934/math.2022971-2
key-10.3934/math.2022971-19
key-10.3934/math.2022971-18
key-10.3934/math.2022971-17
key-10.3934/math.2022971-16
key-10.3934/math.2022971-15
key-10.3934/math.2022971-14
key-10.3934/math.2022971-13
key-10.3934/math.2022971-12
key-10.3934/math.2022971-34
key-10.3934/math.2022971-7
key-10.3934/math.2022971-8
key-10.3934/math.2022971-9
key-10.3934/math.2022971-22
key-10.3934/math.2022971-21
key-10.3934/math.2022971-20
key-10.3934/math.2022971-29
key-10.3934/math.2022971-28
key-10.3934/math.2022971-27
key-10.3934/math.2022971-26
key-10.3934/math.2022971-25
key-10.3934/math.2022971-24
key-10.3934/math.2022971-23
References_xml – ident: key-10.3934/math.2022971-20
  doi: 10.1007/s11075-020-00999-2
– ident: key-10.3934/math.2022971-8
  doi: 10.1186/1687-1812-2014-215
– ident: key-10.3934/math.2022971-11
– ident: key-10.3934/math.2022971-13
  doi: 10.1186/s13660-021-02570-6
– ident: key-10.3934/math.2022971-32
  doi: 10.1016/0362-546X(91)90200-K
– ident: key-10.3934/math.2022971-29
  doi: 10.1080/02331934.2014.967237
– ident: key-10.3934/math.2022971-5
  doi: 10.1007/BF02142692
– ident: key-10.3934/math.2022971-4
– ident: key-10.3934/math.2022971-14
  doi: 10.1007/978-3-662-35347-9
– ident: key-10.3934/math.2022971-15
  doi: 10.1088/0266-5611/28/8/085004
– ident: key-10.3934/math.2022971-2
  doi: 10.1088/0266-5611/18/2/310
– ident: key-10.3934/math.2022971-23
  doi: 10.1186/1029-242X-2014-478
– ident: key-10.3934/math.2022971-28
– ident: key-10.3934/math.2022971-6
  doi: 10.1088/0031-9155/51/10/001
– ident: key-10.3934/math.2022971-17
  doi: 10.1016/j.na.2012.11.013
– ident: key-10.3934/math.2022971-7
  doi: 10.1088/0266-5611/26/5/055007
– ident: key-10.3934/math.2022971-16
  doi: 10.1155/2021/6624509
– ident: key-10.3934/math.2022971-24
  doi: 10.1007/s11075-015-0069-4
– ident: key-10.3934/math.2022971-9
  doi: 10.23952/jnva.5.2021.1.06
– ident: key-10.3934/math.2022971-25
  doi: 10.1007/s11784-019-0684-0
– ident: key-10.3934/math.2022971-19
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.2022971-10
– ident: key-10.3934/math.2022971-31
  doi: 10.1186/s13660-021-02656-1
– ident: key-10.3934/math.2022971-12
– ident: key-10.3934/math.2022971-21
  doi: 10.1088/0266-5611/24/5/055008
– ident: key-10.3934/math.2022971-1
– ident: key-10.3934/math.2022971-18
– ident: key-10.3934/math.2022971-3
  doi: 10.1088/0266-5611/20/1/006
– ident: key-10.3934/math.2022971-27
  doi: 10.1007/s40314-021-01465-y
– ident: key-10.3934/math.2022971-30
  doi: 10.1080/01630563.2013.809360
– ident: key-10.3934/math.2022971-26
  doi: 10.1016/S0252-9602(16)30049-2
– ident: key-10.3934/math.2022971-34
  doi: 10.23952/jnva.5.2021.1.04
– ident: key-10.3934/math.2022971-22
  doi: 10.1515/JIIP.2008.026
– ident: key-10.3934/math.2022971-33
  doi: 10.11948/20190330
SSID ssj0002124274
Score 2.1782742
Snippet In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and...
In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 17628
SubjectTerms banach space
inertial technique
self-adaptive method
split equality problem
strong convergence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hLtAB8RTlJQ_AFtW1HSceW0RVIRUxUKlb5PghhipUkAr133OOQ1UWWNiiyImjz87d99m-O4CbVFitGaqTzDKRiNKYpPRKJrmV0jI7sMyEaOTpk5zMxOM8nW-V-gpnwmJ64AhcnynhWbO5hK5Sc6dRL1ChUQOa3AreUCOaqy0xFWwwGmSBeiuedOeKiz7yv7D3wJjKBj98UJOqvwu7q2qp1596sdjyL-MD2G-JIRnGDzqEHVcdQXe6yar6cQzPw4qEWD38KRckpkNGW0ViEWiC7JPgRAoLBOQDqWVNXIyYXJO2agw-TEa60uYVG4SjWCcwGz-83E-StiJCorlUdWKk9QZFki6FdM4br5CNeG48LVOnqFEm885YvHaKD6TUzKL09T5LU_RBhvJT6FRvlTsDorRJLc1MXmZaUI4Cm2JrJBe8lAHzHtx-Y1QsY-KLAgVDwLIIWBYtlj0YBQA3bUK66uYGDmLRDmLx1yD24G4D_6-9nf9HbxewF14XF1IuoVO_r9wVUou6vG5m0RcqV81N
  priority: 102
  providerName: Directory of Open Access Journals
Title An inertial iterative method for solving split equality problem in Banach spaces
URI https://doi.org/10.3934/math.2022971
https://doaj.org/article/294f243729584a3ea24904aeb3c8d43a
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5Ke1APvsX6KDlUb6trks1ujq0oRWjpwYKelmweCJa12C1Sf72T7rb4APUWlslumCQ735fJzAC0I26UoshOYkN5wDOtg8xJESRGCEPNlaHaRyP3B6I34ncP0UMN2stYmE_-eyYZv0TY5l0GlEofKN4QESLuOjRGg2Hn0deN4zELhEyS8k77jy5frM0iKf8GrM3yiZq_qfH4kyW53YKb5RjKCyTPF7Miu9Dv39Iz_jXIbdisoCTplHO_AzWb78JGf5WHdboHw05OfHQfbuMxKRMo49-NlGWjCeJVgkvPHymQKYLRgtgyxnJOqjoz2Jl0Va70Ewr4y1v7MLq9ub_uBVUNhUAxIYtAC-M00iqVcWGt004ifnFMuzCLrAy11LGz2mDbSnYlhKIGybJzcRSh1dIhO4B6_pLbQyBS6ciEsU6yWPGQISUPURrhCMsEldw14Wyp63RSpspIkWJ4DaVeQ2mloSZ0_USsZHyC68UDVGla7ZfUv5AufIqIkBSzCmliyBVSf50YzlQTzlfT-OvXjv4reAzrvlUer5xAvXid2VMEHEXWWhD1VrXqPgAsxtUh
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5KPagH32J9kYN627pNstnNsRWLCBYPFuppyeaBYFlFt4j-eifNtlQF9RaWyW6YJDvfl8nMAJwk3ChFkZ2khvKIF1pHhZMiyowQhpqOodpHI98MxNWQX4-SUQNOZrEwC_57Jhk_R9jmXQaUSh8oviQSRNxNWBoObrv3vm4cT1kkZJaFO-0_unyxNtOk_KuwPCmf1fubGo8XLEl_HS5nYwgXSB7bk6po649v6Rn_GuQGrNVQknTD3G9Cw5ZbsHozz8P6ug233ZL46D7cxmMSEijj342EstEE8SrBpeePFMgrgtGK2BBj-U7qOjPYmfRUqfQDCvjLWzsw7F_eXVxFdQ2FSDEhq0gL4zTSKlVwYa3TTiJ-cUy7uEisjLXUqbPaYNtK1hFCUYNk2bk0SdBq6ZjtQrN8Ku0eEKl0YuJUZ0WqeMyQkscojXCEFYJK7lpwOtN1_hxSZeRIMbyGcq-hvNZQC3p-IuYyPsH19AGqNK_3S-5fSKc-RURIilmFNDHmCqm_zgxnqgVn82n89Wv7_xU8gBXfCscrh9CsXib2CAFHVRzX6-0TM4DULA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inertial+iterative+method+for+solving+split+equality+problem+in+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Wang%2C+Meiying&rft.au=Shi%2C+Luoyi&rft.au=Guo%2C+Cuijuan&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=10&rft.spage=17628&rft.epage=17646&rft_id=info:doi/10.3934%2Fmath.2022971&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon