Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson−Nernst−Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 114; no. 46; pp. 15180 - 15190
Main Authors Simakov, Nikolay A., Kurnikova, Maria G.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.11.2010
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/jp1046062

Cover

Abstract A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson−Nernst−Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced. The first is parametrized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard-Jones potential. We have further designed an energy-based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interactions were tested by computing current−voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of the choice of some space-dependent diffusion coefficient distributions on the predicted current−voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity, or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson−Boltzmann, and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM.
AbstractList A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced. The first is parametrized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard-Jones potential. We have further designed an energy-based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interactions were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of the choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity, or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzmann, and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM.A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced. The first is parametrized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard-Jones potential. We have further designed an energy-based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interactions were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of the choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity, or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzmann, and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM.
A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson−Nernst−Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced. The first is parametrized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard-Jones potential. We have further designed an energy-based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interactions were tested by computing current−voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of the choice of some space-dependent diffusion coefficient distributions on the predicted current−voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity, or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson−Boltzmann, and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM.
A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM.
A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced. The first is parametrized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard-Jones potential. We have further designed an energy-based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interactions were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of the choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity, or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzmann, and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM.
Author Simakov, Nikolay A.
Kurnikova, Maria G.
Author_xml – sequence: 1
  givenname: Nikolay A.
  surname: Simakov
  fullname: Simakov, Nikolay A.
– sequence: 2
  givenname: Maria G.
  surname: Kurnikova
  fullname: Kurnikova, Maria G.
  email: kurnikova@cmu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21028776$$D View this record in MEDLINE/PubMed
BookMark eNptkc1KxDAUhYOM6Piz8AWkGxEXddK0TdONMAzqDCiCP7gMaZs6GdOkJqniY_kiPpMZOorKLEIuyXfPyT3ZAQOlFQfgIIKnEUTRaNFGMMEQow0wjFIEQ7-ywarGEcTbYMfaBYQoRQRvgW3k20iW4SF4vtO1Cx6ZlMFMq2AyZ0pxGQhfauWE6romuOWt4ZYrx5zwzJtw82DctlKU_YHTwbWuuBTqqRfpjPG0Xap8foRT3mj5boXaA5s1k5bvr_Zd8HBxfj-Zhlc3l7PJ-CpkMc5dyCrE66xiBSEc5zzPcV5DUiVJReIsJSROl0MXeVFlOCkgK6uyzhGpsxqTGCMS74KzXrftioZXpX-LYZK2RjTMvFPNBP17o8ScPulXGsM0jxD0AscrAaNfOm4dbYQtuZRMcd1ZSiBJMMrg0urwt9WPx3fAHhj1QGm0tYbXtBR9jt5ZSBpBupyG_nyh7zj51_Etuo496llWWrrQnVE-1zXcF53LqSc
CitedBy_id crossref_primary_10_1039_D0NR03114C
crossref_primary_10_1002_prot_24967
crossref_primary_10_1016_j_jcp_2013_03_058
crossref_primary_10_1103_PhysRevE_92_012711
crossref_primary_10_1002_prot_24326
crossref_primary_10_1021_acs_jpcb_5b01295
crossref_primary_10_1063_5_0131073
crossref_primary_10_1063_1_4929808
crossref_primary_10_1021_acsnano_1c01078
crossref_primary_10_1021_ct3004244
crossref_primary_10_1002_bkcs_12486
crossref_primary_10_3390_e22050550
crossref_primary_10_1137_110845690
crossref_primary_10_1016_j_bioelechem_2019_107371
crossref_primary_10_1088_1361_648X_aababe
crossref_primary_10_1007_s00232_018_0013_3
crossref_primary_10_1063_1_4933012
crossref_primary_10_1021_acs_jpcb_5b04955
crossref_primary_10_1021_acs_jpcb_2c01028
crossref_primary_10_1021_cr3002609
crossref_primary_10_3390_electrochem2020014
crossref_primary_10_1007_s11538_017_0349_3
crossref_primary_10_1002_jcc_23544
crossref_primary_10_1088_1749_4680_7_1_014002
Cites_doi 10.1021/jp001282s
10.1007/BF01869935
10.1126/science.274.5294.1859
10.1021/jp052471j
10.1007/s00232-003-0615-1
10.1137/S0036139901393688
10.1529/biophysj.104.058727
10.1016/S0006-3495(03)75095-4
10.1016/j.bpc.2006.03.019
10.1007/978-3-642-56508-3_4
10.1021/ct700301q
10.1109/TNB.2004.842494
10.1016/S0006-3495(99)77230-9
10.1529/biophysj.105.066472
10.1063/1.1390507
10.1103/PhysRevE.80.021925
10.1016/S0021-9258(19)50103-X
10.1007/s002329900554
10.1109/TNB.2004.842495
10.1073/pnas.97.8.3959
10.1016/S0006-3495(98)77502-2
10.1103/PhysRevE.68.031503
10.1021/ja00124a002
10.1529/biophysj.104.044008
10.1016/S0005-2736(01)00395-9
10.1016/0010-4655(91)90227-C
10.1002/prot.340010109
10.1529/biophysj.105.060368
10.1016/S0006-3495(00)76781-6
10.1016/S0006-3495(01)75946-2
10.1016/S0006-3495(99)77232-2
10.1140/epje/i2010-10597-y
10.1021/ja9621760
10.1007/s10822-008-9200-0
10.1021/bi048060v
10.1007/s002329900026
10.1016/S0006-3495(00)76336-3
10.1016/S0006-3495(98)77764-1
10.1017/S0033583504003968
10.1002/jcc.20947
10.1021/jp804868s
10.1021/jp0355307
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/jp1046062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Soft Wall Ion Channel in Continuum Representation
EISSN 1520-5207
EndPage 15190
ExternalDocumentID PMC3059120
21028776
10_1021_jp1046062
c995093377
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01GM067962
– fundername: NIGMS NIH HHS
  grantid: R01 GM067962
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
53G
55A
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a369t-ad2ef7dab88e69e9969f08d44d837588351021b9bd764b0acdcf928f7f6836283
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Aug 21 14:09:20 EDT 2025
Fri Jul 11 15:50:40 EDT 2025
Mon Jul 21 06:04:10 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Tue Jul 01 00:21:26 EDT 2025
Mon Feb 06 12:15:00 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-ad2ef7dab88e69e9969f08d44d837588351021b9bd764b0acdcf928f7f6836283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21028776
PQID 808462708
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059120
proquest_miscellaneous_808462708
pubmed_primary_21028776
crossref_citationtrail_10_1021_jp1046062
crossref_primary_10_1021_jp1046062
acs_journals_10_1021_jp1046062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-25
PublicationDateYYYYMMDD 2010-11-25
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Menestrina G. (ref29/cit29) 1986; 90
Noskov S. Y. (ref9/cit9) 2004; 87
Gillespie D. (ref39/cit39) 2005; 109
Cornell W. (ref23/cit23) 1995; 117
Aguilella-Arzo M. (ref44/cit44) 2010; 31
Eisenberg R. S. (ref1/cit1) 1999; 171
Merzlyak P. G. (ref32/cit32) 2005; 89
Crozier P. S. (ref6/cit6) 2001; 81
Klapper I. (ref45/cit45) 1986; 1
Jorgensen W. L. (ref50/cit50) 1996; 118
Krishnamurthy V. (ref8/cit8) 2005; 4
Dieckmann G. R. (ref46/cit46) 1999; 76
Nadler B. (ref36/cit36) 2003; 63
Misakian M. (ref28/cit28) 2003; 195
Prevost G. (ref27/cit27) 2001
Im W. (ref16/cit16) 2002; 322
Luchinsky D. G. (ref18/cit18) 2009; 80
Mamonov A. B. (ref14/cit14) 2003; 84
Gillespie D. (ref37/cit37) 2002
Krasilnikov O. V. (ref30/cit30) 1988; 7
Krishnamurthy V. (ref3/cit3) 2005; 4
Li S. C. (ref35/cit35) 1998; 74
Im W. (ref21/cit21) 2001; 115
Cheng M. H. (ref25/cit25) 2005; 89
Kurnikova M. G. (ref13/cit13) 1999; 76
Song L. Z. (ref43/cit43) 1996; 274
Mamonov A. B. (ref26/cit26) 2006; 124
Hess B. (ref49/cit49) 2008; 4
Eisenberg R. S. (ref15/cit15) 1996; 150
McQuarrie D. A. (ref40/cit40) 1975
Allen T. W. (ref7/cit7) 2001; 1515
Makarov V. A. (ref24/cit24) 1998; 75
Happel J. (ref42/cit42) 1965
Graf P. (ref11/cit11) 2000; 104
Cheng M. (ref12/cit12) 2008; 22
Graf P. (ref34/cit34) 2004; 108
Walker B. (ref31/cit31) 1992; 267
Kurnikov I. V. (ref48/cit48) 2005; 44
Aksimentiev A. (ref5/cit5) 2005; 88
Corry B. (ref19/cit19) 2000; 78
Haddadian E. J. (ref20/cit20) 2008; 112
Selberherr S. (ref41/cit41) 1991; 67
Gillespie D. (ref38/cit38) 2003; 68
Roux B. (ref4/cit4) 2004; 37
ref22/cit22
Gu L.-Q. (ref33/cit33) 2000; 97
ref47/cit47
Coalson R. D. (ref2/cit2) 2005; 4
Dyrka W. (ref17/cit17) 2008; 29
Im W. (ref10/cit10) 2000; 79
References_xml – volume: 104
  start-page: 12324
  year: 2000
  ident: ref11/cit11
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001282s
– volume: 90
  start-page: 177
  year: 1986
  ident: ref29/cit29
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01869935
– volume: 274
  start-page: 1859
  year: 1996
  ident: ref43/cit43
  publication-title: Science
  doi: 10.1126/science.274.5294.1859
– volume: 109
  start-page: 15598
  year: 2005
  ident: ref39/cit39
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052471j
– volume: 195
  start-page: 137
  year: 2003
  ident: ref28/cit28
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-003-0615-1
– ident: ref47/cit47
– volume: 63
  start-page: 850
  year: 2003
  ident: ref36/cit36
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139901393688
– volume: 88
  start-page: 3745
  year: 2005
  ident: ref5/cit5
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.058727
– volume: 84
  start-page: 3646
  year: 2003
  ident: ref14/cit14
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)75095-4
– volume: 322
  start-page: 851
  year: 2002
  ident: ref16/cit16
  publication-title: J. Membr. Biol.
– ident: ref22/cit22
– volume: 124
  start-page: 268
  year: 2006
  ident: ref26/cit26
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2006.03.019
– start-page: 53
  volume-title: Pore-Forming Toxins
  year: 2001
  ident: ref27/cit27
  doi: 10.1007/978-3-642-56508-3_4
– volume: 4
  start-page: 435
  year: 2008
  ident: ref49/cit49
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 4
  start-page: 102
  year: 2005
  ident: ref3/cit3
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2004.842494
– volume: 76
  start-page: 618
  year: 1999
  ident: ref46/cit46
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77230-9
– volume: 4
  start-page: 102
  year: 2005
  ident: ref8/cit8
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2004.842494
– volume: 89
  start-page: 3059
  year: 2005
  ident: ref32/cit32
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.066472
– volume: 115
  start-page: 4850
  year: 2001
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1390507
– volume: 80
  start-page: 021925
  year: 2009
  ident: ref18/cit18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.021925
– volume: 267
  start-page: 10902
  year: 1992
  ident: ref31/cit31
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50103-X
– volume: 171
  start-page: 1
  year: 1999
  ident: ref1/cit1
  publication-title: J. Membr. Biol.
  doi: 10.1007/s002329900554
– volume: 4
  start-page: 81
  year: 2005
  ident: ref2/cit2
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2004.842495
– volume: 97
  start-page: 3959
  year: 2000
  ident: ref33/cit33
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.97.8.3959
– volume: 75
  start-page: 150
  year: 1998
  ident: ref24/cit24
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77502-2
– volume: 68
  start-page: 031503
  year: 2003
  ident: ref38/cit38
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.031503
– volume: 117
  start-page: 5179
  year: 1995
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00124a002
– volume: 87
  start-page: 2299
  year: 2004
  ident: ref9/cit9
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.044008
– volume: 1515
  start-page: 83
  year: 2001
  ident: ref7/cit7
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(01)00395-9
– volume: 67
  start-page: 145
  year: 1991
  ident: ref41/cit41
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(91)90227-C
– volume: 1
  start-page: 47
  year: 1986
  ident: ref45/cit45
  publication-title: Proteins: Struct., Funct., Genet.
  doi: 10.1002/prot.340010109
– volume: 89
  start-page: 1669
  year: 2005
  ident: ref25/cit25
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.060368
– volume: 78
  start-page: 2364
  year: 2000
  ident: ref19/cit19
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76781-6
– volume: 81
  start-page: 3077
  year: 2001
  ident: ref6/cit6
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)75946-2
– volume: 76
  start-page: 642
  year: 1999
  ident: ref13/cit13
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77232-2
– volume: 31
  start-page: 429
  year: 2010
  ident: ref44/cit44
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2010-10597-y
– volume: 118
  start-page: 11225
  year: 1996
  ident: ref50/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– volume: 22
  start-page: 563
  year: 2008
  ident: ref12/cit12
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/s10822-008-9200-0
– start-page: 12129
  year: 2002
  ident: ref37/cit37
  publication-title: J. Phys.: Condens. Matter
– volume: 44
  start-page: 1856
  year: 2005
  ident: ref48/cit48
  publication-title: Biochemistry
  doi: 10.1021/bi048060v
– volume: 150
  start-page: 1
  year: 1996
  ident: ref15/cit15
  publication-title: J. Membr. Biol.
  doi: 10.1007/s002329900026
– volume: 7
  start-page: 467
  year: 1988
  ident: ref30/cit30
  publication-title: Gen. Physiol. Biophys.
– volume: 79
  start-page: 788
  year: 2000
  ident: ref10/cit10
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76336-3
– volume: 74
  start-page: 37
  year: 1998
  ident: ref35/cit35
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77764-1
– volume: 37
  start-page: 15
  year: 2004
  ident: ref4/cit4
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583504003968
– volume: 29
  start-page: 1876
  year: 2008
  ident: ref17/cit17
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20947
– volume-title: Low Reynolds number hydrodynamics
  year: 1965
  ident: ref42/cit42
– volume: 112
  start-page: 13981
  year: 2008
  ident: ref20/cit20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp804868s
– volume-title: Statistical mechanics
  year: 1975
  ident: ref40/cit40
– volume: 108
  start-page: 2006
  year: 2004
  ident: ref34/cit34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0355307
SSID ssj0025286
Score 2.1601985
Snippet A soft repulsion (SR) model of short-range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the...
A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15180
SubjectTerms Algorithms
B: Biophysical Chemistry
Bacterial Toxins
Computer Simulation
Diffusion
Hemolysin Proteins
Ion Channel Gating
Ion Channels - chemistry
Ion Channels - metabolism
Ions - metabolism
Models, Molecular
Software
Title Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin
URI http://dx.doi.org/10.1021/jp1046062
https://www.ncbi.nlm.nih.gov/pubmed/21028776
https://www.proquest.com/docview/808462708
https://pubmed.ncbi.nlm.nih.gov/PMC3059120
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025286
  issn: 1520-6106
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5V5QAX3o8tUFnAgYtL4iR-HFcL1YIEB0ql3iLHdkRp61Rscum_4o_wm5jJY-nSArdImViyZzIPz8w3AK_SzNYY3wgepHccPXDNdV1kHFntsyJ4qfpG4Y-f5PIw_3BUHG3By79k8EX65ts5pSET0rM3hFSK6vbmi4N1VFWIfpwj2iGKgxI5wQdd_pRMj1ttmp4r_uSfZZGX7Mz-HXg7desM5SUne11b7bmLq-CN_9rCXbg9-plsPgjGPdgK8T7cXEzj3R7AyQEqYEb36Ox9Exl1GcRwyo7xsaHpEV13xj73ZbJjd1JkdGfL5r8z3qxtGM1So472YZEB7GlFq_z8wZfhrCHEk_gQDvfffVks-Th5gdtMmpZbL0KtvK20DtIEjIlMnWif5x7j2UKj10b7qkzllcyrxDrvaiN0rWqp0SLq7BFsxyaGJ8CcLaTylUFFInJdGWt8Ym3hhDDOee9msIusKcc_Z1X2SXGBQcl0ZjN4PXGtdCNuOY3POL2O9MWa9HwA67iOiE2sL_HIKT9iY2i6VakTdMaESvQMHg-SsF6FAmOtlJyB2pCRNQGhdG--icdfe7RuVKgmFcnO__b5FG71lQlpykXxDLbb7114jg5PW-32Av8L--P7Mw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOZQL78fyKBbiwCUlceLXcbWi2kLbA22l3iLHdkRp61QkufCv-CP8JmacZNstleAWKc4otsfz8Mx8Q8j7LDc1-Dcs8cLZBCxwlaia5wlstcu5d0LGQuH9A7E8Lj6f8JMRJgdrYeAnWqDUxiD-FbpA9vH7JUYjUxS3d7koMnS05ovDlXPFWezqCOoI3aFUTChC1z9FDWTbdQ30l1l5MzvymrrZeTD0LYo_GrNMzrb7rtq2P29gOP7fTB6S-6PVSecDmzwid3x4TDYXU7O3J-TsEMQxxVt1utsEijUHwZ_TU3hssJdE31_QrzFpdqxVChRvcOn8Kv5Nu4ZiZzWsbx-IDNBPLVL5_StZ-osG8U_CU3K88-losUzGPgyJyYXuEuOYr6UzlVJeaA8ekq5T5YrCgXfLFdhwOK9KV06KokqNdbbWTNWyFgr0o8qfkY3QBP-CUGu4kK7SIFZYoSpttEuN4ZYxba1zdka2YMnK8Ry1ZQyRM3BRpjWbkQ_T5pV2RDHHZhrntw19txp6OUB33DaIThxQwpJjtMQE3_RtqVIwzZhM1Yw8HxhiRQXdZCWlmBG5xiqrAYjZvf4mnH6L2N0gXnXG0pf_mudbsrk82t8r93YPvrwi92LOQpYljL8mG92P3r8BU6irtuIZ-ANmmwOk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwELZQkYBL2dvHUizEgUtK4sTbsXrw9MpSEKVSb5FjO6K0dZ5IcuFf8Uf4Tcxko69UglukTKx4m5nP4_mGkBdJakrANyzywtkIPHAVqZKnEUy1S7l3QnaJwh8OxPIoe3vMjwegiLkw8BM1tFR3QXzc1StXDgwDyatvK4xIxqhyr3MBWxxdofnhBLA46yo7gklCSBSLkUno4qdohWy9boX-ci0v35C8YHIWt8nH6We7myanu21T7Nofl3gc_783d8jm4H3SvX653CXXfLhHbs7Hom_3yekhqGWKp-t0vwoUcw-CP6Mn8FhhTYm2Paefu8uzQ85SoHiSS_f-xMFpU1GssIZ57n0jPQVUja38-hkt_XmFPCjhATlavPkyX0ZDPYbIpEI3kXHMl9KZQikvtAekpMtYuSxzgHK5Al8O-1XowkmRFbGxzpaaqVKWQoGdVOlDshGq4LcJtYYL6QoN6oVlqtBGu9gYbhnT1jpnZ2QHhi0f9lOdd6FyBlBlHLMZeTlOYG4HNnMsqnF2lejzSXTVU3hcJUTHVZDDkGPUxARftXWuYnDRmIzVjGz1i2JqBeGyklLMiFxbLpMAcnevvwknXzsOb1CzOmHxo3_18xm58en1In-_f_DuMbnVXV1IkojxJ2Sj-d76p-ARNcVOtw1-A8kxBic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Wall+Ion+Channel+in+Continuum+Representation+with+Application+to+Modeling+Ion+Currents+in+%CE%B1-Hemolysin&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Simakov%2C+Nikolay+A.&rft.au=Kurnikova%2C+Maria+G.&rft.date=2010-11-25&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=114&rft.issue=46&rft.spage=15180&rft.epage=15190&rft_id=info:doi/10.1021%2Fjp1046062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp1046062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon