An E-extra iteration method for solving reduced biquaternion matrix equation $ AX+XB = C
This paper focuses on the solution of the reduced biquaternion equation $ AX+XB = C $ using the E-extra iteration method. By utilizing the complex decomposition of a reduced biquaternion matrix, we transform the equation into a complex matrix equation. Subsequently, we analyze the convergence of thi...
Saved in:
| Published in | AIMS mathematics Vol. 9; no. 7; pp. 17578 - 17589 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2024854 |
Cover
| Abstract | This paper focuses on the solution of the reduced biquaternion equation $ AX+XB = C $ using the E-extra iteration method. By utilizing the complex decomposition of a reduced biquaternion matrix, we transform the equation into a complex matrix equation. Subsequently, we analyze the convergence of this method and provide guidelines for selecting optimal parameters. Finally, numerical examples are presented to demonstrate the efficacy of our algorithm. |
|---|---|
| AbstractList | This paper focuses on the solution of the reduced biquaternion equation $ AX+XB = C $ using the E-extra iteration method. By utilizing the complex decomposition of a reduced biquaternion matrix, we transform the equation into a complex matrix equation. Subsequently, we analyze the convergence of this method and provide guidelines for selecting optimal parameters. Finally, numerical examples are presented to demonstrate the efficacy of our algorithm. |
| Author | Huang, Jingpin Wang, Yun Lan, Jiaxin |
| Author_xml | – sequence: 1 givenname: Jiaxin surname: Lan fullname: Lan, Jiaxin organization: School of Humanities and Education, Guangxi Financial Vocational College, Nanning 530007, China – sequence: 2 givenname: Jingpin surname: Huang fullname: Huang, Jingpin organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China – sequence: 3 givenname: Yun surname: Wang fullname: Wang, Yun organization: School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China |
| BookMark | eNp9kEFPwjAYhhuDiYjc_AE9eNNh23WjO3hAgkpC4kUTbsvX7iuMjBW7ovDvHWCMJ0_f-7158hzeS9KpXY2EXHM2iLNY3q8hLAeCCakSeUa6Qg7jKM2U6vzJF6TfNCvGmOBCiqHskvmoppMId8EDLQN6CKWr6RrD0hXUOk8bV32W9YJ6LLYGC6rLjy20YH3kIPhyR_FQHf4bOprfzh_pAx1fkXMLVYP9n9sj70-Tt_FLNHt9no5HswjiNAuREiaTopBMW8NQKqUQNNokRQZpIjOVKI2sAM0lxjzlsU41T1JAIy0qxuMemZ68hYNVvvHlGvw-d1Dmx8L5RQ4-lKbCXAgrlOHAlFCSt2KbGmVB8MRoliTQuqKTa1tvYP8FVfUr5Cw_rJwfVs5_Vm75uxNvvGsaj_Z__BuFln-7 |
| Cites_doi | 10.1007/s00500-017-2702-8 10.1007/s00006-017-0782-2 10.1137/080723181 10.3879/j.issn.1000-0887.2013.03.010 10.1007/s10778-009-0232-5 10.13642/j.cnki.42-1184/o1.2023.01.017 10.1080/03081087.2018.1543383 10.1016/j.camwa.2016.07.019 10.1109/TSP.2004.828901 10.1016/j.amc.2015.04.020 10.13334/j.0258-8013.pcsee.182450 10.3934/math.2021766 10.1007/s00521-014-1578-0 10.1016/j.amc.2017.08.007 10.3934/math.2023261 10.1016/j.jfranklin.2014.08.003 10.1080/03081087.2014.896361 10.1109/TCSVT.2021.3073363 10.3934/naco.2012.2.811 10.12286/jssx.2017.2.213 10.4208/jcm.1009-m3152 10.21656/1000-0887.400133 10.24425/bpasts.2022.140535 10.11721/cqnuj20220202 10.1016/0024-3795(91)90063-3 10.1017/S030500410004799X |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2024854 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 17589 |
| ExternalDocumentID | oai_doaj_org_article_22f28c1a08284158bf6c8fa215cb055a 10.3934/math.2024854 10_3934_math_2024854 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-a369t-82c942d40bfc0e4888eabef56e0a6549858be0dab14e31613b6b156aec4fe8013 |
| IEDL.DBID | UNPAY |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:59 EDT 2025 Mon Sep 15 08:21:02 EDT 2025 Tue Jul 01 03:57:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a369t-82c942d40bfc0e4888eabef56e0a6549858be0dab14e31613b6b156aec4fe8013 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2024854 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_22f28c1a08284158bf6c8fa215cb055a unpaywall_primary_10_3934_math_2024854 crossref_primary_10_3934_math_2024854 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2024854-9 key-10.3934/math.2024854-8 key-10.3934/math.2024854-7 key-10.3934/math.2024854-6 key-10.3934/math.2024854-5 key-10.3934/math.2024854-10 key-10.3934/math.2024854-11 key-10.3934/math.2024854-12 key-10.3934/math.2024854-13 key-10.3934/math.2024854-18 key-10.3934/math.2024854-19 key-10.3934/math.2024854-14 key-10.3934/math.2024854-15 key-10.3934/math.2024854-16 key-10.3934/math.2024854-17 key-10.3934/math.2024854-21 key-10.3934/math.2024854-22 key-10.3934/math.2024854-23 key-10.3934/math.2024854-24 key-10.3934/math.2024854-20 key-10.3934/math.2024854-4 key-10.3934/math.2024854-3 key-10.3934/math.2024854-2 key-10.3934/math.2024854-1 key-10.3934/math.2024854-25 key-10.3934/math.2024854-26 key-10.3934/math.2024854-27 key-10.3934/math.2024854-28 |
| References_xml | – ident: key-10.3934/math.2024854-8 doi: 10.1007/s00500-017-2702-8 – ident: key-10.3934/math.2024854-12 doi: 10.1007/s00006-017-0782-2 – ident: key-10.3934/math.2024854-2 – ident: key-10.3934/math.2024854-19 doi: 10.1137/080723181 – ident: key-10.3934/math.2024854-6 doi: 10.3879/j.issn.1000-0887.2013.03.010 – ident: key-10.3934/math.2024854-5 doi: 10.1007/s10778-009-0232-5 – ident: key-10.3934/math.2024854-23 doi: 10.13642/j.cnki.42-1184/o1.2023.01.017 – ident: key-10.3934/math.2024854-28 doi: 10.1080/03081087.2018.1543383 – ident: key-10.3934/math.2024854-13 doi: 10.1016/j.camwa.2016.07.019 – ident: key-10.3934/math.2024854-26 doi: 10.1109/TSP.2004.828901 – ident: key-10.3934/math.2024854-18 doi: 10.1016/j.amc.2015.04.020 – ident: key-10.3934/math.2024854-4 doi: 10.13334/j.0258-8013.pcsee.182450 – ident: key-10.3934/math.2024854-7 doi: 10.3934/math.2021766 – ident: key-10.3934/math.2024854-25 doi: 10.1007/s00521-014-1578-0 – ident: key-10.3934/math.2024854-24 doi: 10.1016/j.amc.2017.08.007 – ident: key-10.3934/math.2024854-1 – ident: key-10.3934/math.2024854-15 doi: 10.3934/math.2023261 – ident: key-10.3934/math.2024854-11 doi: 10.1016/j.jfranklin.2014.08.003 – ident: key-10.3934/math.2024854-14 doi: 10.1080/03081087.2014.896361 – ident: key-10.3934/math.2024854-27 doi: 10.1109/TCSVT.2021.3073363 – ident: key-10.3934/math.2024854-20 doi: 10.3934/naco.2012.2.811 – ident: key-10.3934/math.2024854-16 doi: 10.12286/jssx.2017.2.213 – ident: key-10.3934/math.2024854-17 doi: 10.4208/jcm.1009-m3152 – ident: key-10.3934/math.2024854-21 doi: 10.21656/1000-0887.400133 – ident: key-10.3934/math.2024854-3 doi: 10.24425/bpasts.2022.140535 – ident: key-10.3934/math.2024854-22 doi: 10.11721/cqnuj20220202 – ident: key-10.3934/math.2024854-10 doi: 10.1016/0024-3795(91)90063-3 – ident: key-10.3934/math.2024854-9 doi: 10.1017/S030500410004799X |
| SSID | ssj0002124274 |
| Score | 2.2450778 |
| Snippet | This paper focuses on the solution of the reduced biquaternion equation $ AX+XB = C $ using the E-extra iteration method. By utilizing the complex... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 17578 |
| SubjectTerms | complex decomposition convergence analysis e-extra iteration method numerical example reduced biquaternion |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDeNEdxJ84f5GDepGyrEmz9OBhGxtDmKcNeitJ-gLCqNvcUP97X5o65kUvXktoyvel71fTTwi51aIDHoAcYfAtIsGtizTEMjJaMQ-2dqz6SWz8LEdT8ZQl2dZRX35PWMADB-FacexiZdvao9Yw2CjjpFVOY6SyhiVJlRoxlW4VU94Ho0MWWG-Fne485aKF-Z__9uAJXuJHDKpQ_Q2yty7n-vNdz2Zb8WV4SA7qxJB2wwMdkR0oj0ljvKGqvp2QSbekgwi96VLTQENGUWk4A5pi8klxHfn-AF16HisU1Lws1tp3_KpxHsb_QWER4N60mz1kvcf-KZkOB5P-KKpPRYg0l-kqUrFNRVwIZpxlgO-fAm3AJRKYlljtKdQIWKFNWwDHfI4babBI02CFA4xH_Izslq8lnBOa2k7R5s4ww4WwkJpEoc7S6FgnHFS7Se6-dcrnAX6RY9Hg9cy9nnmtZ5P0vIibMR5ZXV1AQ-a1IfO_DNkk9xsT_DrbxX_Mdkn2_e1CM-WK7K6Wa7jG9GJlbqqV9AVoUM1J priority: 102 providerName: Directory of Open Access Journals |
| Title | An E-extra iteration method for solving reduced biquaternion matrix equation $ AX+XB = C |
| URI | https://doi.org/10.3934/math.2024854 https://doaj.org/article/22f28c1a08284158bf6c8fa215cb055a |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: AMVHM dateStart: 20220701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Lj9MwEIdHS3uAPfBGlEflQ-GCvKSx4zoHDtlVVxVSVxwoCqdo7IylFauwW1rx-OsZJ2m1gATcoshWrBk78xs_PgNMUM8oApAlB99aauWDREqNdGiTCLYOSXtIbHlmFiv9tszKA5jszsJcW79XudKvWbbFJYMI3tI3YGgyVtwDGK7O3hUf471xeqakya3t9rT_UeWXaNNC-Q_h5ra5xO9f8eLiWiQ5vQPzXRu6DSSfjrYbd-R__IZn_Fcj78LtXkqKovP9PTig5j4cLvcc1i8PoCwaMZf8_12j6PjJ7AbR3RotWK4K7nlxRkGsI8GVauHOr7YY5wjbchHf_03QVYcDFxNRlK_KY_FGnDyE1en8_clC9ncpSFQm30ib-lyntU5c8AnxqLWEjkJmKEHDOaLNrKOkRjfVpFgFKmccp3ZIXgfiKKYewaD53NBjELmf1VMVXOKU1p5yl1nkxMhhipkiOx3Bi53Nq8sOmVFxqhEtVUVLVb2lRnAcHbIvE0HX7Qs2bdWPmypNQ2r9FCNpj7WGdcF4G5CFindJluEIXu7d-devPfnfgk_hVnzqplmewWCz3tJzFh4bN4ZhsfywWI7bxH3c98KfTSLW_Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT9swFMefoBwGB_YDphW2yYeOCzKkseM6Bw4FFaFJoB1WKTtFz86zhIYyKK3Y-Ot5btIKmMR2iyJbsd6z877PPz4G6KEeUAQgSw6-ldTKB4mUGunQJhFsHZL5IbHzC3M21l-LrFiB3uIszKP1e5UrfciyLS4ZRPCWXoU1k7Hi7sDa-OLb8Ee8N04PlDS5tc2e9r-qPIk2cyj_Brya1df45w6vrh5FktPXMFq0odlA8vNgNnUH_v4ZnvFfjXwDm62UFMPG929hhep3sHG-5LDebkExrMVI8v93gqLhJ7MbRHNrtGC5KrjnxRkFMYkEV6qEu7yZYZwjnJeL-P7fgm4aHLjoiWGxXxyLI3GyDePT0feTM9nepSBRmXwqbepznVY6ccEnxKPWEjoKmaEEDeeINrOOkgpdX5NiFaiccZzaIXkdiKOYeg-d-ldNH0DkflD1VXCJU1p7yl1mkRMjhylmimy_C18WNi-vG2RGyalGtFQZLVW2lurCcXTIskwEXc9fsGnLdtyUaRpS6_sYSXusNawLxtuALFS8S7IMu7C3dOeLX9v534K7sB6fmmmWj9CZTmb0iYXH1H1u-90DoCXUbA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+E-extra+iteration+method+for+solving+reduced+biquaternion+matrix+equation+AX%2BXB%3DC&rft.jtitle=AIMS+mathematics&rft.au=Jiaxin+Lan&rft.au=Jingpin+Huang&rft.au=Yun+Wang&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=7&rft.spage=17578&rft.epage=17589&rft_id=info:doi/10.3934%2Fmath.2024854&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_22f28c1a08284158bf6c8fa215cb055a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |